首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.

Background

Minute ventilation (V·E) during walking has been shown to be higher in older individuals than in young individuals, but the mechanisms underlying the higher ventilatory response is unclear. Central command and peripheral neural reflex are important neural control mechanisms underlying ventilatory response during exercise. Passive leg movement has been used to exclude the influence of central command due to the lack of voluntary activation of muscles. The aim of the present study was to compare the ventilatory response during and after passive walking-like leg movement (PWM) in young and older individuals.

Methods

Eight young subjects (20 ± 2 years) and seven older subjects (70 ± 1 years) participated in this study. Subjects spent 7 minutes in a quiet standing (QS) position. Thereafter, they performed 14-minute rhythmic PWM at 1 Hz and this was followed by 7 minutes of QS.

Results

V·E values during pre-PWM QS were calculated as 1-minute averages using data obtained between 5 and 6 minutes. V·E values at pre-PWM QS in the young and older groups were 8.4 ± 2.1 and 7.5 ± 1.2 l/minute, respectively. V·E values increased significantly at the first minute of PWM to 11.4 ± 2.2 and 10.4 ± 2.5 l/minute in the young and older groups, respectively (P <0.001). In the young group, V·E at the last minute of PWM (9.2 ± 2.0 l/minute) was not significantly different from that at pre-PWM QS due to a decline in V·E, whereas V·E at the last minute of PWM in the older group (9.4 ± 2.2 l/minute) was still significantly higher (P <0.01). On the other hand, V·E at the first minute of post-PWM QS (7.2 ± 1.8 l/minute) was significantly lower than that during pre-PWM QS in the young group (P <0.05) but not in the older group.

Conclusions

Ventilatory response during and after PWM is higher in older individuals than in young individuals. This may be associated with a mechanism(s) other than central command. Our findings may explain part of the higher V·E response while walking in older individuals.  相似文献   

2.
3.

Objective

Previous studies have shown that estrogen deficiency, arising in postmenopause, promotes endothelial dysfunction. This study evaluated the effects of aerobic exercise training on endothelial dependent vasodilation of aorta in ovariectomized rats, specifically investigating the role of nitric oxide (NO) and reactive oxygen species (ROS).

Methods

Female Wistar rats ovariectomized (OVX – n=20) or with intact ovary (SHAM – n=20) remained sedentary (OVX and SHAM) or performed aerobic exercise training on a treadmill 5 times a week for a period of 8 weeks (OVX-TRA and SHAM-TRA). In the thoracic aorta the endothelium-dependent and –independent vasodilation was assessed by acetylcholine (ACh) and sodium nitroprusside (SNP), respectively. Certain aortic rings were incubated with L-NAME to assess the NO modulation on the ACh-induced vasodilation. The fluorescence to dihydroethidium in aortic slices and plasma nitrite/nitrate concentrations were measured to evaluate ROS and NO bioavailability, respectively.

Results

ACh-induced vasodilation was reduced in OVX rats as compared SHAM (Rmax: SHAM: 86±3.3 vs. OVX: 57±3.0%, p<0.01). Training prevented this response in OVX-TRA (Rmax: OVX-TRA: 88±2.0%, p<0.01), while did not change it in SHAM-TRA (Rmax: SHAM-TRA: 80±2.2%, p<0.01). The L-NAME incubation abolished the differences in ACh-induced relaxation among groups. SNP-induced vasodilation was not different among groups. OVX reduced nitrite/nitrate plasma concentrations and increased ROS in aortic slices, training as effective to restore these parameters to the SHAM levels.

Conclusions

Exercise training, even in estrogen deficiency conditions, is able to improve endothelial dependent vasodilation in rat aorta via enhanced NO bioavailability and reduced ROS levels.  相似文献   

4.
5.

Background

Residual Kidney Function (RKF) is associated with survival benefits in haemodialysis (HD) but is difficult to measure without urine collection. Middle molecules such as Cystatin C and β2-microglobulin accumulate in renal disease and plasma levels have been used to estimate kidney function early in this condition. We investigated their use to estimate RKF in patients on HD.

Design

Cystatin C, β2-microglobulin, urea and creatinine levels were studied in patients on incremental high-flux HD or hemodiafiltration(HDF). Over sequential HD sessions, blood was sampled pre- and post-session 1 and pre-session 2, for estimation of these parameters. Urine was collected during the whole interdialytic interval, for estimation of residual GFR (GFRResidual = mean of urea and creatinine clearance). The relationships of plasma Cystatin C and β2-microglobulin levels to GFRResidual and urea clearance were determined.

Results

Of the 341 patients studied, 64% had urine output>100ml/day, 32.6% were on high-flux HD and 67.4% on HDF. Parameters most closely correlated with GFRResidual were 1/β2-micoglobulin (r2 0.67) and 1/Cystatin C (r2 0.50). Both these relationships were weaker at low GFRResidual. The best regression model for GFRResidual, explaining 67% of the variation, was: GFRResidual=160.3(1β2m)4.2 Where β2m is the pre-dialysis β2 microglobulin concentration (mg/L). This model was validated in a separate cohort of 50 patients using Bland-Altman analysis. Areas under the curve in Receiver Operating Characteristic analysis aimed at identifying subjects with urea clearance≥2ml/min/1.73m2 was 0.91 for β2-microglobulin and 0.86 for Cystatin C. A plasma β2-microglobulin cut-off of ≤19.2mg/L allowed identification of patients with urea clearance ≥2ml/min/1.73m2 with 90% specificity and 65% sensitivity.

Conclusion

Plasma pre-dialysis β2-microglobulin levels can provide estimates of RKF which may have clinical utility and appear superior to cystatin C. Use of cut-off levels to identify patients with RKF may provide a simple way to individualise dialysis dose based on RKF.  相似文献   

6.

Background

Although the measurement of turbulence kinetic energy (TKE) by using magnetic resonance imaging (MRI) has been introduced as an alternative index for quantifying energy loss through the cardiac valve, experimental verification and clinical application of this parameter are still required.

Objectives

The goal of this study is to verify MRI measurements of TKE by using a phantom stenosis with particle image velocimetry (PIV) as the reference standard. In addition, the feasibility of measuring TKE with MRI is explored.

Methods

MRI measurements of TKE through a phantom stenosis was performed by using clinical 3T MRI scanner. The MRI measurements were verified experimentally by using PIV as the reference standard. In vivo application of MRI-driven TKE was explored in seven patients with aortic valve disease and one healthy volunteer. Transvalvular gradients measured by MRI and echocardiography were compared.

Results

MRI and PIV measurements of TKE are consistent for turbulent flow (0.666 < R2 < 0.738) with a mean difference of −11.13 J/m3 (SD = 4.34 J/m3). Results of MRI and PIV measurements differ by 2.76 ± 0.82 cm/s (velocity) and −11.13 ± 4.34 J/m3 (TKE) for turbulent flow (Re > 400). The turbulence pressure drop correlates strongly with total TKE (R2 = 0.986). However, in vivo measurements of TKE are not consistent with the transvalvular pressure gradient estimated by echocardiography.

Conclusions

These results suggest that TKE measurement via MRI may provide a potential benefit as an energy-loss index to characterize blood flow through the aortic valve. However, further clinical studies are necessary to reach definitive conclusions regarding this technique.  相似文献   

7.

Objectives

Gender specific differences receive increasing attention and are known to affect the outcome of cardiovascular diseases. We investigated possible risk-factors for gender-specific differences in ascending aortic aneurysm surgery.

Methods

548 consecutive patients (male: n = 390, age: 58.3±14.4 years; female: n = 158, age: 65.3±12.9 years) with aneurysms of the ascending aorta eligible for cardiac surgery were retrospectively analyzed.

Results

Women were significantly older when operation was indicated (p<0.001) and presented with significantly more hypertension (p=0.04) and chronic obstructive pulmonary disease (COPD; p = 0.017), whereas men had significantly more previous cardiac operations (p = 0.016). Normalized aortic diameters (diameter / body surface area) were significantly larger in women (3.10±0.6 cm) vs. (2.75±0,5 cm, p≤0.001) in men, without differences in absolute values (5.74±1.04 cm vs. 5.86±1.34 cm). The aortic arch was significantly more involved in aneurysm formation in women (p = 0.04). Follow-up was available in 93% of the patients with a mean follow-up time of 3.9±3.9 (0-17.8) years. 30-day mortality was 3.5% in men (n=12) and 7.9% in women (n=11; p = 0.058). Univariate regression analysis shows gender specific risk factors for 30-day mortality in men to be age: p = 0.028; myocardial infarction: p = 0.0.24 and in women diameter of the ascending aorta: p=0.014; renal insufficiency: p=0.007. Long-term survival was significantly reduced in women (log-rank p = 0.0052).

Conclusions

The outcome after surgery for ascending aortic aneurysm is less favourable in women with significantly reduced long-term survival and a trend to increased 30-day mortality in this cohort. Larger normalized aortic diameters, higher incidence of involvement of the aortic arch and differences in comorbidities may contribute to gender differences. Women undergo surgery at higher age and more progressed state of aortic disease. Therefore, gender-specific guidelines for ascending replacement may be useful to improve outcome in women.  相似文献   

8.

Aims

Thoracic aortic aneurysm (TAA) is potentially life-threatening and requires close follow-up to prevent aortic dissection. Aortic stiffness and size are considered to be coupled. Regional aortic stiffness in patients with TAA is unknown. We aimed to evaluate coupling between regional pulse wave velocity (PWV), a marker of vascular stiffness, and aortic diameter in TAA patients.

Methods

In 40 TAA patients (59 ± 13 years, 28 male), regional aortic diameters and regional PWV were assessed by 1.5 T MRI. The incidence of increased diameter and PWV were determined for five aortic segments (S1, ascending aorta; S2, aortic arch; S3, thoracic descending aorta; S4, suprarenal and S5, infrarenal abdominal aorta). In addition, coupling between regional PWV testing and aortic dilatation was evaluated and specificity and sensitivity were assessed.

Results

Aortic diameter was 44 ± 5 mm for the aortic root and 39 ± 5 mm for the ascending aorta. PWV was increased in 36 (19 %) aortic segments. Aortic diameter was increased in 28 (14 %) segments. Specificity of regional PWV testing for the prediction of increased regional diameter was ≥ 84 % in the descending thoracic to abdominal aorta and ≥ 68 % in the ascending aorta and aortic arch.

Conclusion

Normal regional PWV is related to absence of increased diameter, with high specificity in the descending thoracic to abdominal aorta and moderate results in the ascending aorta and aortic arch.  相似文献   

9.

Introduction

The characterization of the hyperbolic power-time (P-t lim) relationship using a two-parameter model implies that exercise tolerance above the asymptote (Critical Power; CP), i.e. within the severe intensity domain, is determined by the curvature (W’) of the relationship.

Purposes

The purposes of this study were (1) to test whether the amount of work above CP (W>CP) remains constant for varied work rate experiments of high volatility change and (2) to ascertain whether W’ determines exercise tolerance within the severe intensity domain.

Methods

Following estimation of CP (208 ± 19 W) and W’ (21.4 ± 4.2 kJ), 14 male participants (age: 26 ± 3; peak V˙O2: 3708 ± 389 ml.min-1) performed two experimental trials where the work rate was initially set to exhaust 70% of W’ in 3 (‘THREE’) or 10 minutes (‘TEN’) before being subsequently dropped to CP plus 10 W.

Results

W>CP for TEN (104 ± 22% W’) and W’ were not significantly different (P>0.05) but lower than W>CP for THREE (119 ± 17% W’, P<0.05). For both THREE (r = 0.71, P<0.01) and TEN (r = 0.64, P<0.01), a significant bivariate correlation was found between W’ and t lim.

Conclusion

W>CP and t lim can be greater than predicted by the P-t lim relationship when a decrement in the work rate of high-volatility is applied. Exercise tolerance can be enhanced through a change in work rate within the severe intensity domain. W>CP is not constant.  相似文献   

10.

Objective

Stent implantation into atherosclerotic coronary vessels impacts on downstream microvascular function and induces the release of particulate debris and soluble substances, which differs qualitatively and quantitatively between native right coronary arteries (RCAs) and saphenous vein grafts on right coronary arteries (SVG-RCAs). We have now quantified the release of microparticles (MPs) during stent implantation into stable atherosclerotic lesions and compared the release between RCAs and SVG-RCAs.

Methods

In symptomatic, male patients with stable angina and a stenosis in their RCA or SVG-RCA, respectively (n = 14/14), plaque volume and composition were analyzed using intravascular ultrasound before stent implantation. Coronary aspirate was retrieved during stent implantation with a distal occlusion/aspiration device and divided into particulate debris and plasma. Particulate debris was weighed. Platelet-derived MPs (PMPs) were distinguished by flow cytometry as CD41+, endothelium-derived MPs (EMPs) as CD144+, CD62E+ and CD31+/CD41-, leukocyte-derived MPs as CD45+, and erythrocyte-derived MPs as CD235+.

Results

In patients with comparable plaque volume and composition in RCAs and SVG-RCAs, intracoronary PMPs and EMPs were increased after stent implantation into their RCAs and SVG-RCAs (CD41+: 2729.6±645.6 vs. 4208.7±679.4 and 2355.9±503.9 vs. 3285.8±733.2 nr/µL; CD144+: 451.5±87.9 vs. 861.7±147.0 and 444.6±74.8 vs. 726.5±136.4 nr/µL; CD62E+: 1404.1±247.7 vs. 1844.3±378.6 and 1084.6±211.0 vs. 1783.8±384.3 nr/µL, P<0.05), but not different between RCAs and SVG-RCAs.

Conclusion

Stenting in stable atherosclerotic lesions is associated with a substantial release not only of PMPs, but also of EMPs in RCAs and SVG-RCAs. Their release does not differ between RCAs and SVG-RCAs.

Trial Registration

ClinicalTrials.gov NCT01430884  相似文献   

11.

Introduction

Intraosseous infusion is recommended if peripheral venous access fails for cardiopulmonary resuscitation or other medical emergencies. The aim of this study, using body donors, was to compare a semi-automatic (EZ-IO®) device at two insertion sites and a sternal intraosseous infusion device (FASTR).

Methods

Twenty-seven medical students being inexperienced first-time users were randomized into three groups using EZ-IO and FASTR. The following data were evaluated: attempts required for successful placement, insertion time and flow rates with and without external pressure to the infusion.

Results

The first-pass insertion success of the EZ-IO tibia, EZ-IO humerus and FASTR was 91%, 77%, and 95%, respectively. Insertion times (MW±SD) did not show significant differences with 17±7 (EZ-IO tibia) vs. 29±42 (EZ-IO humerus) vs. 33±21 (FASTR), respectively. One-minute flow rates using external pressures between 0 mmHg and 300 mmHg ranged between 27±5 to 69±54 ml/min (EZ-IO tibia), 16±3 to 60±44 ml/min (EZ-IO humerus) and 53±2 to 112±47 ml/min (FASTR), respectively. Concerning pressure-related increases in flow rates, negligible correlations were found for the EZ-IO tibia in all time frames (c = 0.107–0.366; p≤0.013), moderate positive correlations were found for the EZ-IO humerus after 5 minutes (c = 0.489; p = 0.021) and strong positive correlations were found for the FASTR in all time frames (c = 0.63–0.80; p≤0.007). Post-hoc statistical power was 0.62 with the given sample size.

Conclusions

The experiments with first-time users applying EZ-IO and FASTR in body donors indicate that both devices may be effective intraosseous infusion devices, likely suitable for fluid resuscitation using a pressure bag. Variations in flow rate may limit their reliability. Larger sample sizes will prospectively be required to substantiate our findings.  相似文献   

12.
The objective of this work was to explore the hypothesis that nitric oxide (NO) affects Fe bioavailability in sorghum (Sorghum bicolor (L.) Moench) embryonic axes. NO content was assessed in embryonic axes isolated from seeds control or exposed to NO-donors, employing spin trapping electron paramagnetic resonance (EPR) methodology. NO donors such as sodium nitroprusside (SNP) and diethylenetriamine NONOate (DETA NONOate), released NO that permeated inside the axes increasing NO content. Under these conditions low temperature EPR was employed to study the labile iron pool. A 2.5 fold increase was observed in NO steady state concentration after 24 h of exposure to NO donors that was correlated to a 2 fold increase in the Fe labile pool, as compared to control axes. This observation provides experimental evidence for a potential role of NO in Fe homeostasis.Key words: iron, labile iron pool, nitric oxide, sorghumNitric oxide (NO) has a wide range of functions, among them promotion of growth and seed germination were described in several plant species.1 Evidences for its participation in Fe homeostasis in planta arise from the fact that Fe deficiency can be reverted enhancing NO level.2 Moreover, it is expected that NO acts as intercellular messenger3 being transported from the site of its synthesis. Nitrosylated Fe complexes, formed by reaction of NO with Fe2+ and biological thiols, have been proposed as NO carriers, since they are relative stable molecules.4The ability of Fe of changing its oxidation state and redox potential in response to changes in the nature of the ligand makes this metal essential for almost all living organisms.5 Fe-containing enzymes are the key components of many essential biological reactions. However, the same biochemical properties that make Fe beneficial might be a drawback in some particular conditions, when improperly shielded Fe can catalyze one-electron reductions of O2 species that lead to the production of reactive free radicals. The toxicity of Fe depends on the Fenton reaction, which produces the hydroxyl radical (·OH) or an oxoiron compound (LFeO2+) and on its reactions with lipid hydroperoxides.6Most of the current information about NO functions in plants comes from pharmacological studies using NO donors, which generate NO either spontaneously, or after metabolic activation. Moreover, NO production from numerous compounds strongly depends on pH, temperature, light and the presence of reductants.7 SNP and DETA NONOate have different kinetics and mechanisms of NO release. However, both are suitable compounds for long-term treatments, since their stability is higher than other NO donors.In this work we evaluated NO steady state concentration in sorghum embryonic axes 24 h after imbibition, in control seeds (distilled water) and in seeds placed either in 1 mM SNP or DETA NONOate. SNP contains Fe in its chemical structure, thus a control was carried out employing photodegraded SNP, which consist of 1 mM SNP solution which had been left under light until all NO was released from the molecule. As it is shown in
FW (mg axis−1)Electrolyte leakage (%)NO (nmol g−1 FW)LIP(nmol g−1 FW)
Control6.8 ± 0.329 ± 22.4 ± 0.28 ± 1
SNP10.8 ± 0.6*20 ± 1*6.0 ± 0.9*19 ± 2*
Photodegraded SNP6.6 ± 0.327 ± 22.5 ± 0.69 ± 1
DETA NONOate9.7 ± 0.9*18 ± 1*6.2 ± 0.6*15.2 ± 0.5*
Open in a separate windowSorghum seeds were exposed 24 h to distilled water (control) or 1 mM of the following chemicals: SNP, photodegraded SNP, and DETA NONOate. Axes were excised from seeds and employed for assays. NO content was determined by EPR in the presence of N-methyl-D-glucamine dithiocarbamate-Fe2+ as spin trap. LIP was estimated through the formation of DF-Fe (III) complexes in samples added with 1 mM DF and examined at low temperature EPR.*Significantly different from values for control embryonic axes at p < 0.05 (GraphPad InStat for Windows Version 3.0; GraphPad Software Inc.,).Imbibition of the seeds during 24 h in the presence of 1 mM SNP or DETA NONOate significantly increased fresh weight (FW) in axes, as compared to axes excised from seeds placed 24 h in distilled water (8 The labile Fe pool (LIP) was evaluated as the paramagnetic complexes formed by Fe and deferoxamine9 (DF), that have a characteristic EPR signal at g = 4.3. Homogenates from sorghum embryonic axes mixed with 1 mM DF were examined by low temperature EPR and the formation of Fe-DF complexes was quantified. In this work we found that imbibition of seeds in the presence of NO donors led to an increase in the LIP assessed in homogenates of embryonic axes, as compared to control samples (eq 1), where each term refers to the change in the concentration of Fe bound to each physiological available Fe chelator in cells.d[Fe]dt=(d[Fe]dt)citrate+(d[Fe]dt)ATP+(d[Fe]dt)ADP+(d[Fe]dt)oxalate+(d[Fe]dt)NO++(d[Fe]dt)other physiological chelatorseq 1NO could be bound to Fe and endogenous thiols generating dinitrosyl-Fe, dinitrosyl-diglutathionyl-Fe or dinitrosyl-glutathionyl Fe complexes among other nitrosyl-Fe complexes,10 as indicated in (eq 2).(d[Fe]dt)NO=(d[Fe]dt)dinitrosyl complex+(d[Fe]dt)dinitrosyl-diglutathionyl complex+(d[Fe]dt)dinitrosyl-glutathionyl complex++(d[Fe]dt)other physiological complexeseq 2After the exposure to 1 mM SNP even though total Fe content did not change (data not shown), LIP was significantly increased. This fact could be interpreted assuming that LIP was increased in the presence of supplemented NO by making Fe available in the cytosol (by allocation of Fe from other biological sources, such as ferritin) increasing the concentration of the nitrosyl-Fe complexes. These complexes have shown to be unable to induce oxidative stress in hepatocytes.11 In this sense, in a chemical system NO inhibits the Fenton reaction by reacting with Fe (II) through the formation of nitrosylferrate (II) complex.6In this work two different NO donors were able to increase FW of sorghum embryonic axes and showed a protective effect on membranes. On the other hand, it was found a direct relationship between NO steady state concentration and LIP levels in the axes. The formation of nitrosyl-Fe complexes may explain the beneficial effects of NO, in spite of the increased cellular LIP.  相似文献   

13.
A Randomized Study of the Effects of Additional Fruit and Nuts Consumption on Hepatic Fat Content,Cardiovascular Risk Factors and Basal Metabolic Rate     
Christian Agebratt  Edvin Str?m  Thobias Romu  Olof Dahlqvist-Leinhard  Magnus Borga  Per Leandersson  Fredrik H. Nystrom 《PloS one》2016,11(1)

Background

Fruit has since long been advocated as a healthy source of many nutrients, however, the high content of sugars in fruit might be a concern.

Objectives

To study effects of an increased fruit intake compared with similar amount of extra calories from nuts in humans.

Methods

Thirty healthy non-obese participants were randomized to either supplement the diet with fruits or nuts, each at +7 kcal/kg bodyweight/day for two months. Major endpoints were change of hepatic fat content (HFC, by magnetic resonance imaging, MRI), basal metabolic rate (BMR, with indirect calorimetry) and cardiovascular risk markers.

Results

Weight gain was numerically similar in both groups although only statistically significant in the group randomized to nuts (fruit: from 22.15±1.61 kg/m2 to 22.30±1.7 kg/m2, p = 0.24 nuts: from 22.54±2.26 kg/m2 to 22.73±2.28 kg/m2, p = 0.045). On the other hand BMR increased in the nut group only (p = 0.028). Only the nut group reported a net increase of calories (from 2519±721 kcal/day to 2763±595 kcal/day, p = 0.035) according to 3-day food registrations. Despite an almost three-fold reported increased fructose-intake in the fruit group (from 9.1±6.0 gram/day to 25.6±9.6 gram/day, p<0.0001, nuts: from 12.4±5.7 gram/day to 6.5±5.3 gram/day, p = 0.007) there was no change of HFC. The numerical increase in fasting insulin was statistical significant only in the fruit group (from 7.73±3.1 pmol/l to 8.81±2.9 pmol/l, p = 0.018, nuts: from 7.29±2.9 pmol/l to 8.62±3.0 pmol/l, p = 0.14). Levels of vitamin C increased in both groups while α-tocopherol/cholesterol-ratio increased only in the fruit group.

Conclusions

Although BMR increased in the nut-group only this was not linked with differences in weight gain between groups which potentially could be explained by the lack of reported net caloric increase in the fruit group. In healthy non-obese individuals an increased fruit intake seems safe from cardiovascular risk perspective, including measurement of HFC by MRI.

Trial Registration

ClinicalTrials.gov NCT02227511  相似文献   

14.
Association Rates of Membrane-Coupled Cell Adhesion Molecules     
Timo Bihr  Susanne Fenz  Erich Sackmann  Rudolf Merkel  Udo Seifert  Kheya Sengupta  Ana-Sun?ana Smith 《Biophysical journal》2014,107(11):L33-L36
  相似文献   

15.
A Comparison between Conductive and Infrared Devices for Measuring Mean Skin Temperature at Rest,during Exercise in the Heat,and Recovery     
Aaron J. E. Bach  Ian B. Stewart  Alice E. Disher  Joseph T. Costello 《PloS one》2015,10(2)
PurposeSkin temperature assessment has historically been undertaken with conductive devices affixed to the skin. With the development of technology, infrared devices are increasingly utilised in the measurement of skin temperature. Therefore, our purpose was to evaluate the agreement between four skin temperature devices at rest, during exercise in the heat, and recovery.MethodsMean skin temperature (T-sk) was assessed in thirty healthy males during 30 min rest (24.0 ± 1.2°C, 56 ± 8%), 30 min cycle in the heat (38.0 ± 0.5°C, 41 ± 2%), and 45 min recovery (24.0 ± 1.3°C, 56 ± 9%). T-sk was assessed at four sites using two conductive devices (thermistors, iButtons) and two infrared devices (infrared thermometer, infrared camera).ResultsBland–Altman plots demonstrated mean bias ± limits of agreement between the thermistors and iButtons as follows (rest, exercise, recovery): -0.01 ± 0.04, 0.26 ± 0.85, -0.37 ± 0.98°C; thermistors and infrared thermometer: 0.34 ± 0.44, -0.44 ± 1.23, -1.04 ± 1.75°C; thermistors and infrared camera (rest, recovery): 0.83 ± 0.77, 1.88 ± 1.87°C. Pairwise comparisons of T-sk found significant differences (p < 0.05) between thermistors and both infrared devices during resting conditions, and significant differences between the thermistors and all other devices tested during exercise in the heat and recovery.ConclusionsThese results indicate poor agreement between conductive and infrared devices at rest, during exercise in the heat, and subsequent recovery. Infrared devices may not be suitable for monitoring T-sk in the presence of, or following, metabolic and environmental induced heat stress.  相似文献   

16.
Reactive Nitrogen Species-Dependent Effects on Soybean Chloroplasts     
Susana Puntarulo  Sebastián Jasid  Marcela Simontacchi 《Plant signaling & behavior》2007,2(2):96-98
Nitric oxide (NO) generation by soybean (Glycine max, var ADM 4800) chloroplasts was studied by electron paramagnetic resonance (EPR) spin-trapping technique.1 Both nitrite and L-arginine (arg) are the required substrates for enzymatic activities considered as possible sources of NO in plants. Soybean chloroplasts showed a NO production of 3.2 ± 0.2 nmol min−1 mg−1 protein in the presence of 1 mM NaNO2. Chloroplasts incubated with 1 mM arg showed a NO production of 0.76 ± 0.04 nmol min−1 mg−1 protein. This production was inhibited when chloroplasts were incubated in presence of NOS-inhibitors L-NAME and L-NNA. In vitro exposure of chloroplasts to a NO-donor (GSNO) decreased both ascorbyl radical content and the activity of ascorbate peroxidase, without modification of the total ascorbate content. Exposure of the isolated chloroplasts to a NO-donor decreased lipid radical content in membranes, however, incubation in the presence of 25 µM peroxynitrite (ONOO) led to an increase in lipid-derived radicals (34%). The effect of ONOO on protein oxidation was determined by western blotting, showing an increase in carbonyl content either in stroma or thylakoid proteins as compared to control. Taken as a whole, NO seems to be an endogenous metabolite in soybean chloroplasts and reactive nitrogen species could exert either antioxidant or prooxidant effects on chloroplasts, since both a decreased lipid radical content in membranes and a decrease in the activity of ascorbate peroxidase were observed after exposure to a NO donor.Key Words: ascorbate, ascorbate peroxidase, chloroplasts, nitric oxide, peroxynitriteThe origin of nitric oxide (NO) in plants under aerobic conditions is currently under study. Although plants with low level of arginine shows arg-stimulated NO accumulation,2 the mechanism for arginine-dependent NO synthesis in plants is still unknown, because the detection of an animal-type NOS remains elusive to date.3,4 Even though assimilatory nitrate reductase is an enzymatic source of NO, its role in vivo would be limited by both its cytosolic localization which difficult the availability for nitrite, and the relative high Km for nitrite (100 µM).5Chloroplasts have been previously marked as NO sources based in nonquantitative studies employing fluorescence microscopy6,7 and immunogold electron microscopy.8 In our work we employed an specific technique (EPR, electron paramagnetic resonance with spin trap9) to detect NO as an endogenous metabolite and to quantify its generation in the presence of different substrates. In order to gain insight on the mechanism leading to NO production both nitrite-dependent and arg-dependent pathways were evaluated. In the presence of 1 mM arg and 0.1 mM NADPH the rate of NO generation was 0.76 ± 0.04 nmol min−1 mg−1 prot (arg-dependent synthesis). The synthesis of NO resulted completely blocked in the presence of arg analogs (L-NAME and L-NNA). It is important to point out that the content of arg in the chloroplasts stroma is high as compared to the content of other amino acids (56.7 ± 0.8 nmol mg−1 prot), suggesting that this pathway could be operative under physiological conditions.Soybean chloroplasts showed a NO production of 3.2 ± 0.2 nmol min−1 mg−1 prot in the presence of 1 mM NaNO2. Furthermore, NO generation was detected in the presence of nitrite concentrations as low as 25 mM. Since nitrite-dependent NO generation resulted inhibited by 50% by the addition of DCMU, and no NO generation was measured in the stroma fraction, thylakoidal electron transport seems to be a key feature in NO synthesis.According to this scenario and assuming that the two independent pathways for NO generation in chloroplasts are operative, the total rate of production of NO could be understood as the generation by the activity of an arg-dependent enzyme and by a NO2 dependent pathway, as indicated by eq. 1.d[NO]dt=(d[NO]dt)NOS like+(d[NO]dt)NO2(1)Regarding the NO disappearance, from a kinetic point of view, the rate of the reaction of NO with O2 to generate peroxynitrite seems to be the main pathway, since the reaction is diffusionally controlled. Thus, the rate of disappearance of NO could be estimated from the rate of generation of ONOO (eq. 2); however, other reactions should be considered under nonphysiological conditions.d[NO]dt=dONOOdt=k[NO][O2](2)NO generation rate should be equal to NO consumption rate in order to keep a physiological NO steady state concentration (eq. 3)d[NO]dt=d[NO]dt(3)Thus, replacing NO generation and disappearance rates by those rates indicated in equations 1 and 2, (d[NO]dt)NOS like+(d[NO]dt)NO2=k[NO][O2](4) The data obtained under unrestricted availability of substrates, indicate a generation rate of NO by the activity of a NOS-like enzyme of 13 × 10−9 M s−1. Chloroplastic NO generation rate in the presence of 100 µM NO2 was 14 × 10−9 M s−1. Thus, according to equation 1, the rate of generation of NO is approximately 3 × 10−8 M s−1. Assuming a steady state concentration for O2 of 1 nM in chloroplasts10 and a rate constant (k) of 6.9 × 109 M−1 s−1 for the reaction between O2 and NO,11 a steady state concentration of 4 nM for NO in the chloroplast could be estimated. Since under in vivo conditions chloroplasts may content the required substrates for the NO synthesis, the assays presented here strongly suggest that a feasible NO production could take place inside the chloroplasts. However, nonsupplemented chloroplasts did not show any NO-dependent EPR signal. This observation agrees with the fact that NO steady state concentration under physiological conditions as was calculated here (4 nM) is below the EPR detection limit (500 nM).12Further studies should be performed to characterize NO oxidative effects on chloroplasts. Scavenging of O2 and H2O2 is essential for chloroplasts to maintain their ability to fix CO2 since several enzymes in the CO2-reduction cycle are sensitive to active oxygen species.13 These organelles lacking catalase, contain a significant peroxidase activity.14 H2O2-reduction catalized by ascorbate peroxidase (AP) lead to ascorbate oxidation and produces ascorbyl radical (A.).15 In isolated chloroplast the content of A.. was evaluated in DMSO based extract by EPR16. Quantification of EPR signals indicated that A. content in control chloroplasts (123 ± 5 pmol mg−1 prot) decreased after exposure to NO (Fig. 1). The total content of ascorbate, assessed by an HPLC technique17 in chloroplasts isolated from soybean leaves exposed to NO was not significantly different from the measured content in chloroplasts not exposed to the NO donor (Fig. 1). The activity of AP was significantly decreased by 48, 53 and 54% after exposure of the chloroplasts to NO-donor. Previous data suggested that AP could be inactivated by NO via oxidation of functional thiols.18 Besides, the reversible inhibition of AP could be due to the formation of Fe-nitrosyl complexes between NO and the Fe atom of the heme group, as it was previously described for NO-mediated activation of guanylate cyclase and the inhibition of cytochrome P450 and catalase in mammals.19 The data presented here showed that in isolated chloroplasts exposed to a NO donor, there could be either a limited damage associated to the decrease in the content of A.. or an increased cellular deterioration by the decrease in the activity of the enzyme responsible for the scavenging of H2O2.Open in a separate windowFigure 1Ascorbate metabolism in soybean chloroplasts after NO exposure. A.. content (▪), ascorbate content (▪), and AP activity (*) as a function of the exposure of isolated chloroplasts to GSNO in the presence of 50 µM DTT. * = significantly different at p ≥ 0.05 from the value obtained in the absence of GSNO + 50 µM DTT.Thus, in situ generation of NO could play a protective role in preventing the oxidation of chloroplastic lipids; however, the reaction of NO with O2 leading to ONOO production may result in a potential source of damage or as it is shown here by the significant decrease of the AP activity that consumes H2O2. NO is a suitable candidate to modulate cellular H2O2 level through the chloroplast function, as an initial step to regulate complex metabolic pathways directed to activate physiological responses, defense pathways or deleterious effects in the cytosol. Furthermore, an integrated study on the effect of nitrogen reactive species is required under stress conditions to characterize the metabolic pathways involved in the resulting cellular damage.  相似文献   

17.
Kinetics and Energetics of Biomolecular Folding and Binding     
Christopher?A. Pierse  Olga?K. Dudko 《Biophysical journal》2013,105(9):L19-L22
The ability of biomolecules to fold and to bind to other molecules is fundamental to virtually every living process. Advanced experimental techniques can now reveal how single biomolecules fold or bind against mechanical force, with the force serving as both the regulator and the probe of folding and binding transitions. Here, we present analytical expressions suitable for fitting the major experimental outputs from such experiments to enable their analysis and interpretation. The fit yields the key determinants of the folding and binding processes: the intrinsic on-rate and the location and height of the activation barrier.Dynamic processes in living cells are regulated through conformational changes in biomolecules—their folding into a particular shape or binding to selected partners. The ability of biomolecules to fold and to bind enables them to act as switches, assembly factors, pumps, or force- and displacement-generating motors (1). Folding and binding transitions are often hindered by a free energy barrier. Overcoming the barrier requires energy-demanding rearrangements such as displacing water from the sites of native contacts and breaking nonnative electrostatic contacts, as well as loss of configurational entropy. Once the barrier is crossed, the folded and bound states are stabilized by short-range interactions: hydrogen bonds, favorable hydrophobic effects, and electrostatic and van der Waals attractions (2).Mechanistic information about folding and binding processes is detailed in the folding and binding trajectories of individual molecules: observing an ensemble of molecules may obscure the inherent heterogeneity of these processes. Single-molecule trajectories can be induced, and monitored, by applying force to unfold/unbind a molecule and then relaxing the force until folding or binding is observed (3–5) (Fig. 1). Varying the force relaxation rate shifts the range of forces at which folding or binding occurs, thus broadening the explorable spectrum of molecular responses to force and revealing conformational changes that are otherwise too fast to detect. The measured force-dependent kinetics elucidates the role of force in physiological processes (6) and provides ways to control the timescales, and even the fate, of these processes. The force-dependent data also provides a route to understanding folding and binding in the absence of force—by extrapolating the data to zero force via a fit to a theory.Open in a separate windowFigure 1Schematic of the output from a force-relaxation experiment. The applied force is continuously relaxed from the initial value F0 until the biomolecule folds or binds, as signified by a sharp increase in the measured force. From multiple repeats of this experiment, distributions of the folding or binding forces are collected (inset). Fitting the force distributions with the derived analytical expression yields the key parameters that determine the kinetics and energetics of folding or binding.In this letter, we derive an analytical expression for the distribution of transition forces, the major output of force-relaxation experiments that probe folding and binding processes. The expression extracts the key determinants of these processes: the on-rate and activation barrier in the absence of force. The theory is first developed in the context of biomolecular folding, and is then extended to cover the binding of a ligand tethered to a receptor. In contrast to unfolding and unbinding, the reverse processes of folding and binding require a theory that accounts for the compliance of the unfolded state, as well as the effect of the tether, to recover the true kinetic parameters of the biomolecule of interest.In a force-relaxation experiment, an unfolded biomolecule or unbound ligand-receptor complex is subject to a stretching force, which is decreased from the initial value F0 as the pulling device approaches the sample at speed V until a folding or binding transition is observed (Fig. 1) (3–5). Define S(t) as the probability that the molecule has not yet escaped from the unfolded (implied: or unbound) state at time t. When escape is limited by one dominant barrier, S(t) follows the first-order rate equationS˙(t)dS(t)dt=k(F(t))S(t),where k(F(t)) is the on-rate at force F at time t. Because, prior to the transition, the applied force decreases monotonically with time, the distribution of transition forces, p(F), is related to S(t) through p(F)dF=S˙(t)dt, yieldingp(F)=k(F)F˙(F)eF0Fk(F)F˙(F)dF.(1)Here F˙(F)dF(t)/dt<0 is the force relaxation rate. The proper normalization of p(F) is readily confirmed by integrating Eq. 1 from the initial force F0 to negative infinity, the latter accounting for transitions that do not occur by the end of the experiment. Note that the expression for the distribution of folding/binding forces in Eq. 1 differs from its analog for the unfolding process (7) by the limits of integration and a negative sign, reflecting the property of a relaxation experiment to decrease the survival probability S(t) by decreasing the force. Converting the formal expression in Eq. 1 into a form suitable for fitting experimental data requires establishing functional forms for k(F) and F˙(F) and analytically solving the integral. These steps are accomplished below.The on-rate k(F) is computed by treating the conformational dynamics of the molecule as a random walk on the combined free energy profile G(x,t) = G0(x) + Gpull(x,t) along the molecular extension x. Here G0(x) is the intrinsic molecular potential and Gpull(x,t) is the potential of the pulling device. When G(x,t) features a high barrier on the scale of kBT (kB is the Boltzmann constant and T the temperature), the dynamics can be treated as diffusive. The unfolded region of the intrinsic potential for a folding process, unlike that for a barrierless process (8), can be captured by the functionG0(x)=ΔGν1ν(xx)11νΔGν(xx),which has a sharp (if ν = 1/2, Fig. 2, inset) or smooth (if ν = 2/3) barrier of height ΔG and location x. The potential of a pulling device of stiffness κS is Gpull(x,t) = κS/2(X0Vtx)2 with an initial minimum at X0 (corresponding to F0). Applying Kramers formalism (9) to the combined potential G(x,t), we establish the analytical form of the on-rate at force F(t),k(F)=k0(1+κSκU(F))1ν12(1+νFxΔG)1ν1×eβΔG[1(1+κSκU(F))2ν1ν1(1+νFxΔG)1ν],where k0 is the intrinsic on-rate, β ≡ (kBT)−1, andκU(F)=ν(1ν)2ΔGx2(1+νFxΔG)21νis the stiffness of the unfolded biomolecule under force F (see the Supporting Material for details on all derivations). The full nonlinear form of Gpull(x,t) was necessary in the derivation because, in contrast to the typically stiff folded state, the unfolded state may be soft (to be exact, 1/2κS x‡2(F) << kBT may not be satisfied) and thus easily deformed by the pulling device. Because of this deformation, the folding transition faces an extra contribution (regulated by the ratio κS/κU(F)) to the barrier height, typically negligible for unfolding, that decreases the on-rate in addition to the applied force F.Open in a separate windowFigure 2Contributions to the free energy profile for folding (inset) and binding (main figure). The derived expression (Eq. 2) extracts the on-rate and the location and height of the activation barrier to folding. When applied to binding data, the expression extracts the parameters of the ligand-tether-receptor (LTR) potential G˜0 (x); the proposed algorithm (Eqs. 3 and 4) removes the contribution of the tether potential Gteth(x) to recover the parameters of the intrinsic ligand-receptor (LR) potential G0(x).The last piece required for Eq. 1, the loading rate F˙(F), is computed as the time derivative of the force F(t) on the unfolded molecule at its most probable extension at time t:F˙(F)=κSV1+κS/κU(F).Finally, we realize that the integral in Eq. 1 can be solved analytically exactly, both for ν = 1/2 and ν = 2/3, resulting in the analytical expression for the distribution of folding forces:p(F)=k(F)|F˙(F)|ek(F)β|F˙(F)|x(1+κSκU(F))νν1(1+νFxΔG)11ν.(2)Equation 2 can be readily applied to (normalized) histograms from force-relaxation experiments to extract the parameters of the intrinsic kinetics and energetics of folding. Being exact for ν = 1/2 and ν = 2/3, Eq. 2 is also an accurate approximation for any ν in the interval 1/2 < ν < 2/3 as long as κSκU (F) (see Fig. S1 in the Supporting Material). For simplicity, in Eq. 2 we have omitted the term containing F0 as negligible if F0 is large enough to prevent folding events.The solution in Eq. 2 reveals properties of the distribution of folding forces that distinguish it from its unfolding counterpart (7):
  • 1.The distribution has a positive skew (Fig. 3), as intuitively expected: the rare folding events occur at high forces when the barrier is still high.Open in a separate windowFigure 3Force histograms from folding (left) and binding (right) simulations at several values of the force-relaxation speed (in nanometers per second, indicated at each histogram). Fitting the histograms with the analytical expression in Eq. 2 (lines) recovers the on-rate and activation barrier for folding or binding (2.Increasing the relaxation speed shifts the distribution to lower forces (Fig. 3): faster force relaxation leaves less time for thermal fluctuations to push the system over a high barrier, causing transitions to occur later (i.e., at lower forces), when the barrier is lower.
  • 3.The stiffness κS and speed V enter Eq. 2 separately, providing independent routes to control the range of folding forces and thus enhance the robustness of a fit.
The application of the above framework to binding experiments on a ligand and receptor connected by a tether (3) involves an additional step—decoupling the effect of the tether—to reconstruct the parameters of ligand-receptor binding. Indeed, the parameters extracted from a fit of experimental histograms to Eq. 2 characterize the ligand-tether-receptor (LTR) potential (k˜0, x˜, ΔG˜, ν) (Fig. 2). The parameters of the natural ligand-receptor (LR) potential (k0, x, ΔG) can be recovered using three characteristics of the tether: contour length L; persistence length p; and extension Δℓ of the tether along the direction of the force in the LTR transition state. The values of L and p can be determined from the force-extension curve of the tether (10); these define the tether potential Gteth(x) (Fig. 2). The value of Δℓ can be found from an unbinding experiment (7) on LTR and the geometry of the tether attachment points (see Fig. S3). Approximating the region of the LR potential between the transition and unbound states as harmonic, with no assumptions about the shape of the potential beyond x, the ligand-receptor barrier parameters are thenx=α1α2x˜,ΔG=(α1)22(α2)x˜Fteth(Δ+x˜),(3)and the intrinsic unimolecular association rate isk0k˜0(βΔG)32(βΔG˜)1ν12(x˜x)2eβ(ΔG˜ΔG).(4)Here, the force value Fteth(Δ+x˜) is extracted from the force-extension curve of the tether at extension Δ+x˜ andα=2(ΔG˜Gteth(Δ)+Gteth(Δ+x˜))x˜Fteth(Δ+x˜),where Gteth(x) is the wormlike-chain potential (see Eq. S13 in the Supporting Material). Equations 3–4 confirm that a tether decreases the height and width of the barrier (see Fig. 2), thus increasing the on-rate.In Fig. 3, the developed analytical framework is applied to folding and binding force histograms from Brownian dynamics simulations at parameters similar to those in the analogous experimental and computational studies (3,5,11) (for details on simulations and fitting procedure, see the Supporting Material). For the stringency of the test, the simulations account for the wormlike-chain nature of the molecular unfolded and LTR unbound states that is not explicitly accounted for in the theory. With optimized binning (12) of the histograms and a least-squares fit, Eqs. 2–4 recover the on-rate, the location and the height of the activation barrier, and the value of ν that best captures how the kinetics scale with force (
  • 1.Multiple relaxation speeds,
  • 2.Folding/binding events at low forces, and
  • 3.A large number of events at each speed.
  • Table 1

    On-rate and the location and height of the activation barrier from the fit of simulated data to the theory in
    Eq. 2
    Foldingk0 (s−1)x (nm)ΔG (kBT)ν
     True9.5 × 1032.22.0
     Fit8 ± 2 × 1032.2 ± 0.21.8 ± 0.50.54a
    Binding (LTR)k˜0 (s−1)x˜ (nm)ΔG˜ (kBT)ν
     True281.561.7
     Fit24 ± 31.57 ± 0.091.8 ± 0.40.53a
    Binding (LR)k0 (s−1)x (nm)ΔG (kBT)
     True2.83.04.0
     Fit2.7 ± 0.22.9 ± 0.14.1 ± 0.1
    Open in a separate windowaFixed at value that minimized least-squares error.  相似文献   

    18.
    Intravascular Ultrasound Observation of the Mechanism of No-Reflow Phenomenon in Acute Myocardial Infarction     
    Junxia Li  Longmei Wu  Xinli Tian  Jian Zhang  Yujie Shi 《PloS one》2015,10(6)

    Objective

    To study the mechanism of the no-reflow phenomenon using coronary angiography (CAG) and intravascular ultrasound (IVUS).

    Methods

    A total of 120 patients with acute myocardial infarction (AMI) who successfully underwent indwelling intracoronary stent placement by percutaneous coronary intervention (PCI). All patients underwent pre- and post-PCI CAG and pre-IVUS. No-reflow was defined as post-PCI thrombolysis in myocardial infarction (TIMI) grade 0, 1, or 2 flow in the absence of mechanical obstruction. Normal reflow was defined as TIMI grade 3 flow. The pre-operation reference vascular area, minimal luminal cross-sectional area, plaque cross-sectional area, lesion length, plaque volume and plaque traits were measured by IVUS.

    Results

    The no-reflow group was observed in 14 cases (11.6%) and normal blood-flow group in 106 cases (89.4%) based on CAG results. There was no statistically significant difference in the patients’ medical history, reference vascular area (no-flow vs. normal-flow; 15.5 ± 3.2 vs. 16.2 ± 3.3, p> 0.05) and lesion length (21.9 ± 5.1 vs. 19.5 ± 4.8, p> 0.05) between the two groups. No-reflow patients had a longer symptom onset to reperfusion time compared to normal blood-flow group [(6.6 ± 3.1) h vs (4.3 ± 2.7) h; p< 0.05] and higher incidence of TIMI flow grade< 3 (71.4% vs 49.0%, p< 0.05). By IVUS examination, the no-reflow group had a significantly increased coronary plaque area and plaque volume compared to normal blood-flow group [(13.7 ± 3.0) mm2 vs (10.2 ± 2.9) mm2; (285.4 ± 99.8) mm3 vs (189.7 ± 86.4) mm3; p< 0.01]. The presence of IVUS-detected soft plaque (57.1% vs. 24.0%, p< 0.01), eccentric plaque (64.2% vs. 33.7%, p< 0.05), plaque rupture (50.0% vs. 21.2%, p< 0.01), and thrombosis (42.8% vs. 15.3%) were significantly more common in no-reflow group.

    Conclusion

    There was no obvious relationship between the coronary risk factors and no-reflow phenomenon. The symptom onset to reperfusion time, TIMI flow grade before stent deployment, plaque area, soft plaques, eccentric plaques, plaque rupture and thrombosis may be risk factors for the no-reflow phenomenon after PCI.  相似文献   

    19.
    Post-Prandial Protein Handling: You Are What You Just Ate     
    Bart B. L. Groen  Astrid M. Horstman  Henrike M. Hamer  Michiel de Haan  Janneau van Kranenburg  J?rgen Bierau  Martijn Poeze  Will K. W. H. Wodzig  Blake B. Rasmussen  Luc J. C. van Loon 《PloS one》2015,10(11)

    Background

    Protein turnover in skeletal muscle tissue is highly responsive to nutrient intake in healthy adults.

    Objective

    To provide a comprehensive overview of post-prandial protein handling, ranging from dietary protein digestion and amino acid absorption, the uptake of dietary protein derived amino acids over the leg, the post-prandial stimulation of muscle protein synthesis rates, to the incorporation of dietary protein derived amino acids in de novo muscle protein.

    Design

    12 healthy young males ingested 20 g intrinsically [1-13C]-phenylalanine labeled protein. In addition, primed continuous L-[ring-2H5]-phenylalanine, L-[ring-2H2]-tyrosine, and L-[1-13C]-leucine infusions were applied, with frequent collection of arterial and venous blood samples, and muscle biopsies throughout a 5 h post-prandial period. Dietary protein digestion, amino acid absorption, splanchnic amino acid extraction, amino acid uptake over the leg, and subsequent muscle protein synthesis were measured within a single in vivo human experiment.

    Results

    55.3±2.7% of the protein-derived phenylalanine was released in the circulation during the 5 h post-prandial period. The post-prandial rise in plasma essential amino acid availability improved leg muscle protein balance (from -291±72 to 103±66 μM·min-1·100 mL leg volume-1; P<0.001). Muscle protein synthesis rates increased significantly following protein ingestion (0.029±0.002 vs 0.044±0.004%·h-1 based upon the muscle protein bound L-[ring-2H5]-phenylalanine enrichments (P<0.01)), with substantial incorporation of dietary protein derived L-[1-13C]-phenylalanine into de novo muscle protein (from 0 to 0.0201±0.0025 MPE).

    Conclusion

    Ingestion of a single meal-like amount of protein allows ~55% of the protein derived amino acids to become available in the circulation, thereby improving whole-body and leg protein balance. About 20% of the dietary protein derived amino acids released in the circulation are taken up in skeletal muscle tissue following protein ingestion, thereby stimulating muscle protein synthesis rates and providing precursors for de novo muscle protein synthesis.

    Trial Registration

    trialregister.nl 3638  相似文献   

    20.
    Long Maximal Incremental Tests Accurately Assess Aerobic Fitness in Class II and III Obese Men     
    Stefano Lanzi  Franco Codecasa  Mauro Cornacchia  Sabrina Maestrini  Paolo Capodaglio  Amelia Brunani  Paolo Fanari  Alberto Salvadori  Davide Malatesta 《PloS one》2015,10(4)
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号