首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Dlg1 gene encodes a member of the MAGUK protein family involved in the polarization of epithelial cells. Null mutant mice for the Dlg1 gene (Dlg1-/- mice) exhibit respiratory failure and cyanosis, and die soon after birth. However, the cause of this neonatal lethality has not been determined. In the present study, we further examined Dlg1-/- mice and found severe defects in the cardiovascular system, including ventricular septal defect, persistent truncus arteriosus, and double outlet right ventricle, which would cause the neonatal lethality. These cardiovascular phenotypes resemble those of mutant mice lacking planar cell polarity (PCP) genes and support a recent notion that DLG1 is involved in the PCP pathway. We assessed the degree of involvement of DLG1 in the development of other organs, as the cochlea, intestine, and skeleton, in which PCP signaling has been suggested to play a role. In the organ of Corti, tissue elongation was inhibited accompanied by disorganized arrangement of the hair cell rows, while the orientation of the stereocilia bundle was normal. In the sternum, cleft sternum, abnormal calcification pattern of cartilage, and disorganization of chondrocytes were observed. Furthermore, shortening of the intestine, sternum, and long bones of the limbs was observed. These phenotypes of Dlg1-/- mice involving cellular disorganization and insufficient tissue elongation strongly suggest a defect in the convergent extension movements in these mice. Thus, our present results provide a possibility that DLG1 is particularly required for convergent extension among PCP signaling-dependent processes.  相似文献   

2.
Netherton Syndrome (NS) is a rare and severe autosomal recessive skin disease which can be life-threatening in infants. The disease is characterized by extensive skin desquamation, inflammation, allergic manifestations and hair shaft defects. NS is caused by loss-of-function mutations in SPINK5 encoding the LEKTI serine protease inhibitor. LEKTI deficiency results in unopposed activities of kallikrein-related peptidases (KLKs) and aberrantly increased proteolysis in the epidermis. Spink5 -/- mice recapitulate the NS phenotype, display enhanced epidermal Klk5 and Klk7 protease activities and die within a few hours after birth because of a severe skin barrier defect. However the contribution of these various proteases in the physiopathology remains to be determined. In this study, we developed a new murine model in which Klk5 and Spink5 were both knocked out to assess whether Klk5 deletion is sufficient to reverse the NS phenotype in Spink5 -/- mice. By repeated intercrossing between Klk5 -/- mice with Spink5 -/- mice, we generated Spink5 -/- Klk5 -/- animals. We showed that Klk5 knock-out in Lekti-deficient newborn mice rescues neonatal lethality, reverses the severe skin barrier defect, restores epidermal structure and prevents skin inflammation. Specifically, using in situ zymography and specific protease substrates, we showed that Klk5 knockout reduced epidermal proteolytic activity, particularly its downstream targets proteases KLK7, KLK14 and ELA2. By immunostaining, western blot, histology and electron microscopy analyses, we provide evidence that desmosomes and corneodesmosomes remain intact and that epidermal differentiation is restored in Spink5 -/- Klk5 -/-. Quantitative RT-PCR analyses and immunostainings revealed absence of inflammation and allergy in Spink5 -/- Klk5 -/- skin. Notably, Il-1β, Il17A and Tslp levels were normalized. Our results provide in vivo evidence that KLK5 knockout is sufficient to reverse NS-like symptoms manifested in Spink5 -/- skin. These findings illustrate the crucial role of protease regulation in skin homeostasis and inflammation, and establish KLK5 inhibition as a major therapeutic target for NS.  相似文献   

3.
Epithelial tubular morphogenesis leading to alteration of organ shape has important physiological consequences. However, little is known regarding the mechanisms that govern epithelial tube morphogenesis. Here, we show that inactivation of Sfrp1 and Sfrp2 leads to reduction in fore-stomach length in mouse embryos, which is enhanced in the presence of the Sfrp5 mutation. In the mono-cell layer of fore-stomach epithelium, cell division is normally oriented along the cephalocaudal axis; in contrast, orientation diverges in the Sfrps-deficient fore-stomach. Cell growth and apoptosis are not affected in the Sfrps-deficient fore-stomach epithelium. Similarly, cell division orientation in fore-stomach epithelium diverges as a result of inactivation of either Stbm/Vangl2, an Fz/PCP component, or Wnt5a. These observations indicate that the oriented cell division, which is controlled by the Fz/PCP pathway, is one of essential components in fore-stomach morphogenesis. Additionally, the small intestine epithelium of Sfrps compound mutants fails to maintain proper apicobasal polarity; the defect was also observed in Wnt5a-inactivated small intestine. In relation to these findings, Sfrp1 physically interacts with Wnt5a and inhibits Wnt5a signaling. We propose that Sfrp regulation of Wnt5a signaling controls oriented cell division and apicobasal polarity in the epithelium of developing gut.  相似文献   

4.
The polarization of cells is essential for the proper functioning of most organs. Planar Cell Polarity (PCP), the polarization within the plane of an epithelium, is perpendicular to apical-basal polarity and established by the non-canonical Wnt/Fz-PCP signaling pathway. Within each tissue, downstream PCP effectors link the signal to tissue specific readouts such as stereocilia orientation in the inner ear and hair follicle orientation in vertebrates or the polarization of ommatidia and wing hairs in Drosophila melanogaster. Specific PCP effectors in the wing such as Multiple wing hairs (Mwh) and Rho Kinase (Rok) are required to position the hair at the correct position and to prevent ectopic actin hairs. In a genome-wide screen in vitro, we identified Combover (Cmb)/CG10732 as a novel Rho kinase substrate. Overexpression of Cmb causes the formation of a multiple hair cell phenotype (MHC), similar to loss of rok and mwh. This MHC phenotype is dominantly enhanced by removal of rok or of other members of the PCP effector gene family. Furthermore, we show that Cmb physically interacts with Mwh, and cmb null mutants suppress the MHC phenotype of mwh alleles. Our data indicate that Cmb is a novel PCP effector that promotes to wing hair formation, a function that is antagonized by Mwh.  相似文献   

5.
6.
The Drosophila wing is a primary model system for studying the genetic control of epithelial Planar Cell Polarity (PCP). Each wing epithelial cell produces a distally pointing hair under the control of the Frizzled (Fz) PCP signaling pathway. Here, we show that Fz PCP signaling also controls the formation and orientation of ridges on the adult wing membrane. Ridge formation requires hexagonal cell packing, consistent with published data showing that Fz PCP signaling promotes hexagonal packing in developing wing epithelia. In contrast to hair polarity, ridge orientation differs across the wing and is primarily anteroposterior (A-P) in the anterior and proximodistal (P-D) in the posterior. We present evidence that A-P ridge specification is genetically distinct from P-D ridge organization and occurs later in wing development. We propose a two-phase model for PCP specification in the wing. P-D ridges are specified in an Early PCP Phase and both A-P ridges and distally pointing hairs in a Late PCP Phase. Our data suggest that isoforms of the Fz PCP pathway protein Prickle are differentially required for the two PCP Phases, with the Spiny-legs isoform primarily active in the Early PCP Phase and the Prickle isoform in the Late PCP Phase.  相似文献   

7.
Protein scaffolds control the intensity and duration of signaling and dictate the specificity of signaling through MAP kinase pathways. KSR1 is a molecular scaffold of the Raf/MEK/ERK MAP kinase cascade that regulates the intensity and duration of ERK activation. Relative to wild-type mice, ksr1-/- mice are modestly glucose intolerant, but show a normal response to exogenous insulin. However, ksr1-/- mice also demonstrate a three-fold increase in serum insulin levels in response to a glucose challenge, suggesting a role for KSR1 in insulin secretion. The kinase MARK2 is closely related to C-TAK1, a known regulator of KSR1. Mice lacking MARK2 have an increased rate of glucose disposal in response to exogenous insulin, increased glucose tolerance, and are resistant to diet-induced obesity. mark2-/-ksr1-/- (DKO) mice were compared to wild type, mark2-/-, and ksr1-/- mice for their ability to regulate glucose homeostasis. Here we show that disruption of KSR1 in mark2-/- mice reverses the increased sensitivity to exogenous insulin resulting from MARK2 deletion. DKO mice respond to exogenous insulin similarly to wild type and ksr1-/- mice. These data suggest a model whereby MARK2 negatively regulates insulin sensitivity in peripheral tissue through inhibition of KSR1. Consistent with this model, we found that MARK2 binds and phosphorylates KSR1 on Ser392. Phosphorylation of Ser392 is a critical regulator of KSR1 stability, subcellular location, and ERK activation. These data reveal an unexpected role for the molecular scaffold KSR1 in insulin-regulated glucose metabolism.  相似文献   

8.
《Fly》2013,7(4):316-321
Planar cell polarity (PCP) describes the orientation of a cell within the plane of an epithelial cell layer. During tissue development, epithelial cells normally align their PCP so that they face in the same direction. This alignment allows cells to move in a common direction, or to generate structures with a common orientation. A classic system for studying the coordination of epithelial PCP is the developing Drosophila wing. The alignment of epithelial PCP during pupal wing development allows the production of an array of cell hairs that point towards the wing tip. Multiple studies have established that the Frizzled (Fz) PCP signaling pathway coordinates wing PCP. Recently, we have found that the same pathway also controls the formation of ridges on the Drosophila wing membrane. However, in contrast to hair polarity, ridge orientation differs between the anterior and posterior wing. How can the Fz PCP pathway generate a different relationship between hair and ridge orientation in different parts of the wing? In this Extra View article, we discuss membrane ridge development drawing upon our recent PLoS Genetics paper and other, published and unpublished, data. We also speculate upon how our findings impact the ongoing debate concerning the interaction of the Fz PCP and Fat/Dachsous pathways in the control of PCP.  相似文献   

9.
Planar cell polarity (PCP) describes the orientation of a cell within the plane of an epithelial cell layer. During tissue development, epithelial cells normally align their PCP so that they face in the same direction. This alignment allows cells to move in a common direction, or to generate structures with a common orientation. A classic system for studying the coordination of epithelial PCP is the developing Drosophila wing. The alignment of epithelial PCP during pupal wing development allows the production of an array of cell hairs that point towards the wing tip. Multiple studies have established that the Frizzled (Fz) PCP signaling pathway coordinates wing PCP. Recently, we have found that the same pathway also controls the formation of ridges on the Drosophila wing membrane. However, in contrast to hair polarity, ridge orientation differs between the anterior and posterior wing. How can the Fz PCP pathway generate a different relationship between hair and ridge orientation in different parts of the wing? In this Extra View article, we discuss membrane ridge development drawing upon our recent PLoS Genetics paper and other, published and unpublished, data. We also speculate upon how our findings impact the ongoing debate concerning the interaction of the Fz PCP and Fat/Dachsous pathways in the control of PCP.  相似文献   

10.
The regular array of distally pointing hairs on the mature Drosophila wing is evidence for the fine control of Planar Cell Polarity (PCP) during wing development. Normal wing PCP requires both the Frizzled (Fz) PCP pathway and the Fat/Dachsous (Ft/Ds) pathway, although the functional relationship between these pathways remains under debate. There is strong evidence that the Fz PCP pathway signals twice during wing development, and we have previously presented a Bidirectional-Biphasic Fz PCP signaling model which proposes that the Early and Late Fz PCP signals are in different directions and employ different isoforms of the Prickle protein. The goal of this study was to investigate the role of the Ft/Ds pathway in the context of our Fz PCP signaling model. Our results allow us to draw the following conclusions: (1) The Early Fz PCP signals are in opposing directions in the anterior and posterior wing and converge precisely at the site of the L3 wing vein. (2) Increased or decreased expression of Ft/Ds pathway genes can alter the direction of the Early Fz PCP signal without affecting the Late Fz PCP signal. (3) Lowfat, a Ft/Ds pathway regulator, is required for the normal orientation of the Early Fz PCP signal but not the Late Fz PCP signal. (4) At the time of the Early Fz PCP signal there are symmetric gradients of dachsous (ds) expression centered on the L3 wing vein, suggesting Ds activity gradients may orient the Fz signal. (5) Localized knockdown or over-expression of Ft/Ds pathway genes shows that boundaries/gradients of Ft/Ds pathway gene expression can redirect the Early Fz PCP signal specifically. (6) Altering the timing of ds knockdown during wing development can separate the role of the Ft/Ds pathway in wing morphogenesis from its role in Early Fz PCP signaling.  相似文献   

11.
The exocyst, an octameric protein complex consisting of Exoc1 through Exoc8, was first determined to regulate exocytosis by targeting vesicles to the plasma membrane in yeast to mice. In addition to this fundamental role, the exocyst complex has been implicated in other cellular processes. In this study, we investigated the role of the exocyst in cochlear development and hearing by targeting EXOC5, a central exocyst component. Deleting Exoc5 in the otic epithelium with widely used Cre lines resulted in early lethality. Thus, we generated two different inner ear-specific Exoc5 knockout models by crossing Gfi1Cre mice with Exoc5f/f mice for hair cell-specific deletion (Gfi1Cre/+;Exoc5f/f) and by in utero delivery of rAAV-iCre into the otocyst of embryonic day 12.5 for deletion throughout the otic epithelium (rAAV2/1-iCre;Exoc5f/f). Gfi1Cre/+;Exoc5f/f mice showed relatively normal hair cell morphology until postnatal day 20, after which hair cells underwent apoptosis accompanied by disorganization of stereociliary bundles, resulting in progressive hearing loss. rAAV2/1-iCre;Exoc5f/f mice exhibited abnormal neurite morphology, followed by apoptotic degeneration of spiral ganglion neurons (SGNs) and hair cells, which led to profound and early-onset hearing loss. These results demonstrate that Exoc5 is essential for the normal development and survival of cochlear hair cells and SGNs, as well as the functional maintenance of hearing.  相似文献   

12.
Oca2p-cas (oculocutaneous albinism II; pink-eyed dilution castaneus) is a coat color mutant gene on mouse chromosome 7 that arose spontaneously in wild Mus musculus castaneus mice. Mice homozygous for Oca2p-cas usually exhibit pink eyes and gray coat hair on the non-agouti genetic background, and this ordinary phenotype remains unchanged throughout life. During breeding of a mixed strain carrying this gene on the C57BL/6J background, we discovered a novel spontaneous mutation that causes darkening of the eyes and coat hair with aging. In this study, we developed a novel mouse model showing this unique phenotype. Gross observations revealed that the pink eyes and gray coat hair of the novel mutant young mice became progressively darker in color by approximately 3 months after birth. Light and transmission-electron microscopic observations revealed a marked increase in melanin pigmentation of coat hair shafts and choroid of the eye in the novel mice compared to that in the ordinary mice. Sequence analysis of Oca2p-cas revealed a 4.1-kb deletion involving exons 15 and 16 of its wild-type gene. However, there was no sequence difference between the two types of mutant mice. Mating experiments suggested that the novel mutant phenotype was not inherited in a simple fashion, due to incomplete penetrance. The novel spontaneous mutant mouse is the first example of progressive hair darkening animals and is an essential animal model for understanding of the regulation mechanisms of melanin biosynthesis with aging.  相似文献   

13.
The Wnt signaling pathways control many critical developmental and adult physiological processes. In vertebrates, one fundamentally important function of Wnts is to provide directional information by regulating the evolutionarily conserved planar cell polarity (PCP) pathway during embryonic morphogenesis. However, despite the critical roles of Wnts and PCP in vertebrate development and disease, little is known about the molecular mechanisms underlying Wnt regulation of PCP. Here, we have found that the receptor-like tyrosine kinase (Ryk), a Wnt5a-binding protein required in axon guidance, regulates PCP signaling. We show that Ryk interacts with Vangl2 genetically and biochemically, and such interaction is potentiated by Wnt5a. Loss of Ryk in a Vangl2+/− background results in classic PCP defects, including open neural tube, misalignment of sensory hair cells in the inner ear, and shortened long bones in the limbs. Complete loss of both Ryk and Vangl2 results in more severe phenotypes that resemble the Wnt5a−/− mutant in many aspects such as shortened anterior-posterior body axis, limb, and frontonasal process. Our data identify the Wnt5a-binding protein Ryk as a general regulator of the mammalian Wnt/PCP signaling pathway. We show that Ryk transduces Wnt5a signaling by forming a complex with Vangl2 and that Ryk regulates PCP by at least in part promoting Vangl2 stability. As human mutations in WNT5A and VANGL2 are found to cause Robinow syndrome and neural tube defects, respectively, our results further suggest that human mutations in RYK may also be involved in these diseases.  相似文献   

14.
Brucella abortus is a Gram-negative bacterium responsible for a worldwide zoonotic infection—Brucellosis, which has been associated with high morbidity rate in humans and severe economic losses in infected livestock. The natural route of infection is through oral and nasal mucosa but the invasion process through host gut mucosa is yet to be understood. Studies have examined the role of NLRP6 (NOD-like receptor family pyrin domain-containing-6 protein) in gut homeostasis and defense against pathogens. Here, we investigated the impact of gut microbiota and NLRP6 in a murine model of Ba oral infection. Nlrp6-/- and wild-type (WT) mice were infected by oral gavage with Ba and tissues samples were collected at different time points. Our results suggest that Ba oral infection leads to significant alterations in gut microbiota. Moreover, Nlrp6-/- mice were more resistant to infection, with decreased CFU in the liver and reduction in gut permeability when compared to the control group. Fecal microbiota transplantation from WT and Nlrp6-/- into germ-free mice reflected the gut permeability phenotype from the donors. Additionally, depletion of gut microbiota by broad-spectrum-antibiotic treatment prevented Ba replication in WT while favoring bacterial growth in Nlrp6-/-. Finally, we observed higher eosinophils in the gut and leukocytes in the blood of infected Nlrp6-/- compared to WT-infected mice, which might be associated to the Nlrp6-/- resistance phenotype. Altogether, these results indicated that gut microbiota composition is the major factor involved in the initial stages of pathogen host replication and partially also by the resistance phenotype observed in Nlrp6 -/- mice regulating host inflammation against Ba infection.  相似文献   

15.
The Frizzled (Fz; called here Fz1) and Fz2 receptors have distinct signaling specificities activating either the canonical Wnt/β-catenin pathway or Fz/planar cell polarity (PCP) signaling in Drosophila. The regulation of signaling specificity remains largely obscure. We show that Fz1 and Fz2 have different subcellular localizations in imaginal disc epithelia, with Fz1 localizing preferentially to apical junctional complexes, and Fz2 being evenly distributed basolaterally. The subcellular localization difference directly contributes to the signaling specificity outcome. Whereas apical localization favors Fz/PCP signaling, it interferes with canonical Wnt/β-catenin signaling. Receptor localization is mediated by sequences in the cytoplasmic tail of Fz2 that appear to block apical accumulation. Based on these data, we propose that subcellular Fz localization, through the association with other membrane proteins, is a critical aspect in regulating the signaling specificity within the Wnt/Fz signaling pathways.  相似文献   

16.
During the analysis of a whole genome ENU mutagenesis screen for thrombosis modifiers, a spontaneous 8 base pair (bp) deletion causing a frameshift in exon 27 of the Nbeal2 gene was identified. Though initially considered as a plausible thrombosis modifier, this Nbeal2 mutation failed to suppress the synthetic lethal thrombosis on which the original ENU screen was based. Mutations in NBEAL2 cause Gray Platelet Syndrome (GPS), an autosomal recessive bleeding disorder characterized by macrothrombocytopenia and gray-appearing platelets due to lack of platelet alpha granules. Mice homozygous for the Nbeal2 8 bp deletion (Nbeal2gps/gps) exhibit a phenotype similar to human GPS, with significantly reduced platelet counts compared to littermate controls (p = 1.63 x 10−7). Nbeal2gps/gps mice also have markedly reduced numbers of platelet alpha granules and an increased level of emperipolesis, consistent with previously characterized mice carrying targeted Nbeal2 null alleles. These findings confirm previous reports, provide an additional mouse model for GPS, and highlight the potentially confounding effect of background spontaneous mutation events in well-characterized mouse strains.  相似文献   

17.
Interleukin-6 (IL-6) is involved in lung cancer tumorigenesis, tumor progression, metastasis, and drug resistance. Previous studies show that blockade of IL-6 signaling can inhibit tumor growth and increase drug sensitivity in mouse models. Clinical trials in non-small cell lung cancer (NSCLC) reveal that IL-6 targeted therapy relieves NSCLC-related anemia and cachexia, although other clinical effects require further study. We crossed IL-6 -/- mice with Kras G12D mutant mice, which develop lung tumors after activation of mutant Kras G12D, to investigate whether IL-6 inhibition contributes to tumor progression and survival time in vivo. Kras G12D; IL-6 -/- mice exhibited increased tumorigenesis, but slower tumor growth and longer survival, than Kras G12D mice. Further, in order to investigate whether IL-6 deletion contributes to suppression of lung cancer metastasis, we generated Kras G12D; p53 flox/flox; IL-6 -/- mice, which developed lung cancer with a trend for reduced metastases and longer survival than Kras G12D; p53 flox/flox mice. Tumors from Kras G12D; IL-6 -/- mice showed increased expression of TNFα and decreased expression of CCL-19, CCL-20 and phosphorylated STAT3 (pSTAT3) than Kras G12D mice; however, these changes were not present between tumors from Kras G12D; p53 flox/flox; IL-6 -/- and Kras G12D; p53 flox/flox mice. Upregulation of pSTAT3 and phosphorylated AKT (pAKT) were observed in Kras G12D tumors with p53 deletion. Taken together, these results indicate that IL-6 deletion accelerates tumorigenesis but delays tumor progression and prolongs survival time in a Kras-driven mouse model of lung cancer. However, these effects can be attenuated by p53 deletion.  相似文献   

18.
19.
iRhom1 and iRhom2 are inactive homologues of rhomboid intramembrane serine proteases lacking essential catalytic residues, which are necessary for the maturation of TNFα-converting enzyme (TACE). In addition, iRhoms regulate epidermal growth factor family secretion. The functional significance of iRhom2 during mammalian development is largely unclear. We have identified a spontaneous single gene deletion mutation of iRhom2 in Uncv mice. The iRhom2Uncv/Uncv mice exhibit hairless phenotype in a BALB/c genetic background. In this study, we observed dysplasia hair follicles in iRhom2Uncv/Uncv mice from postnatal day 3. Further examination found decreased hair matrix proliferation and aberrant hair shaft and inner root sheath differentiation in iRhom2Uncv/Uncv mutant hair follicles. iRhom2 is required for the maturation of TACE. Our data demonstrate that iRhom2Uncv cannot induce the maturation of TACE in vitro and the level of mature TACE is also significantly reduced in the skin of iRhom2Uncv/Uncv mice. The activation of Notch1, a substrate of TACE, is disturbed, associated with dramatically down-regulation of Lef1 in iRhom2Uncv/Uncv hair follicle matrix. This study identifies iRhom2 as a novel regulator of hair shaft and inner root sheath differentiation.  相似文献   

20.
Ma X  Lin L  Qin G  Lu X  Fiorotto M  Dixit VD  Sun Y 《PloS one》2011,6(1):e16391

Background

Obesity is a hallmark of aging in many Western societies, and is a precursor to numerous serious age-related diseases. Ghrelin (Ghrl), via its receptor (growth hormone secretagogue receptor, GHS-R), is shown to stimulate GH secretion and appetite. Surprisingly, our previous studies showed that Ghrl-/- mice have impaired thermoregulatory responses to cold and fasting stresses, while Ghsr-/- mice are adaptive.

Methodology/Principal Findings

To elucidate the mechanism, we analyzed the complete metabolic profiles of younger (3–4 months) and older (10–12 months) Ghrl-/- and Ghsr-/- mice. Food intake and locomotor activity were comparable for both null mice and their wild-type (WT) counterparts, regardless of age. There was also no difference in body composition between younger null mice and their WT counterparts. As the WT mice aged, as expected, the fat/lean ratio increased and energy expenditure (EE) decreased. Remarkably, however, older Ghsr-/- mice exhibited reduced fat/lean ratio and increased EE when compared to older WT mice, thus retaining a youthful lean and high EE phenotype; in comparison, there was no significant difference with EE in Ghrl-/- mice. In line with the EE data, the thermogenic regulator, uncoupling protein 1 (UCP1), was significantly up-regulated in brown adipose tissue (BAT) of Ghsr-/- mice, but not in Ghrl-/- mice.

Conclusions

Our data therefore suggest that GHS-R ablation activates adaptive thermogenic function(s) in BAT and increases EE, thereby enabling the retention of a lean phenotype. This is the first direct evidence that the ghrelin signaling pathway regulates fat-burning BAT to affect energy balance during aging. This regulation is likely mediated through an as-yet-unidentified new ligand of GHS-R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号