首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27–73%), and combined effects of seed traits and phylogeny of hardwood trees (5–55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 “global” axes of traits that were phylogenetically autocorrelated at the family and genus level and a third “local” axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30–76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak or more diffuse coevolutionary relationship between rodents and hardwood trees rather than a direct coevolutionary relationship.  相似文献   

2.
No single hypothesis is likely to explain the diversity in eggshell coloration and patterning across birds, suggesting that eggshell appearance is most likely to have evolved to fulfill many nonexclusive functions. By controlling for nonindependent phylogenetic associations between related species, we describe this diversity using museum eggshells of 71 British breeding passerine species to examine how eggshell pigment composition and concentrations vary with phylogeny and with life‐history and nesting ecology traits. Across species, concentrations of biliverdin and protoporphyrin, the two main pigments found in eggshells, were strongly and positively correlated, and both pigments strongly covaried with phylogenetic relatedness. Controlling for phylogeny, cavity‐nesting species laid eggs with lower protoporphyrin concentrations in the shell, while higher biliverdin concentrations were associated with thicker eggshells for species of all nest types. Overall, these relationships between eggshell pigment concentrations and the biology of passerines are similar to those previously found in nonpasserine eggs, and imply that phylogenetic dependence must be considered across the class in further explanations of the functional significance of avian eggshell coloration.  相似文献   

3.
The amniote eggshell is a fundamental aspect of the embryo life-support system, protecting it from UV light, microbes and mechanical damage, while regulating gas exchange and providing calcium for growth. The thickness of eggshells is highly diverse across modern birds and influences multiple eggshell functions, yet the selective pressures driving eggshell thickness have not been clearly identified. Here, we use a global dataset of avian eggshell thickness indices for 4260 (> 41%) avian species to assess trends in eggshell thickness across the phylogeny, as these indices are strongly correlated with direct measures of eggshell thickness and are non-destructive to the sample. We analysed the dataset within a phylogenetic framework to assess the relative importance of climatic and ecological explanations for variation in eggshell thickness indices. The distribution of avian eggshell thickness indices across species was found to be primarily driven by phylogenetic relatedness, in addition to evolutionary processes that do not match a Brownian model of evolution. Across modern birds, thicker eggshells were more prevalent in species (1) with precocial young, (2) which exhibit a scavenger-based diet, (3) which primarily feed on vertebrates or plants (excluding nectivores, seed and fruit specialists) and (4) which breed in open habitats. Thicker eggshells found in species with precocial young probably enable higher rates of calcium removal for the more advanced embryo development. Excessive light transmission through the shell damages developing embryos, while too little light transmission can impede development. Eggs in shaded habitats experience low light exposure, and thus thinner shells are more prevalent in these environments potentially to increase light transmission through the shell. Overall, variation in eggshell thickness indices appears to be driven largely by phylogeny, with certain life-history traits linked to embryo growth rate, calcium content of their food, and the need to mitigate excessive light transmission through the shell.  相似文献   

4.
The colourful appearance of bird eggshells has long fascinated biologists and considerable research effort has focused on the structure and biochemistry of the avian eggshell matrix. The presence of tetrapyrrole pigments was identified nearly a century ago. Surprisingly, how the concentrations of avian eggshell pigments vary among related species, and whether this variability is associated with either eggshell appearance and/or species life‐history traits, remains poorly understood. We quantified the concentrations of the two key eggshell pigments, protoporphyrin IX and biliverdin, from a diverse sample of eggshells stored at the Natural History Museum, Tring, UK. We explicitly tested how these two pigments are associated with physical measures of eggshell coloration and whether the pigment concentrations and colour diversity co‐vary with phylogenetic affiliations among species. We also tested a series of comparative hypotheses regarding the association between the concentrations of the two pigments and specific life‐history and breeding ecology traits. Across species, the average concentrations of protoporphyrin and biliverdin were positively correlated, and both strongly co‐varied with phylogenetic relatedness. Controlling for phylogeny, protoporphyrin concentration was associated with a higher likelihood of cavity nesting and ground nesting, whereas biliverdin concentration was associated with a higher likelihood of non‐cavity nesting habit and bi‐parental provisioning. Although unlikely to be explained by a single function, the breeding ecology and life history‐dependence of eggshell pigment concentrations in these comparative analyses implies that related species share pigment strategies, and that those strategies relate to broad adaptive roles in the evolution of variation in avian eggshell coloration and its underlying mechanisms. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 657–672.  相似文献   

5.
The egg tooth of squamates evolved to facilitate hatching from mineralized eggshells. Squamate reptiles can assist their hatching with a single unpaired egg tooth (unidentates) or double egg teeth (geckos and dibamids). Egg tooth ontogeny in two gekkotan species, the leopard gecko Eublepharis macularius and the mourning gecko Lepidodactylus lugubris, was compared using microtomography, scanning electron microscopy, and light microscopy. Investigated species are characterized by different hardnesses of their eggshells. Leopard geckos eggs have a relatively soft and flexible parchment (leathery) shell, while eggshells of mourning geckos are hard and rigid. Embryos of both species, like other Gekkota, have double egg teeth, but the morphology of these structures differs between the investigated species. These differences in shape, localization, and spatial orientation were present from the earliest stages of embryonic development. In mourning gecko, anlagen of differentiating egg teeth change their position on the palate during embryonic development. Initially they are separated by condensed mesenchyme, but later in development, their enamel organs are connected. In leopard geckos, the localization of egg tooth germs does not change, but their spatial orientation does. Egg teeth of this species shift from inward to outward orientation. This is likely related to differences in structure and mechanical properties of eggshells in the studied species. In investigated species, two hatching mechanisms are possible during emergence of young individuals. We speculate that mourning geckos break the eggshell through puncturing action with egg teeth, similar to the pipping phase of chick and turtles embryos. Egg teeth of leopard geckos cut egg membranes similarly to most squamates. Our results also revealed differences in egg tooth implantation between Gekkota and Unidentata: gekkotan egg teeth are subthecodont (in shallow sockets), while those in unidentates are acrodont (attached to the top of the alveolar ridge). © 2020 Wiley Periodicals LLC  相似文献   

6.
Selection pressures due to parasitism play an important role in driving the evolution of life history traits of birds in general and of behaviour at the nest in particular. Eggshell bacterial load has been shown to predict hatching failure (i.e. the probability of embryo infection) but the relationships between the bacterial environment of the nest and life history characteristics of birds remain poorly investigated. We explored interspecific variation in eggshell bacterial load of mesophilic bacteria, Enterococcus spp., Staphylococcus spp. and Enterobacteriaceae groups across 24 bird species and assessed whether bacterial load is associated with breeding traits. Interspecific variation was much higher than intraspecific variation for all measures of bacterial load even after controlling for annual variation. Thus, we were able to assess the correlation between bacterial community characteristics and life history traits. After correcting for phylogenetic effects, we found that nest type, the use of feathers or plants as lining material, and incubation behaviour explained a significant proportion of the variance in bacterial communities on eggshells. The strength of these associations depended on study year, suggesting an important role of environmental conditions for eggshell bacterial load or community. Overall, these results suggest that bacteria on eggshells are associated with bird species traits, probably because birds are mediating the deleterious effect of eggshell microbes through behavioural traits that modify bacterial load.  相似文献   

7.
Mediterranean islands have a high diversity of squamates, although they are unevenly distributed. This variability in the composition of the reptile assemblages across islands may have been influenced by differences in the colonization abilities of these species. To evaluate the dispersal capacities of squamate species, we modeled their sea routes using cost surface models. We estimated the effects of some life‐history traits and the phylogenetic signal in the characteristics of the modeled dispersal paths. We hypothesized that a significant phylogenetic signal should be present if the dispersal ability is enhanced by traits shared among evolutionarily related species. The results showed that no phylogenetic signal was present in the characteristics of the dispersal paths (i.e., in the distance traveled/bypassed sea depth). Thus, no superior island‐colonizer lineages were detected in Mediterranean Squamata. However, our analyses also revealed that small‐sized lizards were superior to other groups of squamates at dispersing over long distances on the sea.  相似文献   

8.
Hard, highly calcified eggshells evolved several independent times during the history of amniotes. Because of phylogenetic conservatism of this trait, lineages in which closely related taxa differ in eggshell structure are rare. Four gekkotan families (Carphodactylidae, Diplodactylidae, Eublepharidae and Pygopodidae) have eggs with soft shells, while their close relatives (Gekkonidae) lay eggs with hard shells. Geckos thus offer a rare opportunity to compare the impact of the emergence of a hard eggshell on the economy of egg architecture. Because a sphere has the smallest surface area of all three‐dimensional solids of a given volume, spherical eggs in geckos with hard eggshells reduce calcium investment and should therefore be advantageous. Here, we document that hard‐shelled gekkonid eggs are indeed more spherical than those of the other gecko lineages. However, within gekkonids, small species lay more elongated eggs than larger species. We speculate that miniature gekkonid females, which lay larger eggs relative to body size compared with large gekkonids, produce elongate eggs in order to pass the egg through a limited pelvic opening.  相似文献   

9.
The squamates (lizards and snakes) are close relatives of birds and mammals, with more than 10,000 described species that display extensive variation in a number of important biological traits, including coloration, venom production, and regeneration. Due to a lack of genomic tools, few genetic studies in squamates have been carried out. The leopard gecko, Eublepharis macularius, is a popular companion animal, and displays a variety of coloration patterns. We took advantage of a large breeding colony and used linkage analysis, synteny, and homozygosity mapping to investigate a spontaneous semi-dominant mutation, “Lemon Frost”, that produces white coloration and causes skin tumors (iridophoroma). We localized the mutation to a single locus which contains a strong candidate gene, SPINT1, a tumor suppressor implicated in human skin cutaneous melanoma (SKCM) and over-proliferation of epithelial cells in mice and zebrafish. Our work establishes the leopard gecko as a tractable genetic system and suggests that a tumor suppressor in melanocytes in humans can also suppress tumor development in iridophores in lizards.  相似文献   

10.
The eggshell of lizards is a complex structure composed of organic and inorganic molecules secreted by the oviduct, which protects the embryo by providing a barrier to the external environment and also allows the exchange of respiratory gases and water for life support. Calcium deposited on the surface of the eggshell provides an important nutrient source for the embryo. Variation in physical conditions encountered by eggs results in a tradeoff among these functions and influences eggshell structure. Evolution of prolonged uterine egg retention results in a significant change in the incubation environment, notably reduction in efficiency of gas exchange, and selection should favor a concomitant reduction in eggshell thickness. This model is supported by studies that demonstrate an inverse correlation between eggshell thickness and length of uterine egg retention. One mechanism leading to thinning of the eggshell is reduction in size of uterine shell glands. Saiphos equalis is an Australian scincid lizard with an unusual pattern of geographic variation in reproductive mode. All populations retain eggs in the uterus beyond the embryonic stage at oviposition typical for lizards, and some are viviparous. We compared structure and histochemistry of the uterus and eggshell of two populations of S. equalis, prolonged egg retention, and viviparous to test the hypotheses: 1) eggshell thickness is inversely correlated with length of egg retention and 2) eggshell thickness is positively correlated with size of shell glands. We found support for the first hypothesis but also found that eggshells of both populations are surprisingly thick compared with other lizards. Our histochemical data support prior conclusions that uterine shell glands are the source of protein fiber matrix of the eggshell, but we did not find a correlation between size of shell glands and eggshell thickness. Eggshell thickness is likely determined by density of uterine shell glands in this species. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Seed size and cotyledon morphology are two key juvenile traits that have evolved in response to changes in plant species life-history strategies and habitat associations. Correlations of these traits with each other and with other juvenile traits were examined for 70 species of trees and shrubs in Kibale National Park, Uganda. Although species with photosynthetic cotyledons were more abundant than in other tropical floras, both univariate and multivariate analyses supported trait associations expected from the literature. Trait values varied continuously across species, yet mean trait values differed significantly among habitat association types. Species with large seeds, large seedlings, thick storage cotyledons, slow germination, large-stature adults, and dispersal by large animals were common in forest and gap habitats. An opposite suite of traits was common in open habitats (grassland and edge). Analyses incorporating phylogeny (independent contrasts and omnibus tests) confirmed that these suites of traits showed correlated evolution. Cotyledon functional morphology yielded a strong phylogenetic signal, while seed mass was labile. Nevertheless, contingent change tests found that evolutionary change from photosynthetic to reserve cotyledons was more likely when disperser and perhaps seed size of ancestral species were already large, suggesting a strong interdependency among these traits.  相似文献   

12.
We analysed the influence of ecological factors, phylogenetic history and trade-offs between traits on the life-history variation among 10 loricariid species of the middle Paraná River. We measured eight life-history variables and classified the life-history strategies following the equilibrium–periodic–opportunistic (EPO) model. Principal-component analysis of life-history traits segregated species along a gradient from small opportunistic (low fecundity, low parental investment) to large equilibrium (low-medium fecundity, high parental investment) species. A clear periodic strategist was absent in the analysed assemblage. Variation partitioning by canonical phylogenetic ordination analysis showed both a component of variation uniquely explained by phylogenetic history (PH; 32.2%) and a component shared between PH and ecological factors (EF; 37%). The EPO model is a useful tool for predicting correlations among life-history traits and understanding potential demographic responses of species to environmental variation. Life-history patterns observed throughout Loricariidae suggests that this family has diversified across all three endpoint strategies of the EPO model. Our study indicates that evolutionary lineage affiliation at the level of subfamily can be a strong predictor of the life-history strategy used by each species.  相似文献   

13.

Background

The exceptional diversity of coloration found in avian eggshells has long fascinated biologists and inspired a broad range of adaptive hypotheses to explain its evolution. Three main impediments to understanding the variability of eggshell appearance are: (1) the reliable quantification of the variation in eggshell colours; (2) its perception by birds themselves, and (3) its relation to avian phylogeny. Here we use an extensive museum collection to address these problems directly, and to test how diversity in eggshell coloration is distributed among different phylogenetic levels of the class Aves.

Methodology and Results

Spectrophotometric data on eggshell coloration were collected from a taxonomically representative sample of 251 bird species to determine the change in reflectance across different wavelengths and the taxonomic level where the variation resides. As many hypotheses for the evolution of eggshell coloration assume that egg colours provide a communication signal for an avian receiver, we also modelled reflectance spectra of shell coloration for the avian visual system. We found that a majority of species have eggs with similar background colour (long wavelengths) but that striking differences are just as likely to occur between congeners as between members of different families. The region of greatest variability in eggshell colour among closely related species coincided with the medium-wavelength sensitive region around 500 nm.

Conclusions

The majority of bird species share similar background eggshell colours, while the greatest variability among species aligns with differences along a red-brown to blue axis that most likely corresponds with variation in the presence and concentration of two tetrapyrrole pigments responsible for eggshell coloration. Additionally, our results confirm previous findings of temporal changes in museum collections, and this will be of particular concern for studies testing intraspecific hypotheses relating temporal patterns to adaptation of eggshell colour. We suggest that future studies investigating the phylogenetic association between the composition and concentration of eggshell pigments, and between the evolutionary drivers and functional impacts of eggshell colour variability will be most rewarding.  相似文献   

14.
15.
Aims A plant has a limited amount of resources at any time and it allocates them to different structures. In spite of the large number of previous studies on allocation patterns within single species, knowledge of general patterns in species allocation is still very limited. This is because each study was done in different conditions using different methodology, making generalization difficult. We investigate intraspecific above- versus below-ground biomass allocation among individuals across a spectrum of dry-grassland plant species at two different developmental stages and ask whether allocation is age- and species specific, and whether differences among species can be explained by their life-history traits and phylogeny.Methods We collected data on above- and below-ground biomass of seedlings and adult plants of 20 species from a common garden experiment. We analysed data on shoot–root biomass allocation allometrically and studied the relationship between the allometric exponents (slopes on log–log scale), species life-history traits and phylogenetic distances.Important findings We found isometric as well as allometric patterns of biomass allocation in the studied species. Seedlings and adult individuals of more than half of the species differed in their above- versus below-ground biomass allometric exponents. Seedlings and adult individuals of the remaining species differed in their allometric coefficients (intercepts). Annual species generally allocated proportionally more to above- than below-ground biomass as seedlings than as adults, whereas perennial species showed the opposite pattern. Plant life-history traits, such as plant life span, age of first flowering, month in which the species begin flowering and specific leaf area were much more important in explaining differences in shoot–root allometry among species than were phylogenetic relationships. This suggests that allocation patterns vary greatly among closely related species but can be predicted based on species life-history traits.  相似文献   

16.
Du WG  Ye H  Zhao B  Pizzatto L  Ji X  Shine R 《PloS one》2011,6(12):e29027
New non-invasive technologies allow direct measurement of heart rates (and thus, developmental rates) of embryos. We applied these methods to a diverse array of oviparous reptiles (24 species of lizards, 18 snakes, 11 turtles, 1 crocodilian), to identify general influences on cardiac rates during embryogenesis. Heart rates increased with ambient temperature in all lineages, but (at the same temperature) were faster in lizards and turtles than in snakes and crocodilians. We analysed these data within a phylogenetic framework. Embryonic heart rates were faster in species with smaller adult sizes, smaller egg sizes, and shorter incubation periods. Phylogenetic changes in heart rates were negatively correlated with concurrent changes in adult body mass and residual incubation period among the lizards, snakes (especially within pythons) and crocodilians. The total number of embryonic heart beats between oviposition and hatching was lower in squamates than in turtles or the crocodilian. Within squamates, embryonic iguanians and gekkonids required more heartbeats to complete development than did embryos of the other squamate families that we tested. These differences plausibly reflect phylogenetic divergence in the proportion of embryogenesis completed before versus after laying.  相似文献   

17.
The colourful appearance of avian eggshells is a prominent aspect of maternal reproductive effort in birds. Some differences in eggshell coloration have been reported to co‐vary with various measures of maternal condition and these patterns support the hypothesis that, in some bird species, several aspects of eggshell colour (i.e. primary chroma and brightness) function as a signal of maternal and offspring quality to induce greater paternal investment. We directly quantified eggshell pigment concentrations of blackbird Turdus merula and song thrush T. philomelos eggshells and tested how the two key pigments (protoporphyrin IX and biliverdin) co‐varied with other eggshell traits and egg constituents as measures of maternal reproductive investment, including total yolk carotenoid concentration, total lipid concentration, yolk mass, and shell thickness. Contrary to predictions, we detected few statistical patterns overall. We found that protoporphyrin IX concentration was negatively associated with blue‐green chroma in blackbirds but not in song thrush. The concentration of protoporphyrin IX was significantly greater in blackbirds and also showed different patterns of association with total yolk lipids and yolk carotenoid concentrations between these two species (significant species interaction terms). Our results reveal that it is not appropriate to simply assume in these two avian species that reflectance‐based eggshell colour measures are a suitable proxy for eggshell pigment concentrations or can be used as consistent predictors of maternal reproductive investment. These results highlight the need to assess and validate the strength and direction of the statistical relationships between eggshell colour measures, pigment concentrations, and maternal resource deposition in the egg for other species of birds.  相似文献   

18.
The chemical senses are crucial for squamates (lizards and snakes). The extent to which squamates utilize their chemosensory system, however, varies greatly among taxa and species’ foraging strategies, and played an influential role in squamate evolution. In lizards, ‘Scleroglossa’ evolved a state where species use chemical cues to search for food (active foragers), whereas ‘Iguania’ retained the use of vision to hunt prey (ambush foragers). However, such strict dichotomy is flawed as shifts in foraging modes have occurred in all clades. Here, we attempted to disentangle effects of foraging ecology from phylogenetic trait conservatism as leading cause of the disparity in chemosensory investment among squamates. To do so, we used species’ tongue‐flick rate (TFR) in the absence of ecological relevant chemical stimuli as a proxy for its fundamental level of chemosensory investigation, that is baseline TFR. Based on literature data of nearly 100 species and using phylogenetic comparative methods, we tested whether and how foraging mode and diet affect baseline TFR. Our results show that baseline TFR is higher in active than ambush foragers. Although baseline TFRs appear phylogenetically stable in some lizard taxa, that is a consequence of concordant stability of foraging mode: when foraging mode shifts within taxa, so does baseline TFR. Also, baseline TFR is a good predictor of prey chemical discriminatory ability, as we established a strong positive relationship between baseline TFR and TFR in response to prey. Baseline TFR is unrelated to diet. Essentially, foraging mode, not phylogenetic relatedness, drives convergent evolution of similar levels of squamate chemosensory investigation.  相似文献   

19.
三种重金属元素在鹭卵中富集特征的初步研究   总被引:8,自引:0,他引:8  
2004年4~6月,采集了合肥地区大蜀山、肥西圆通山、肥东太子山集群繁殖的夜鹭、小白鹭、池鹭和牛背鹭鸟卵及组织样品,用原子吸收法测定了卵壳、内容物及组织中Cd、Pb、Cr的残留量.结果表明,4种鹭卵壳、内容物及组织的绝大多数样品中均检出相当高水平的Cd、Pb和Cr残留量,且卵壳和骨骼是重金属富集的主要场所,表明通过卵壳可以排出体内部分重金属污染物.卵壳中重金属显著高于卵内容物,卵壳中重金属残留量为Cr>Pb>Cd,4种鹭卵壳中重金属残留量的种间差异都极其显著,Cr残留水平的种间波动幅度最大,池鹭卵壳中的最高,牛背鹭的最低;Pb的种间波动幅度相对较小,Cd的种间波动幅度最小;而卵内容物中3种重金属残留量的种间差异都不显著,Cr残留量种间波动幅度最大,池鹭卵内容物中,Cr含量最高,牛背鹭卵内容物中没有检出;Pb的种间波动幅度相对较小,Cd的种间波动幅度最小.由于鹭的卵壳取样容易,可用作重金属污染物的指示物,监测和评价湿地生态系统中重金属的污染状况.  相似文献   

20.
Rotifers that engage in cyclical parthenogenesis produce two types of eggs: subitaneous eggs that hatch as clonal females and meiotic eggs that hatch as haploid males, or if fertilized, as females after a period of diapause (resting eggs). The ultrastructure of resting eggshells is known for some motile species, but there are limited data on subitaneous eggshells, and no data on any eggshells of sessile rotifers. Here, we investigated the ultrastructure of the subitaneous eggshell of the sessile rotifer Stephanoceros millsii and its potential origins of secretion, the maternal vitellarium and embryonic integument. We also explored secretory activity in the larval and adult integuments to determine whether activity changes during ontogeny. The eggshell consists of a single layer with two sublayers: an external granular sublayer apparently derived from the maternal vitellarium, and an internal flocculent sublayer secreted by the embryonic integument that may form a hatching membrane or glycocalyx. Secretory activity remains high in both the larva and adult and appears to be the source of the thickening glycocalyx. Altogether, the subitaneous eggshell of S. millsii is the thinnest among monogonont rotifers. Thin eggshells may have evolved in response to the added protection provided by the mother’s extracorporeal tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号