首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Functional magnetic resonance imaging (fMRI) continues to develop as a clinical tool for patients with brain cancer, offering data that may directly influence surgical decisions. Unfortunately, routine integration of preoperative fMRI has been limited by concerns about reliability. Many pertinent studies have been undertaken involving healthy controls, but work involving brain tumor patients has been limited. To develop fMRI fully as a clinical tool, it will be critical to examine these reliability issues among patients with brain tumors. The present work is the first to extensively characterize differences in activation map quality between brain tumor patients and healthy controls, including the effects of tumor grade and the chosen behavioral testing paradigm on reliability outcomes.

Method

Test-retest data were collected for a group of low-grade (n = 6) and high-grade glioma (n = 6) patients, and for matched healthy controls (n = 12), who performed motor and language tasks during a single fMRI session. Reliability was characterized by the spatial overlap and displacement of brain activity clusters, BOLD signal stability, and the laterality index. Significance testing was performed to assess differences in reliability between the patients and controls, and low-grade and high-grade patients; as well as between different fMRI testing paradigms.

Results

There were few significant differences in fMRI reliability measures between patients and controls. Reliability was significantly lower when comparing high-grade tumor patients to controls, or to low-grade tumor patients. The motor task produced more reliable activation patterns than the language tasks, as did the rhyming task in comparison to the phonemic fluency task.

Conclusion

In low-grade glioma patients, fMRI data are as reliable as healthy control subjects. For high-grade glioma patients, further investigation is required to determine the underlying causes of reduced reliability. To maximize reliability outcomes, testing paradigms should be carefully selected to generate robust activation patterns.  相似文献   

2.

Background

It has been suggested that working memory deficits is a core feature of symptomatology of schizophrenia, which can be detected in patients and their unaffected relatives. The impairment of working memory has been found related to the abnormal activity of human brain regions in many functional magnetic resonance imaging (fMRI) studies. This study investigated how brain region activation was altered in schizophrenia and how it was inherited independently from performance deficits.

Method

The authors used fMRI method during N-back task to assess working memory related cortical activation in four groups (N = 20 in each group, matching task performance, age, gender and education): schizophrenic patients, their unaffected biological parents, young healthy controls for the patients and older healthy controls for their parents.

Results

Compared to healthy controls, patients showed an exaggerated response in the right dorsolateral prefrontal cortex (brodmann area [BA] 46) and bilateral ventrolateral prefrontal cortex, and had reduced activation in bilateral dorsolateral prefrontal cortex (BA 9). In the conjunction analysis, the effect of genetic risk (parents versus older control) shared significantly overlapped activation with effect of disease (patients versus young control) in the right middle frontal gyrus (BA 46) and left inferior parietal gyrus (BA 40).

Conclusions

Physiological inefficiency of dorsal prefrontal cortex and compensation involvement of ventral prefrontal cortex in working memory function may one physiological characteristics of schizophrenia. And relatively inefficient activation in dorsolateral prefrontal cortex probably can be a promising intermediate phenotype for schizophrenia.  相似文献   

3.

Purpose

Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke.

Methods

Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3–7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls.

Results

Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions.

Conclusions

Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger cerebral lesions associate with deeper vessel injury affecting vascular smooth muscle cells.  相似文献   

4.

Objectives

To evaluate the neural correlates of implicit processing of negative emotions in motor conversion disorder (CD) patients.

Methods

An event related fMRI task was completed by 12 motor CD patients and 14 matched healthy controls using standardised stimuli of faces with fearful and sad emotional expressions in comparison to faces with neutral expressions. Temporal changes in the sensitivity to stimuli were also modelled and tested in the two groups.

Results

We found increased amygdala activation to negative emotions in CD compared to healthy controls in region of interest analyses, which persisted over time consistent with previous findings using emotional paradigms. Furthermore during whole brain analyses we found significantly increased activation in CD patients in areas involved in the ‘freeze response’ to fear (periaqueductal grey matter), and areas involved in self-awareness and motor control (cingulate gyrus and supplementary motor area).

Conclusions

In contrast to healthy controls, CD patients exhibited increased response amplitude to fearful stimuli over time, suggesting abnormal emotional regulation (failure of habituation / sensitization). Patients with CD also activated midbrain and frontal structures that could reflect an abnormal behavioral-motor response to negative including threatening stimuli. This suggests a mechanism linking emotions to motor dysfunction in CD.  相似文献   

5.

Background

Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI)-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies.

Methods

Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16). In the sham group (n = 16) orthosis movements were random. Motor function was evaluated with electromyography (EMG) of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA) scores. Patients performed distinct upper arm (e.g., shoulder flexion) and hand movements (finger extensions). Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC) was used to test inter-session reliability of facilitation of forearm EMG activity.

Results

Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001). Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001), but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001).

Conclusions

Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in their recruitment after BMI training. This study suggests that changes in upper arm-forearm synergies contribute to stroke motor recovery, and provides candidacy guidelines for similar BMI-based clinical practice.  相似文献   

6.

Background and Purpose

Ischemic stroke provokes severe brain damage and remains a predominant disease in industrialized countries. The coagulation factor XII (FXII)-driven contact activation system plays a central, but not yet fully defined pathogenic role in stroke development. Here, we investigated the efficacy of the FXIIa inhibitor rHA-Infestin-4 in a rat model of ischemic stroke using both a prophylactic and a therapeutic approach.

Methods

For prophylactic treatment, animals were treated intravenously with 100 mg/kg rHA-Infestin-4 or an equal volume of saline 15 min prior to transient middle cerebral artery occlusion (tMCAO) of 90 min. For therapeutic treatment, 100 mg/kg rHA-Infestin-4, or an equal volume of saline, was administered directly after the start of reperfusion. At 24 h after tMCAO, rats were tested for neurological deficits and blood was drawn for coagulation assays. Finally, brains were removed and analyzed for infarct area and edema formation.

Results

Within prophylactic rHA-Infestin-4 treatment, infarct areas and brain edema formation were reduced accompanied by better neurological scores and survival compared to controls. Following therapeutic treatment, neurological outcome and survival were still improved although overall effects were less pronounced compared to prophylaxis.

Conclusions

With regard to the central role of the FXII-driven contact activation system in ischemic stroke, inhibition of FXIIa may represent a new and promising treatment approach to prevent cerebral ischemia/reperfusion injury.  相似文献   

7.

Background

Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI). However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo) analysis based on resting-state functional magnetic resonance imaging.

Methods

A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.

Results

Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.

Conclusion

Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for assessment of neuronal damage and the prediction of clinical outcomes in acute SCI.  相似文献   

8.

Background

Enlarged perivascular spaces (EPVS) correlate with cognitive impairment and incident dementia. However, etiologies for severe basal ganglia EPVS (BG-EPVS) are still unclear. Our aim was to investigate the independent risk factors for severe BG-EPVS in patients with acute lacunar stroke.

Methods

We prospectively identified patients with lacunar stroke (diameter on DWI ≤ 20mm) from Jan 2011 to May 2015. Patients with severe BG-EPVS were identified on T2 weighted MRI. Age (± 1 year) and sex matched controls were also recruited in the same population (two controls for one case). Vascular risk factors, clinical data, EPVS in centrum semiovale (rated 0 to 4), white matter hyperintensities (WMH) (by Fazekas scale), brain atrophy (rated 0 to 6) were compared between two groups. Logistic regression was performed to determine independent risk factors for severe BG-EPVS.

Results

During study period, 89 patients with severe BG-EPVS and 178 matched controls were included. Vascular risk factors did not differ between two groups. Patients with severe BG-EPVS had lower level of HbA1c and diastolic BP at admission, but presented with larger infarct size, more severe WMH (including total WMH, periventricular WMH and deep WMH) and brain atrophy. In logistic regression, brain atrophy (OR = 1.40; 95%CI 1.13, 1.73) and deep WMH (OR = 1.88; 95%CI 1.24, 2.83) were independent risk factors for severe BG-EPVS.

Conclusions

Brain atrophy and deep WMH are independent risk factors for severe BG-EPVS, supporting the hypothesis that brain atrophy may be associated with the development of EPVS in basal ganglia.  相似文献   

9.

Background

Estrogen is involved in neuron plasticity and can promote neuronal survival in stroke. Its actions are mostly exerted via estrogen receptor alpha (ERα). Previous animal studies have shown that ERα is upregulated by DNA demethylation following ischemic injury. This study investigated the methylation levels in the ERα promoter in the peripheral blood of ischemic stroke patients.

Methods

The study included 201 ischemic stroke patients, and 217 age- and sex-comparable healthy controls. The quantitative methylation level in the 14 CpG sites of the ERα promoter was measured by pyrosequencing in each participant. Multivariate regression model was used to adjust for stroke traditional risk factors. Stroke subtypes and sex-specific analysis were also conducted.

Results

The results demonstrated that the stroke cases had a lower ERα methylation level than controls in all 14 CpG sites, and site13 and site14 had significant adjusted p-values of 0.035 and 0.026, respectively. Stroke subtypes analysis showed that large-artery atherosclerosis and cardio-embolic subtypes had significantly lower methylation levels than the healthy controls at CpG site5, site9, site12, site13 and site14 with adjusted p = 0.039, 0.009, 0.025, 0.046 and 0.027 respectively. However, the methylation level for the patients with small vessel subtype was not significant. We combined the methylation data from the above five sites for further sex-specific analysis. The results showed that the significant association only existed in women (adjusted p = 0.011), but not in men (adjusted p = 0.300).

Conclusions

Female stroke cases have lower ERα methylation levels than those in the controls, especially in large-artery and cardio-embolic stroke subtypes. The study implies that women suffering from ischemic stroke of specific subtype may undergo different protective mechanisms to reduce the brain injury.  相似文献   

10.

Introduction

Theta-phase gamma-amplitude coupling (TGC) measurement has recently received attention as a feasible method of assessing brain functions such as neuronal interactions. The purpose of this electroencephalographic (EEG) study is to understand the mechanisms underlying the deficits in attentional control in children with attention deficit/hyperactivity disorder (ADHD) by comparing the power spectra and TGC at rest and during a mental arithmetic task.

Methods

Nineteen-channel EEGs were recorded from 97 volunteers (including 53 subjects with ADHD) from a camp for hyperactive children under two conditions (rest and task performance). The EEG power spectra and the TGC data were analyzed. Correlation analyses between the Intermediate Visual and Auditory (IVA) continuous performance test (CPT) scores and EEG parameters were performed.

Results

No significant difference in the power spectra was detected between the groups at rest and during task performance. However, TGC was reduced during the arithmetic task in the ADHD group compared with the normal group (F = 16.70, p < 0.001). The TGC values positively correlated with the IVA CPT scores but negatively correlated with theta power.

Conclusions

Our findings suggest that desynchronization of TGC occurred during the arithmetic task in ADHD children. TGC in ADHD children is expected to serve as a promising neurophysiological marker of network deactivation during attention-demanding tasks.  相似文献   

11.

Purpose

Ischemic brain edema is subtle and hard to detect by computed tomography within the first hours of stroke onset. We hypothesize that non-enhanced CT (NECT) post-processing with frequency-selective non-linear blending (“best contrast”/BC) increases its accuracy in detecting edema and irreversible tissue damage (infarction).

Methods

We retrospectively analyzed the NECT scans of 76 consecutive patients with ischemic stroke (exclusively middle cerebral artery territory—MCA) before and after post-processing with BC both at baseline before reperfusion therapy and at follow-up (5.73±12.74 days after stroke onset) using the Alberta Stroke Program Early CT Score (ASPECTS). We assessed the differences in ASPECTS between unprocessed and post-processed images and calculated sensitivity, specificity, and predictive values of baseline NECT using follow-up CT serving as reference standard for brain infarction.

Results

NECT detected brain tissue hypoattenuation in 35 of 76 patients (46.1%). This number increased to 71 patients (93.4%) after post-processing with BC. Follow-up NECT confirmed brain infarctions in 65 patients (85.5%; p = 0.012). Post-processing increased the sensitivity of NECT for brain infarction from 35/65 (54%) to 65/65 (100%), decreased its specificity from 11/11 (100%) to 7/11 (64%), its positive predictive value (PPV) from 35/35 (100%) to 65/69 (94%) and increased its accuracy 46/76 (61%) to 72/76 (95%).

Conclusions

This post-hoc analysis suggests that post-processing of NECT with BC may increase its sensitivity for ischemic brain damage significantly.  相似文献   

12.

Background

Although stroke is a significant public health challenge and the need for palliative care has been emphasized for these patients, there is limited data on end-of-life care for patients dying from stroke.

Objective

To study the end-of-life care during the last week of life for patients who had died of stroke in terms of registered symptom, symptom management, and communication, in comparison with patients who had died of cancer.

Design

This study is a retrospective, comparative registry study.

Methods

A retrospective comparative registry study was performed using data from a Swedish national quality register for end-of-life care based on WHO`s definition of Palliative care. Data from 1626 patients who had died of stroke were compared with data from 1626 patients who had died of cancer. Binary logistic analyses were used to calculate odds ratios, with 95% CI.

Results

Compared to patients who was dying of cancer, the patients who was dying of stroke had a significantly higher prevalence of having death rattles registered, but a significantly lower prevalence of, nausea, confusion, dyspnea, anxiety, and pain. In addition, the stroke group had significantly lower odds ratios for health care staff not to know whether all these six symptoms were present or not. Patients who was dying of stroke had significantly lower odds ratio of having informative communication from a physician about the transition to end-of-life care and of their family members being offered bereavement follow-up.

Conclusions

The results indicate on differences in end-of-life care between patients dying of stroke and those dying from cancer. To improve the end-of-life care in clinical practice and ensure it has consistent quality, irrespective of diagnosis, education and implementation of palliative care principles are necessary.  相似文献   

13.

Background and Purpose

Imaging studies of traumatic brain injury demonstrate that the cerebellum is often affected. We aim to examine fractional anisotropy alteration in acute-phase mild traumatic brain injury patients in cerebellum-related white matter tracts.

Materials and Methods

This prospective study included 47 mild traumatic brain injury patients in the acute stage and 37 controls. MR imaging and neurocognitive tests were performed in patients within 7 days of injury. White matter integrity was examined by using diffusion tensor imaging. We used three approaches, tract-based spatial statistics, graphical-model-based multivariate analysis, and region-of-interest analysis, to detect altered cerebellar white matter integrity in mild traumatic brain injury patients.

Results

Results from three analysis methods were in accordance with each other, and suggested fractional anisotropy in the middle cerebellar peduncle and the pontine crossing tract was changed in the acute-phase mild traumatic brain injury patients, relative to controls (adjusted p-value < 0.05). Higher fractional anisotropy in the middle cerebellar peduncle was associated with worse performance in the fluid cognition composite (r = -0.289, p-value = 0.037).

Conclusion

Altered cerebellar fractional anisotropy in acute-phase mild traumatic brain injury patients is localized in specific regions and statistically associated with cognitive deficits detectable on neurocognitive testing.  相似文献   

14.

Background

Findings of behavioral studies on facial emotion recognition in Parkinson’s disease (PD) are very heterogeneous. Therefore, the present investigation additionally used functional magnetic resonance imaging (fMRI) in order to compare brain activation during emotion perception between PD patients and healthy controls.

Methods and Findings

We included 17 nonmedicated, nondemented PD patients suffering from mild to moderate symptoms and 22 healthy controls. The participants were shown pictures of facial expressions depicting disgust, fear, sadness, and anger and they answered scales for the assessment of affective traits. The patients did not report lowered intensities for the displayed target emotions, and showed a comparable rating accuracy as the control participants. The questionnaire scores did not differ between patients and controls. The fMRI data showed similar activation in both groups except for a generally stronger recruitment of somatosensory regions in the patients.

Conclusions

Since somatosensory cortices are involved in the simulation of an observed emotion, which constitutes an important mechanism for emotion recognition, future studies should focus on activation changes within this region during the course of disease.  相似文献   

15.

Background

Recent pre-clinical studies have shown that complement activation contributes to glomerular and tubular injury in experimental FSGS. Although complement proteins are detected in the glomeruli of some patients with FSGS, it is not known whether this is due to complement activation or whether the proteins are simply trapped in sclerotic glomeruli. We measured complement activation fragments in the plasma and urine of patients with primary FSGS to determine whether complement activation is part of the disease process.

Study Design

Plasma and urine samples from patients with biopsy-proven FSGS who participated in the FSGS Clinical Trial were analyzed.

Setting and Participants

We identified 19 patients for whom samples were available from weeks 0, 26, 52 and 78. The results for these FSGS patients were compared to results in samples from 10 healthy controls, 10 patients with chronic kidney disease (CKD), 20 patients with vasculitis, and 23 patients with lupus nephritis.

Outcomes

Longitudinal control of proteinuria and estimated glomerular filtration rate (eGFR).

Measurements

Levels of the complement fragments Ba, Bb, C4a, and sC5b-9 in plasma and urine.

Results

Plasma and urine Ba, C4a, sC5b-9 were significantly higher in FSGS patients at the time of diagnosis than in the control groups. Plasma Ba levels inversely correlated with the eGFR at the time of diagnosis and at the end of the study. Plasma and urine Ba levels at the end of the study positively correlated with the level of proteinuria, the primary outcome of the study.

Limitations

Limited number of patients with samples from all time-points.

Conclusions

The complement system is activated in patients with primary FSGS, and elevated levels of plasma Ba correlate with more severe disease. Measurement of complement fragments may identify a subset of patients in whom the complement system is activated. Further investigations are needed to confirm our findings and to determine the prognostic significance of complement activation in patients with FSGS.  相似文献   

16.

Importance

Acute ischemic stroke is a leading cause of death and disability worldwide. Several recent clinical trials have shown that endovascular treatment improves clinical outcomes among patients with acute ischemic stroke.

Objective

To provide an overall and precise estimate of the efficacy of endovascular treatment predominantly using second-generation mechanical thrombectomy devices (stent-retriever devices) compared to medical management on clinical and functional outcomes among patients with acute ischemic stroke.

Data Sources

MEDLINE, EMBASE, Cochrane Collaboration Central Register of Controlled Clinical Trials, Web of Science, and NIH ClinicalTrials.gov were searched through November 2015.

Study Selection

Searches returned 3,045 articles. After removal of duplicates, two authors independently screened titles and abstracts to assess eligibility of 2,495 potentially relevant publications. From these, 38 full-text publications were more closely assessed. Finally, 5 randomized controlled trials of endovascular treatment with predominant use of retrievable stents were selected.

Data Extraction and Synthesis

Three authors independently extracted information on participant and trial characteristics and clinical events using a standardized protocol. Random effects models were used to pool endovascular treatment effects across outcomes.

Main Outcomes and Measures

The primary outcome was better functional outcome as measured on the modified Rankin Scale at 90 days of follow-up. Secondary outcomes included all-cause mortality and symptomatic intra-cerebral hemorrhage.

Results

Five trials representing 1,287 patients were included. Overall, patients randomized to endovascular therapy experienced 2.22 times greater odds of better functional outcome compared to those randomized to medical management (95% CI, 1.66 to 2.98; P < 0.0001). Endovascular therapy was not associated with mortality [OR (95% CI), 0.78 (0.54, 1.12); P = 0.1056] or symptomatic intracerebral hemorrhage [OR (95% CI), 1.19 (0.69, 2.05); P = 0.5348]. Meta-regression analysis suggested that shorter times from stroke onset to groin puncture and from stroke onset to reperfusion result in better functional outcomes in ischemic stroke patients (P = 0.0077 and P = 0.0089). There were no significant differences in the beneficial effects of endovascular treatment on functional outcomes across categories of gender, age, stroke severity, ischemic changes on computed tomography, or intravenous tissue plasminogen activator administration.

Conclusions and Relevance

This meta-analysis demonstrated superior functional outcomes in subjects receiving endovascular treatment compared to medical management. Further, this analysis showed that acute ischemic stroke patients may receive enhanced functional benefit from earlier endovascular treatment.  相似文献   

17.

Background

Voluntary motor deficits are a common feature in Huntington''s disease (HD), characterised by movement slowing and performance inaccuracies. This deficit may be exacerbated when visual cues are restricted.

Objective

To characterize the upper limb motor profile in HD with various levels of difficulty, with and without visual targets.

Methods

Nine premanifest HD (pre-HD), nine early symptomatic HD (symp-HD) and nine matched controls completed a motor task incorporating Fitts'' law, a model of human movement enabling the quantification of movement timing, via the manipulation of task difficulty (i.e., target size, and distance between targets). The task required participants to make reciprocal movements under cued and blind conditions. Dwell times (time stationary between movements), speed, accuracy and variability of movements were compared between groups.

Results

Symp-HD showed significantly prolonged and less consistent movement times, compared with controls and pre-HD. Furthermore, movement planning and online control were significantly impaired in symp-HD, compared with controls and pre-HD, evidenced by prolonged dwell times and deceleration times. Speed and accuracy were comparable across groups, suggesting that group differences observed in movement time, variability, dwell time and deceleration time were evident over and above simple performance measures. The presence of cues resulted in greater movement time variability in symp-HD, compared with pre-HD and controls, suggesting that the deficit in movement consistency manifested only in response to targeted movements.

Conclusions

Collectively, these findings provide evidence of a deficiency in both motor planning, particularly in relation to movement timing and online control, which became exacerbated as a function of task difficulty during symp-HD stages. These variables may provide a more sensitive measure of motor dysfunction than speed and/or accuracy alone in symp-HD.  相似文献   

18.

Background

The Timed Up and Go (TUG) test is widely used to assess locomotion in patients with stroke and is considered to predict the risk of falls. The analysis of locomotor trajectories during the TUG appears pertinent in stroke patients. The aims of this study were i) to analyze locomotor trajectories in patients with stroke during the walking and turning sub-tasks of the TUG, and to compare them with healthy subjects, ii) to determine whether trajectory parameters provide additional information to that provided by the conventional measure (performance time), iii) to compare the trajectory parameters of fallers and non-fallers with stroke and of patients with right and left hemisphere stroke, and iv) to evaluate correlations between trajectory parameters and Berg Balance Scale scores.

Methods

29 patients with stroke (mean age 54.2±12.2 years, 18 men, 8 fallers) and 25 healthy subjects (mean age 51.6±8.7 years, 11 men) underwent three-dimensional analysis of the TUG. The trajectory of the center of mass was analyzed by calculation of the global trajectory length, Hausdorff distance and Dynamic Time Warping. The parameters were compared with a reference trajectory during the total task and each sub-task (Go, Turn, Return) of the TUG.

Results

Values of trajectory parameters were significantly higher for the stroke group during the total TUG and the Go and Turn sub-tasks (p<0.05). Moreover, logistic regression indicated that these parameters better discriminated stroke patients and healthy subjects than the conventional timed performance during the Go sub-task. In addition, fallers were distinguished by higher Dynamic Time Warping during the Go (p<0.05). There were no differences between patients with right and left hemisphere stroke.

Discussion and Conclusion

The trajectories of the stroke patients were longer and more deviated during the turn and the preceding phase. Trajectory parameters provided additional information to timed performance of this locomotor task. Focusing rehabilitation programs on lead-up to turn and turning could be relevant for stroke patients since the Turn was related to the balance and the phase preceding the turn seemed to distinguish fallers.  相似文献   

19.

Background

Alcoholism is associated with abnormal anger processing. The purpose of this study was to investigate brain regions involved in the evaluation of angry facial expressions in patients with alcohol dependency.

Methods

Brain blood-oxygenation-level-dependent (BOLD) responses to angry faces were measured and compared between patients with alcohol dependency and controls.

Results

During intensity ratings of angry faces, significant differences in BOLD were observed between patients with alcohol dependency and controls. That is, patients who were alcohol-dependent showed significantly greater activation in several brain regions, including the dorsal anterior cingulate cortex (dACC) and medial prefrontal cortex (MPFC).

Conclusions

Following exposure to angry faces, abnormalities in dACC and MPFC activation in patients with alcohol dependency indicated possible inefficiencies or hypersensitivities in social cognitive processing.  相似文献   

20.

Background

Corneal hypoesthesia is the landmark of HSV and VZV keratitis and can lead to neurotrophic keratitis. Diffusion tensor imaging (DTI) is a new magnetic resonance imaging (MRI) derived technique, which offers possibilities to study axonal architecture. We aimed at assessing the potential impact of recurrent HSV or VZV-related keratitis on the axonal architecture of trigeminal nerves using DTI.

Design

Prospective non-interventional study.

Participants

Twelve patients and 24 controls.

Methods

DTI using MRI of the trigeminal fibers and corneal esthesiometry using the Cochet-Bonnet esthesiometer were acquired for patients affected by unilateral and recurrent HSV or VZV-related keratitis (3 months after the last corneal inflammatory event), and control subjects with no history of ocular or neuronal disease affecting the trigeminal pathways.

Main Outcome Measures

Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were compared between the 2 eyes of both patients and controls, and correlated with corneal esthesiometry.

Results

FA was lower in the trigeminal fibers ipsilateral to the affected eye compared to the non-affected side (0.39±0.02 versus 0.46±0.04, P=0.03). This difference was more important than the intra-individual variability observed in controls. Concomitantly, the asymmetry in ADC results was significantly correlated with the loss of corneal sensitivity in the affected eye.

Conclusions

Corneal hypoesthesia related to HSV and VZV keratitis is associated with persistent modifications in the architecture and functionality of the trigeminal fibers. These results add further explanation to the pathogenesis of HSV and VZV-induced neurotrophic keratitis, which may occur despite an apparent quiescence of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号