首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthocyanidin synthase (ANS, leucoanthocyanidin oxygenase), a 2-oxoglutarate iron-dependent oxygenase, catalyzed the penultimate step in the biosynthesis of the anthocyanin class of flavonoids, from the colorless leucoanthocyanidins to the colored anthocyanidins. The full-length cDNA and genomic DNA sequences of ANS gene (designated as GbANS) were isolated from Ginkgo biloba for the first time. The full-length cDNA of GbANS contained a 1062-bp open reading frame (ORF) encoding a 354-amino-acid protein. The genomic DNA analysis showed that GbANS gene had three exons and two introns. The deduced GbANS protein showed high identities to other plant ANSs. The conserved amino acids (H-X-D) ligating ferrous iron and residues (R-X-S) participating in 2-oxoglutarate binding were found in GbANS at the similar positions like other ANSs. Southern blot analysis indicated that GbANS belonged to a multi-gene family. The expression analysis by real-time PCR showed that GbANS expressed in a tissue-specific manner in G. biloba. GbANS was also found to be up-regulated by all of the six tested abiotic stresses, UV-B, abscisic acid, sucrose, salicylic acid, cold and ethylene, consistent with the promoter region analysis of GbANS. The recombinant protein was successfully expressed in E. coli strain with pET28a vector. The in vitro enzyme activity assay by HPLC indicated that recombinant GbANS protein could catalyze the formation the cyanidin from leucocyanidin and conversion of dihydroquercetin to quercetin, suggesting GbANS is a bifunctional enzyme within the anthocyanidin and flavonol biosynthetic pathway.  相似文献   

2.
Anthocyanidin synthase (ANS), an enzyme of the biosynthetic pathway to anthocyanin, has been postulated to catalyze the reaction(s) from the colorless leucoanthocyanidins to the colored anthocyanidins. Although cDNAs have been isolated that encode putative ANS, which exhibits significant similarities in amino acid sequence with members of a family of 2-oxoglutarate-dependent oxygenases, no biochemical evidence has been presented which identifies the actual reaction that is catalyzed by ANS. Here we show that anthocyanidins are formed in vitro through 2-oxoglutarate-dependent oxidation of leucoanthocyanidins catalyzed by the recombinant ANS and subsequent acid treatment. A cDNA encoding ANS was isolated from red and green formas of Perilla frutescens by differential display of mRNA. Recombinant ANS tagged with maltose-binding-protein (MBP) was purified, and the formation of anthocyanidins from leucoanthocyanidins was detected by the ANS-catalyzed reaction in the presence of ferrous ion, 2-oxoglutarate and ascorbate, being followed by acidification with HCI. Equimolar stoichiometry was confirmed for anthocyanidin formation and liberation of CO2 from 2-oxoglutarate. The presumptive two-copy gene of ANS was expressed in leaves and stems of the red forma of P. frutescens but not in the green forma plant. This corresponds to the accumulation pattern of anthocyanin. The mechanism of the reaction catalyzed by ANS is discussed in relation to the molecular evolution of a family of 2-oxoglutarate-dependent oxygenases.  相似文献   

3.
4.
5.
6.
Anthocyanidin synthase in non-anthocyanin-producing Caryophyllales species   总被引:1,自引:0,他引:1  
Red colors in flowers are mainly produced by two types of pigments: anthocyanins and betacyanins. Although anthocyanins are widely distributed in higher plants, betacyanins have replaced anthocyanins in the Caryophyllales. There has been no report so far to find anthocyanins and betacyanins existing together within the same plant. This curious phenomenon has been examined from genetic and evolutionary perspectives, however nothing is known at the molecular level about the mutual exclusion of anthocyanins and betacyanins in higher plants. Here, we show that spinach (Spinacia oleracea) and pokeweed (Phytolacca americana), which are both members of the Caryophyllales, have functional anthocyanidin synthases (ANSs). The ability of ANSs of the Caryophyllales to oxidize trans-leucocyanidin to cyanidin is comparable to that of ANSs in anthocyanin-producing plants. Expression profiles reveal that, in spinach, dihydroflavonol 4-reductase (DFR) and ANS are not expressed in most tissues and organs, except seeds, in which ANS may contribute to proanthocyanidin synthesis. One possible explanation for the lack of anthocyanins in the Caryophyllales is the suppression or limited expression of the DFR and ANS.  相似文献   

7.
8.
Anthocyanidins were proposed to derive from (+)-naringenin via (2R,3R)-dihydroflavonol(s) and (2R,3S,4S)-leucocyanidin(s) which are eventually oxidized by anthocyanidin synthase (ANS). Recently, the role of ANS has been put into question, because the recombinant enzyme from Arabidopsis exhibited primarily flavonol synthase (FLS) activity with negligible ANS activity. This and other studies led to the proposal that ANS as well as FLS may select for dihydroflavonoid substrates carrying a "beta-face" C-3 hydroxyl group and initially form the 3-geminal diol by "alpha-face" hydroxylation. Assays with recombinant ANS from Gerbera hybrida fully supported the proposal and were extended to catechin and epicatechin isomers as potential substrates to delineate the enzyme specificity. Gerbera ANS converted (+)-catechin to two major and one minor product, whereas ent(-)-catechin (2S,3R-trans-catechin), (-)-epicatechin, ent(+)-epicatechin (2S,3S-cis-epicatechin) and (-)-gallocatechin were not accepted. The K(m) value for (+)-catechin was determined at 175 microM, and the products were identified by LC-MS(n) and NMR as the 4,4-dimer of oxidized (+)-catechin (93%), cyanidin (7%) and quercetin (trace). When these incubations were repeated in the presence of UDP-glucose:flavonoid 3-O-glucosyltransferase from Fragariaxananassa (FaGT1), the product ratio shifted to cyanidin 3-O-glucoside (60%), cyanidin (14%) and dimeric oxidized (+)-catechin (26%) at an overall equivalent rate of conversion. The data appear to identify (+)-catechin as another substrate of ANS in vivo and shed new light on the mechanism of its catalysis. Moreover, the enzymatic dimerization of catechin monomers is reported for the first time suggesting a role for ANS beyond the oxidation of leucocyanidins.  相似文献   

9.
Catechin and epicatechin biosyntheses were studied of grape (Vitis vinifera L.), apple (Malus x domestica Borkh.) and other crop leaves, since these monomers and the derived proanthocyanidins are important disease resistance factors. Grape and apple leucoanthocyanidin 4-reductase (LAR; EC 1.17.1.3) enzymes were characterized on basis of plant and recombinant enzymes. In case of grape, two LAR cDNAs were cloned by assembling available EST sequences. Grape and apple leaf anthocyanidin reductase (ANR; EC 1.3.1.77) cDNAs were also obtained and the respective plant and recombinant enzymes were characterized. Despite general low substrate specificity, within the respective flavonoid biosyntheses of grape and apple leaves, both enzyme types deliver differently hydroxylated catechins and epicatechins, due to substrate availability in vivo. Furthermore, for LAR enzymes conversion of 3-deoxyleucocyanidin was shown. Beside relevance for plant protection, this restricts the number of possible reaction mechanisms of LAR. ANR enzyme activity was demonstrated for a number of other crop plants and its correlation with (-)-epicatechin and obvious competition with UDP-glycosyl:flavonoid-3-O-glycosyltransferases was considered.  相似文献   

10.
Uridine 5′-diphosphoglucose:betanidin 5-O- and 6-O-glucosyltransferases (5-GT and 6-GT; EC 2.4.1) catalyze the regiospecific formation of betanin (betanidin 5-O-β-glucoside) and gomphrenin I (betanidin 6-O-β-glucoside), respectively. Both enzymes were purified to near homogeneity from cell-suspension cultures of Dorotheanthus bellidiformis, the 5-GT by classical chromatographic techniques and the 6-GT by affinity dye-ligand chromatography using UDP-glucose as eluent. Data obtained with highly purified enzymes indicate that 5-GT and 6-GT catalyze the indiscriminate transfer of glucose from UDP-glucose to hydroxyl groups of betanidin, flavonols, anthocyanidins and flavones, but discriminate between individual hydroxyl groups of the respective acceptor compounds. The 5-GT catalyzes the transfer of glucose to the C-4′ hydroxyl group of quercetin as its best substrate, and the 6-GT to the C-3 hydroxyl group of cyanidin as its best substrate. Both enzymes also catalyze the formation of the respective 7-O-glucosides, but to a minor extent. Although the enzymes were not isolated to homogeneity, chromatographic, electrophoretic and kinetic properties proved that the respective enzyme activities were based on the presence of single enzymes, i.e. 5-GT and 6-GT. The N terminus of the 6-GT revealed high sequence identity to a proposed UDP-glucose:flavonol 3-O-glucosyltransferase (UF3GT) of Manihot esculenta. In addition to the 5-GT and 6-GT, we isolated a UF3GT from D. bellidiformis cell cultures that preferentially accepted myricetin and quercetin, but was inactive with betanidin. The same result was obtained with a UF3GT from Antirrhinum majus and a flavonol 4′-O-glucosyltransferase from Allium cepa. Based on these results, the main question to be addressed reads: Are the characteristics of the 5-GT and 6-GT indicative of their phylogenetic relationship with flavonoid glucosyltransferases? Received: 11 February 1997 / Accepted: 18 April 1997  相似文献   

11.
Anthocyanins are red, purple, or blue plant pigments that belong to the family of polyphenolic compounds collectively called flavonoids. Their demonstrated antioxidant properties and economic importance to the dye, fruit, and cut-flower industries have driven intensive research into their metabolic biosynthetic pathways. In order to produce stable, glycosylated anthocyanins from colorless flavanones such as naringenin and eriodictyol, a four-step metabolic pathway was constructed that contained plant genes from heterologous origins: flavanone 3β-hydroxylase from Malus domestica, dihydroflavonol 4-reductase from Anthurium andraeanum, anthocyanidin synthase (ANS) also from M. domestica, and UDP-glucose:flavonoid 3-O-glucosyltransferase from Petunia hybrida. Using two rounds of PCR, each one of the four genes was first placed under the control of the trc promoter and its own bacterial ribosome-binding site and then cloned sequentially into vector pK184. Escherichia coli cells containing the recombinant plant pathway were able to take up either naringenin or eriodictyol and convert it to the corresponding glycosylated anthocyanin, pelargonidin 3-O-glucoside or cyanidin 3-O-glucoside. The produced anthocyanins were present at low concentrations, while most of the metabolites detected corresponded to their dihydroflavonol precursors, as well as the corresponding flavonols. The presence of side product flavonols is at least partly due to an alternate reaction catalyzed by ANS. This is the first time plant-specific anthocyanins have been produced from a microorganism and opens up the possibility of further production improvement by protein and pathway engineering.  相似文献   

12.
Flavonoids are common colorants in plants and have long-established biomedicinal properties. Anthocyanidin synthase (ANS), a 2-oxoglutarate iron-dependent oxygenase, catalyzes the penultimate step in the biosynthesis of the anthocyanin class of flavonoids. The crystal structure of ANS reveals a multicomponent active site containing metal, cosubstrate, and two molecules of a substrate analog (dihydroquercetin). An additional structure obtained after 30 min exposure to dioxygen is consistent with the oxidation of the dihydroquercetin to quercetin and the concomitant decarboxylation of 2-oxoglutarate to succinate. Together with in vitro studies, the crystal structures suggest a mechanism for ANS-catalyzed anthocyanidin formation from the natural leucoanthocyanidin substrates involving stereoselective C-3 hydroxylation. The structure of ANS provides a template for the ubiquitous family of plant nonhaem oxygenases for future engineering and inhibition studies.  相似文献   

13.
14.
An examination of 73 species of the family Epacridaceae resulted in the identification of the following anthocyanins: cyanidin 3-galactoside, cyanidin 3-glucoside, cyanidin 3-arabinoside, cyanidin 3-rhamnoside, cyanidin 3-rhamnosylgalactoside, cyanidin 3-rhamnosylglucoside, cyanidin 3-xylosylgalactoside, cyanidin 3-xylosylarabinoside, delphinidin 3-galactoside, delphinidin 3-arabinoside, delphinidin 3-rhamnosylgalactoside, delphinidin 3-rhamnosylglucoside and pelargonidin 3-rhamnosylglucoside. No acylated or 5-substituted anthocyanins were detected in any of the species examined. Evidence of methylated anthocyanidin was found only in one species, Woollsia pungens. The occurrence of cyanidin 3-galactoside and cyanidin 3-arabinoside forms a chemical link between this family and the related Ericaceae.  相似文献   

15.
The relative floral anthocyanidin contents of 195 commercial petunias with floral colours other than white and yellow were determined using HPLC, and the presence of five anthocyanidins (cyanidin, peonidin, delphinidin, petunidin, and malvidin) was confirmed. Pelargonidin was not detected, and delphinidin was not a major component. Using a principal component analysis of the relative anthocyanidin contents, the petunias were classified into three phenotype-groups accumulating cyanidin, peonidin, or malvidin, (plus petunidin) as the major anthocyanidin. A fourth phenotype was segregated in the progeny obtained by self-pollinating an F1 hybrid of the malvidin group; this accumulated delphinidin 3-glucoside in a markedly crumpled corolla-limb (delphinidin group). Such inferior floral traits, associated with the accumulation of delphinidin 3-glucoside, are thought to be the driving force that removed the delphinidin group from commercial petunias. A comparison of flowers of the delphinidin group and those of the other groups may provide a useful tool towards a deeper understanding of how anthocyanin biosynthesis relates to normal development of the corolla.  相似文献   

16.
New perspectives on proanthocyanidin biochemistry and molecular regulation   总被引:20,自引:0,他引:20  
Marles MA  Ray H  Gruber MY 《Phytochemistry》2003,64(2):367-383
Our understanding of proanthocyanidin (syn. condensed tannin) synthesis has been recently extended by substantial developments concerning both structural and regulatory genes. A gene encoding leucoanthocyanidin reductase has been obtained from the tropical forage, Desmodium uncinatum, with the latter enzyme catalyzing formation of (+)-catechin. The BANYULS gene in Arabidopsis thaliana, previously proposed to encode leucoanthocyanidin reductase or to regulate proanthocyanidin biosynthesis, has been shown instead to encode anthocyanidin reductase, which in turn converts anthocyanidins (pelargonidin, cyanidin, or delphinidin) into 2,3-cis-2R,3R-flavan-3-ols (respectively, (-)-epiafzelechin, (-)-epicatechin and (-)-epigallocatechin). However, the enzyme which catalyzes the polymerization reaction remains unknown. Nevertheless, a vacuolar transmembrane protein TT12, defined by the Arabidopsis tt12 mutant, is involved in transport of proanthocyanidin polymer into the vacuole for accumulation. Six different types of regulatory elements, e.g. TFIIIA-like, WD-40-like, WRKY-like, MADS-box-like, myb-like, and bHLH (myc-like), have been cloned and identified using mutants from Arabidopsis (tt1, ttg1, ttg2, tt2, tt16, tt2, tt8) and two other species (Hordeum vulgare [ant13] and Lotus spp [tan1]). Accordingly, increases in proanthocyanidin levels have been induced in the the world's major forage, alfalfa. These advances may now lead to a detailed understanding of how PA synthesis is controlled and to useful alterations in proanthocyanidin concentration for the improvement of forage species, pulses, and other crop plants.  相似文献   

17.
18.
Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana   总被引:6,自引:0,他引:6  
Anthocyanidin reductase (ANR), encoded by the BANYULS gene, is a newly discovered enzyme of the flavonoid pathway involved in the biosynthesis of condensed tannins. ANR functions immediately downstream of anthocyanidin synthase to convert anthocyanidins into the corresponding 2,3-cis-flavan-3-ols. We report the biochemical properties of ANRs from the model legume Medicago truncatula (MtANR) and the model crucifer Arabidopsis thaliana (AtANR). Both enzymes have high temperature optima. MtANR uses both NADPH and NADH as reductant with slight preference for NADPH over NADH. In contrast, AtANR only uses NADPH and exhibits positive cooperativity for the co-substrate. MtANR shows preference for potential anthocyanidin substrates in the order cyanidin>pelargonidin>delphinidin, with typical Michaelis-Menten kinetics for each substrate. In contrast, AtANR exhibits the reverse preference, with substrate inhibition at high concentrations of cyanidin and pelargonidin. (+)-Catechin and (+/-)-dihydroquercetin inhibit AtANR but not MtANR, whereas quercetin inhibits both enzymes. Possible catalytic reaction sequences for ANRs are discussed.  相似文献   

19.
UDP-glucose: anthocyanin 5-O-glucosyltransferase (5-GT) is responsible for the modification of anthocyanins to more stable molecules in complexes for co-pigmentation, supposedly resulting in a purple hue. The cDNA encoding 5-GT was isolated by a differential display applied to two different forms of anthocyanin production in Perilla frutescens var. crispa. Differential display was carried out for mRNA from the leaves of reddish-purple and green forms of P. frutescens, resulting in the isolation of five cDNA clones predominantly expressed in the red form. The cDNA encoded a polypeptide of 460 amino acids, exhibiting a low homology with the sequences of several glucosyltransferases including UDP-glucose: anthocyanidin 3-O-glucosyltransferase. By using this cDNA as the probe, we also isolated a homologous cDNA clone from a petal cDNA library of Verbena hybrida. To identify the biochemical function of the encoded proteins, these cDNAs were expressed in Saccharomyces cerevisiae cells. The recombinant proteins in the yeast extracts catalyzed the conversion of anthocyanidin 3-O-glucosides into the corresponding anthocyanidin 3,5-di-O-glucosides using UDP-glucose as a cofactor, indicating the identity of the cDNAs encoding 5-GT. Several biochemical properties (optimum pH, Km values, and sensitivity to inhibitors) were similar to those reported previously for 5-GTs. Southern blot analysis indicated the presence of two copies of 5-GT genes in the genome of both red and green forms of P. frutescens. The mRNA accumulation of the 5-GT gene was detected in the leaves of the red form but not in those of the green form and was induced by illumination of light, as observed for other structural genes for anthocyanin biosynthesis in P. frutescens.  相似文献   

20.
Vogt T 《Planta》2002,214(3):492-495
Betanidin 6-O-glucosyltransferase (6-GT) is involved in the glycosylation of betacyanins, which replace the chromogenic anthocyanins as flower colorants in the Caryophyllales. The 6-GT cDNA was cloned from a cDNA library of Dorotheanthus bellidiformis (Burm. f.) N.E. Br., and the amino acid and nucleotide sequences were shown to be distinctly different from the corresponding betanidin 5-O-glucosyltransferase (5-GT) from the same plant species. Although both enzymes share very similar substrates, the proteins show only 19% amino acid sequence identity. In contrast, the protein sequence of the 6-GT showed significant identity to GTs from other species and may identify a new cluster of putative anthocyanidin GTs. Therefore, 6-GT and 5-GT apparently have evolved independently from ancestral glucosyltransferases involved in flavonoid biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号