首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
普通菜豆抗炭疽病基因鉴定与分子标记   总被引:2,自引:1,他引:2  
菜豆炭疽病是世界菜豆生产中的主要病害之一,使幕豆产量和品质受到严重影响,对抗炭疽病基因的研究可以为培育抗炭疽病品种奠定基础。幕豆炭疽病病菌生理分化比较复杂,由于菜豆品种的抗病性和地域不同,菜豆炭疽菌的致病性分化不同。10个已知抗炭疽病基因中,9个基因(Co-1、Co-2、Co-3/Co-9、Co-4^2、Co-5、Co-6、Co-7、Co-10)已被确认为独立显性基因,其中Co-3/Co-9是等位基因;Co-1、Co-4和Co-9存在等位基因,co-8为隐性基因。除Co-5、Co-7和co-8三个基因还没有被定位外,其他基因被定位在不同的连锁群上。  相似文献   

2.
普通菜豆在长期驯化过程中形成了安第斯和中美两个基因库,研究基因库来源对于抗病育种中抗病亲本的选配具有重要意义.本研究利用菜豆朊蛋白标记分析了54份抗炭疽病菜豆地方品种的基因库来源,基本上明确了我国抗炭疽病菜豆种质的基因源,为抗病育种奠定了基础.  相似文献   

3.
普通菜豆生长习性相关基因定位   总被引:1,自引:0,他引:1  
普通菜豆生长习性是一个重要的驯化性状。为定位生长习性相关基因,本研究选用无限蔓生型育成品种连农紫芸一号和有限丛生地方品种兔子腿配置杂交组合,构建F2分离群体和F2∶3家系。遗传分析表明,有限直立对无限蔓生是由1对隐性单基因控制,将该基因命名为gh-lz。利用分离群体分组分析法初步将该基因定位在B01连锁群,通过扩大群体和新开发的SSR、In/Del标记进一步将目的基因定位在SSR标记p1t52和In/Del标记In93之间,位于第1条染色体上45453003~45575103 bp之间,区间大小为122100 bp,预测候选区段共包含12个基因,命名为Gene1~Gene12。其中,Gene12为普通菜豆基因TFL1。本研究为普通菜豆生长习性相关基因的定位及进一步的功能研究奠定了分子基础。  相似文献   

4.
The inheritance of anthracnose resistance of the common bean ( Phaseolus vulgaris L.) differential cultivar G 2333 to Colletotrichum lindemuthianum races 73 and 89 was studied in crosses with the susceptible cultivar Rudá. The segregation ratios of 15 : 1 in the F2 and 3 : 1 in the backcrosses to Rudá indicate that for each of the races tested there are two independent resistance loci in G 2333. A random amplified polymorphic DNA (RAPD) molecular marker (OPH181200C) linked in resistance to race 73 was identified in a BC3F2:3 population derived from crosses between Rudá and G 2333. A RAPD molecular marker OPAS13950C, previously identified as linked to gene Co-42 , was also amplified in this population. Co-segregation analyses showed that these two markers are located at 5.6 (OPH181200C) and 11.2 (OPAS13950C) cM of the Co-42 gene. These markers were not present in BC1F2:3 plants resistant to race 89 indicating that this population carries a different resistance gene. DNA amplification of BC1F2:3 plants with RAPD molecular marker OPAB450C, previously identified as linked to gene Co-5 , indicated that this gene is present in this population.  相似文献   

5.
菜豆炭疽菌生理小种鉴定及普通菜豆种质的抗性评价   总被引:7,自引:1,他引:7  
对来源于黑龙江、吉林、内蒙古、河北、云南等8个省(市)的15个菜豆炭疽菌分离物进行生理小种鉴定,鉴别出5个菜豆炭疽菌生理小种,其中81号小种出现的频率高达67%,是中国的优势小种。用81号小种对181份菜豆进行抗性鉴定,发现高抗材料2份,抗病材料43份,高感材料33份,说明我国菜豆种质资源对炭疽菌81号小种抗感差异显著,抗病资源丰富。  相似文献   

6.
A novel yellow-green leaf mutant yellow-green leaf-1 (ygl-1) was isolated in self-pollinated progenies from the cross of maize inbred lines Ye478 and Yuanwu02. The mutant spontaneously showed yellow-green character throughout the lifespan. Meanwhile, the mutant reduced contents of chlorophyll and Car, arrested chloroplast development and lowered the capacity of photosynthesis compared with the wild-type Lx7226. Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. The ygl-1 locus was initially mapped to an interval of about 0.86 Mb in bin 1.01 on the short arm of chromosome 1 using 231 yellow-green leaf individuals of an F2 segregating population from ygl-1/Lx7226. Utilizing four new polymorphic SSR markers, the ygl-1 locus was narrowed down to a region of about 48 kb using 2930 and 2247 individuals of F2 and F3 mapping populations, respectively. Among the three predicted genes annotated within this 48 kb region, GRMZM2G007441, which was predicted to encode a cpSRP43 protein, had a 1-bp nucleotide deletion in the coding region of ygl-1 resulting in a frame shift mutation. Semi-quantitative RT-PCR analysis revealed that YGL-1 was constitutively expressed in all tested tissues and its expression level was not significantly affected in the ygl-1 mutant from early to mature stages, while light intensity regulated its expression both in the ygl-1 mutant and wild type seedlings. Furthermore, the mRNA levels of some genes involved in chloroplast development were affected in the six-week old ygl-1 plants. These findings suggested that YGL-1 plays an important role in chloroplast development of maize.  相似文献   

7.
Pathogenicity of physiologically distinct races of Colletotrichum lindemuthianum originating from Andean (races 7, 19 and 55) and Mesoamerican (races 9, 31, 65, 69, 73, 81, 89, 95 and 453) locations of the new world were evaluated on 26 landrace genotypes of common bean (Phaseolus vulgaris L.) from Paraná State, Brazil. Races 7 (Andean), 65, 73 and 89 (Mesoamerican) were the most pathogenic, while race 31 (Mesoamerican) was the least pathogenic. Most of the landrace genotypes evaluated (88%) were resistant to race 31, except Carioca 3, Preto 1 and Preto 2. In addition, about 50% of the landrace genotypes had resistance to races 9, 19, 55 and 453; and about 30% to races 7, 65, 69, 73, 81, 89 and 95. The resistance index, which measured the pathogenicity response averaged across all the physiologically distinct Andean and Mesoamerican races of C. lindemuthianum, of the landrace genotypes ranged from 8% to 83%. The most resistant cultivars were Carioca Pintado 1, Carioca Pintado 2, Jalo Vermelho and Jalo de Listras Pretas. In contrast, the most susceptible cultivars were Jalo Pardo, Jalo Pintado 1 and Bolinha that showed resistance only to the least pathogenic race 31. These results indicated that many of the common bean landrace cultivars evaluated have genes that could be useful in breeding programmes to enhance resistance to Andean and Mesoamerican races of C. lindemuthianum.  相似文献   

8.
The B4 resistance (R) gene cluster is one of the largest clusters known in common bean (Phaseolus vulgaris [Pv]). It is located in a peculiar genomic environment in the subtelomeric region of the short arm of chromosome 4, adjacent to two heterochromatic blocks (knobs). We sequenced 650 kb spanning this locus and annotated 97 genes, 26 of which correspond to Coiled-Coil-Nucleotide-Binding-Site-Leucine-Rich-Repeat (CNL). Conserved microsynteny was observed between the Pv B4 locus and corresponding regions of Medicago truncatula and Lotus japonicus in chromosomes Mt6 and Lj2, respectively. The notable exception was the CNL sequences, which were completely absent in these regions. The origin of the Pv B4-CNL sequences was investigated through phylogenetic analysis, which reveals that, in the Pv genome, paralogous CNL genes are shared among nonhomologous chromosomes (4 and 11). Together, our results suggest that Pv B4-CNL was derived from CNL sequences from another cluster, the Co-2 cluster, through an ectopic recombination event. Integration of the soybean (Glycine max) genome data enables us to date more precisely this event and also to infer that a single CNL moved from the Co-2 to the B4 cluster. Moreover, we identified a new 528-bp satellite repeat, referred to as khipu, specific to the Phaseolus genus, present both between B4-CNL sequences and in the two knobs identified at the B4 R gene cluster. The khipu repeat is present on most chromosomal termini, indicating the existence of frequent ectopic recombination events in Pv subtelomeric regions. Our results highlight the importance of ectopic recombination in R gene evolution.In the human genome, extensive cytogenetic and sequence analyses have revealed that subtelomeres are hot spots of interchromosomal recombination and segmental duplications (Linardopoulou et al., 2005). This peculiar dynamic activity of subtelomeres has been reported in such diverse organisms as yeast and the malaria parasite Plasmodium (Louis, 1995; Freitas-Junior et al., 2000, 2005). As expected for a plastic region of the genome subject to reshuffling through recombination events, subtelomeres exhibit unusually high levels of within-species structural and nucleotide polymorphism (Mefford and Trask, 2002). In plants, this plasticity of subtelomeres has not been identified in Arabidopsis (Arabidopsis thaliana; Heacock et al., 2004; Kuo et al., 2006) and, to our knowledge, has not yet been investigated at a large scale for other plant species with full genome sequences available. Regarding Arabidopsis, the apparent lack of high subtelomeric recombination may reflect its small and simple subtelomeres, mirroring its small genome size and relative paucity of repetitive sequences (Heacock et al., 2004; Kuo et al., 2006).Repetitive sequences, such as satellite DNA and retroelements, constitute an important fraction of every eukaryotic genome and therefore constitute the environment in which genes are expressed. Satellite DNA can be defined as highly reiterated noncoding DNA sequences, organized as long arrays of head-to-tail linked repeats of 150- to 180-bp or 300- to 360-bp monomers located in the constitutive heterochromatin (Plohl et al., 2008). Despite their ubiquity in eukaryotic genomes, little is known about the mechanisms that allow these elements to accumulate. Early hypotheses considered them to be nonfunctional “selfish” or “junk” DNA segments that increase or decrease their frequency without any advantage or disadvantage for an organism (Ohno, 1972; Orgel and Crick, 1980). However, identification of satellite DNA at structurally important parts of chromosomes, such as centromeres, has suggested functional roles of satellite DNA (Ma and Jackson, 2006; Kawabe and Charlesworth, 2007). Satellite DNA can also be localized in knobs, which are cytologically visible regions of highly condensed chromatin (heterochromatin) that are distinct from pericentromeric regions in pachytene chromosomes (Fransz et al., 2000; Gaut et al., 2007; Lamb et al., 2007).The survival of most organisms depends on the presence of specific genetic systems that maintain diversity in order to respond to changing environments. Plants, like animals, are continually challenged by a large array of pathogens. To perceive and counter pathogen attack, plants have evolved disease resistance (R) genes. The largest class of R genes encodes proteins containing a central Nucleotide-Binding Site (NBS) domain, a C-terminal Leucine-Rich Repeat (LRR) domain, and a variable N-terminal domain. These R proteins detect the presence of disease-causing bacteria, oomycetes, fungi, nematodes, insects, and viruses by sensing either specific pathogen effector molecules produced during the infection process or key molecules in the plant cell that may be attacked by pathogen effectors (Dangl and McDowell, 2006). The evolution of new R genes serves to counteract the evolution of novel virulence factors from the pathogens (McDowell and Simon, 2008). Among this prevalent class of R gene, two subclasses, corresponding to two ancient lineages (Bai et al., 2002; Meyers et al., 2003; Ameline-Torregrosa et al., 2008), have been identified based on the N-terminal domain of the R protein: the Coiled-Coil (CC)-NBS-LRR (CNL) and the Toll-Interleukin receptor (TIR)-NBS-LRR (TNL). Genome studies have demonstrated that NBS-LRR (NL) sequences are abundant in any plant genome. For example, annotation of the Arabidopsis, rice (Oryza sativa), poplar (Populus trichocarpa), Medicago truncatula (Mt), grape (Vitis vinifera), Lotus japonicus (Lj), and papaya (Carica papaya) genomes identified at least 149, 480, 317, 333, 233, 229, and 55 genes encoding NL proteins, respectively (Bai et al., 2002; Meyers et al., 2003; Zhou et al., 2004; Tuskan et al., 2006; Velasco et al., 2007; Ameline-Torregrosa et al., 2008; Kohler et al., 2008; Ming et al., 2008; Sato et al., 2008). NL sequences are often located at complex loci (Smith et al., 2004), as exemplified by Arabidopsis, where two-thirds of them are organized in tightly linked clusters (Meyers et al., 2003; Leister, 2004; McDowell and Simon, 2006). Evolution of NL sequences in the Arabidopsis genome has been investigated according to their phylogenetic positions and physical locations. Although tandem duplications explain the origin of a large fraction of NLs, it seems that ectopic recombination has also played a role in Arabidopsis NL evolution, since mixed clusters comprising evolutionarily distant NL exist. Ectopic recombination is also evident when phylogenetically close R genes are physically dispersed on different chromosomes (Leister, 2004; McDowell and Simon, 2006). These results confirm pioneer macrosynteny studies between related monocot species suggesting the existence of NL movement in plant genomes. Indeed, extensive loss of collinearity between NL sequences between rice and barley (Hordeum vulgare), which diverged 50 million years ago (Mya), has suggested rapid reorganization of NL sequences (Leister et al., 1998; Leister, 2004). However, our knowledge of the molecular evolution of R genes remains limited due to the still small number of complete plant genome sequences available to date. Detailed comparative study across taxa at different evolutionary distances is needed to see how R gene clusters evolve at various time scales.Legumes (Fabaceae) constitute the third largest family of flowering plants and represent the second most important family of agronomically important plants after Poaceae (Graham and Vance, 2003). As a result of recent sequencing efforts, legumes are one of the few plant families with extensive genome sequences in different species, since the soybean (Glycine max [Gm]) genome sequence is complete (http://www.phytozome.net/soybean.php) and both Mt and Lj genome sequences are nearly complete (Young et al., 2005; Sato et al., 2008). Consequently, the legume family is extremely well adapted for comparative phylogenomic approaches, in which phylogenetic inference is combined with structural genomic analyses (Ammiraju et al., 2008). Common bean (Phaseolus vulgaris [Pv]) is the most important grain legume for direct human consumption (Broughton et al., 2003). Pv is a selfing species and has a small diploid genome (2n = 22) of 588 Mb (Bennett and Leitch, 1995). Conservation of genome macrostructure (macrosynteny) has been reported between several legumes, including common bean and the two model legume species Mt and Lj genomes (Zhu et al., 2005; Hougaard et al., 2008). However, the extent of gene order conservation at the DNA sequence level has not yet been evaluated within orthologous chromosome segments between Pv and the two model legume species.In the genome of common bean, many disease R genes are clustered at complex loci located at the ends (rather than the centers) of linkage groups (LGs; Vallejos et al., 2006; Geffroy et al., 2008). For example, Colletotrichum lindemuthianum Co-2 R specificity maps at one end of LG B11 (Adam-Blondon et al., 1994). Molecular analysis has revealed that this locus consists of a tandem array of CNL sequences (Geffroy et al., 1998; Creusot et al., 1999). Another CNL-rich region has been identified at the end of LG B4 in the vicinity of R specificities and R quantitative trait loci against a large selection of pathogens, including C. lindemuthianum, Uromyces appendiculatus, and the bacterium Pseudomonas syringae (Geffroy et al., 1998, 1999; Miklas et al., 2006). Recently, fluorescence in situ hybridization (FISH) analysis revealed that this complex R cluster is located in the subtelomeric region of the short arm of chromosome 4 and includes two knobs (Geffroy et al., 2009). In a sequencing effort focused on CNL sequences, we have previously identified 17 CNL sequences of the B4 locus (referred to as B4-CNL) from Pv genotype BAT93 (Ferrier Cana et al., 2003, 2005; Geffroy et al., 2009). In the BAT93 genotype, these B4-CNL sequences are located on both sides of the subterminal knob (Geffroy et al., 2009).To investigate the organization and the evolutionary origin of the subtelomeric B4 R gene cluster, we have sequenced approximately 650 kb of the Pv B4 R gene cluster, revealing that, in genotype BAT93, CNL are spread out in four subclusters, separated by non-CNL-encoding genes. This Pv sequence was then compared gene by gene with the sequenced portions of the three sequenced legume genomes, Mt, Lj, and Gm. Conserved microsynteny (conservation of local gene repertoire, order, and orientation) was observed, except for the CNL sequences, which appear to be completely absent in the corresponding regions of Mt and Lj. In this study, by combining genomics, phylogenetic, and cytogenetic approaches, we provide evidence that ectopic recombination in subtelomeric regions between nonhomologous chromosomes (4 and 11), involving a single CNL, gave rise to the Pv B4 R gene cluster. Chromosomal distribution of a new satellite DNA tandem repeat, referred to as khipu, suggests that ectopic recombination events in subtelomeric regions of bean nonhomologous chromosomes are frequent. Our results highlight the importance of ectopic recombination as an important evolutionary mechanism for the evolution of disease resistance genes.  相似文献   

9.
Different genes might be involved in Colletotrichum lindemuthianum resistance in leaves and stem of common bean. This work aimed to study the genetic mechanisms of the resistance in the leaf and stem in segregating populations from backcrosses involving resistant cultivar AN 910408 and susceptible cultivar Rudá inoculated with spore suspensions of C. lindemuthianum race 83. Our results indicate that two genes which interact epistatically, one dominant and one recessive, are involved in the genetic control of leaf anthracnose resistance. As for stem anthracnose resistance, two genes also epistatic, one dominant and one recessive, explain the resistance to C. lindemuthianum race 83. The recessive gene is the same for leaf and stem resistance; however, the dominant genes are distinct and independent from each other. The three independent resistance genes of AN 910408 observed in this work could be derived from Guanajuato 31.  相似文献   

10.
普通菜豆种质资源芽期抗旱性鉴定   总被引:7,自引:2,他引:7  
摘要:干旱是影响我国普通菜豆生产的主要因素之一,筛选芽期抗旱性种质资源,培育抗旱品种,有利于提高普通菜豆品种的出苗率和幼苗长势,对发展我国普通菜豆生产具有重要意义。本研究首先以4份普通菜豆种质为材料,检测了不同渗透势PEG6000溶液模拟旱胁迫下的发芽率和发芽势,确定了PEG6000溶液的最适渗透势为-0.7MPa(浓度为19.6%);以-0.7MPa的PEG6000溶液对121份普通菜豆种质进行芽期模拟旱胁迫,测定发芽率、发芽势、下胚轴长、胚根长、干重和鲜重等10项指标;通过主成分分析筛选出相对发芽率、相对发芽势、相对鲜重、相对干重、相对胚根长,相对总芽长,相对胚根/下胚轴指数、相对发芽指数、相对活力指数等9项指标可以有效评价普通菜豆的芽期抗旱性;利用隶属函数分析法对121份种质的芽期抗旱性进行综合评价,筛选出跃进豆(F0000156)、白扁豆(F0000613)等芽期抗旱性种质,为普通菜豆抗旱生理与机制研究、抗旱育种奠定了基础。  相似文献   

11.
Congenital anomalies of the kidney and urogenital tract (CAKUT) occur in approximately 0.5% of live births and represent the most frequent cause of end-stage renal disease in neonates and children. The genetic basis of CAKUT is not well defined. To understand more fully the genetic basis of one type of CAKUT, unilateral renal agenesis (URA), we are studying inbred ACI rats, which spontaneously exhibit URA and associated urogenital anomalies at an incidence of approximately 10%. URA is inherited as an incompletely dominant trait with incomplete penetrance in crosses between ACI and Brown Norway (BN) rats and a single responsible genetic locus, designated Renag1, was previously mapped to rat chromosome 14 (RNO14). The goals of this study were to fine map Renag1, identify the causal genetic variant responsible for URA, confirm that the Renag1 variant is the sole determinant of URA in the ACI rat, and define the embryologic basis of URA in this rat model. Data presented herein localize Renag1 to a 379 kilobase (kb) interval that contains a single protein coding gene, Kit (v-kit Hardy-Zukerman 4 feline sarcoma viral oncogene homolog); identify an endogenous retrovirus-derived long terminal repeat located within Kit intron 1 as the probable causal variant; demonstrate aberrant development of the nephric duct in the anticipated number of ACI rat embryos; and demonstrate expression of Kit and Kit ligand (Kitlg) in the nephric duct. Congenic rats that harbor ACI alleles at Renag1 on the BN genetic background exhibit the same spectrum of urogenital anomalies as ACI rats, indicating that Renag1 is necessary and sufficient to elicit URA and associated urogenital anomalies. These data reveal the first genetic link between Kit and URA and illustrate the value of the ACI rat as a model for defining the mechanisms and cell types in which Kit functions during urogenital development.  相似文献   

12.
以抗白粉病甜瓜品种MR1与感白粉病新疆地方品种新密1号为亲本,构建BC1P2和F2群体,研究白粉病菌Px1B(P.xanthii race 1B)的抗性遗传规律.以BC1P2与F2群体为试验材料,利用BSA(Bulked segregation analysis)结合分子标记技术发掘多态性信息,并开发分子标记进行抗性基...  相似文献   

13.
Khan  A.  Jalil  S.  Cao  H.  Sunusi  M.  Tsago  Y.  Chen  J.  Shi  C. H.  Jin  X. L. 《Russian Journal of Plant Physiology》2021,68(6):1069-1078
Russian Journal of Plant Physiology - Yellow leaf mutants are useful genetic variants to explore the mechanism of chloroplast development. In this study, we developed and characterized a new rice...  相似文献   

14.
The common bean (Phaseolus vulgaris L.) is the world’s most important legume for human consumption. Anthracnose (ANT; Colletotrichum lindemuthianum) and angular leaf spot (ALS; Pseudocercospora griseola) are complex diseases that cause major yield losses in common bean. Depending on the cultivar and environmental conditions, anthracnose and angular leaf spot infections can reduce crop yield drastically. This study aimed to estimate linkage disequilibrium levels and identify quantitative resistance loci (QRL) controlling resistance to both ANT and ALS diseases of 180 accessions of common bean using genome-wide association analysis. A randomized complete block design with four replicates was performed for the ANT and ALS experiments, with four plants per genotype in each replicate. Association mapping analyses were performed for ANT and ALS using a mixed linear model approach implemented in TASSEL. A total of 17 and 11 significant statistically associations involving SSRs were detected for ANT and ALS resistance loci, respectively. Using SNPs, 21 and 17 significant statistically associations were obtained for ANT and angular ALS, respectively, providing more associations with this marker. The SSR-IAC167 and PvM95 markers, both located on chromosome Pv03, and the SNP scaffold00021_89379, were associated with both diseases. The other markers were distributed across the entire common bean genome, with chromosomes Pv03 and Pv08 showing the greatest number of loci associated with ANT resistance. The chromosome Pv04 was the most saturated one, with six markers associated with ALS resistance. The telomeric region of this chromosome showed four markers located between approximately 2.5 Mb and 4.4 Mb. Our results demonstrate the great potential of genome-wide association studies to identify QRLs related to ANT and ALS in common bean. The results indicate a quantitative and complex inheritance pattern for both diseases in common bean. Our findings will contribute to more effective screening of elite germplasm to find resistance alleles for marker-assisted selection in breeding programs.  相似文献   

15.
Resistance (R) genes containing nucleotide-binding site (NBS)-leucine rich repeats (LRR) are the most prevalent types of R gene in plants. The objective of this study was to develop PCR-based R-gene analog polymorphism (RGAP) markers for common bean (Phaseolus vulgaris L). Twenty degenerate primers were designed from the conserved kinase-1a (GVGKTT) and hydrophobic domains (GLPLAL) of known NBS-LRR type R-genes and from EST databases. Sixty-six of the 100 primer combinations tested yielded polymorphism. Thirty-two RGAP markers were mapped in the BAT 93/Jalo EEP558 core mapping population for common bean. The markers mapped to 10 of 11 linkage groups with a strong tendency for clustering. In addition, the RGAP markers co-located, on six linkage groups, with 15 resistance gene analogs (RGAs) that were previously mapped in other populations of common bean. The distance between the priming sites in NBS-LRR type R-genes is around 500 bp. Of the 32 RGAP markers, 19 had sizes larger and 13 less than 500 bp. RGAP markers mapped close to known R-genes on B11, and to QTLs for resistance on B1, B2, B6, B7, B8, B10, and B11. RGAP appears to provide a useful marker technique for tagging and mapping R-genes in segregating common bean populations, discovery of candidate genes underlying resistance QTL, and future cloning of R-genes in common bean.  相似文献   

16.
普通小麦Qz180中一个抗条锈病基因的分子作图   总被引:3,自引:0,他引:3  
普通小麦(Triticum aestivum L.)材料Qz180具有良好的抗条锈病特性,经基因推导发现其含有一个优良的抗条锈病的基因,暂定名为YrQz.用Qz180与感病材料铭贤169和WL1分别杂交构建了两个F2群体,用条中30号条锈菌小种对这两个群体进行的抗性测验表明,YrQz为显性单基因遗传.通过SSR和AFLP结合BSA的方法对这个基因进行了分子作图,结果鉴定出与YrQz连锁的2个SSR标记和2个AFLP标记.根据SSR标记的染色体位置,该基因被定位在2B染色体的长臂上,位于两个SSR位点Xgwm388和Xgwm526之间;两个AFLP标记P35M48(452)和P36M61(163)分别位于该基因的两侧,遗传距离分别为3.4 cM和4.1cM.  相似文献   

17.
普通小麦Qz180中一个抗条锈病基因的分子作图(英文)   总被引:2,自引:0,他引:2  
普通小麦(Triticum aestivum L.)材料Qz180具有良好的抗条锈病特性,经基因推导发现其含有一个优良的抗条锈病的基因,暂定名为YrQz。用Qz180与感病材料铭贤169和WL1分别杂交构建了两个F_2群体,用条中30号条锈菌小种对这两个群体进行的抗性测验表明,YrQz为显性单基因遗传。通过SSR和AFLP结合BSA的方法对这个基因进行了分子作图,结果鉴定出与YrQz连锁的2个SSR标记和2个AFLP标记。根据SSR标记的染色体位置,该基因被定位在2B染色体的长臂上,位于两个SSR位点Xgwm388和Xgwm526之间;两个AFLP标记P35M48(452)和P36M61(163)分别位于该基因的两侧,遗传距离分别为3.4cM和4.1cM。  相似文献   

18.
Fine Mapping of RppP25, a Southern Rust Resistance Gene in Maize   总被引:1,自引:0,他引:1  
Southern rust (Puccinia polysora Underw.) is a major disease that can cause severe yield losses in maize (Zea mays L.). In our previous study, a major gene RppP25 that confers resistance to southern rust was identified in inbred line P25. Here, we report the fine mapping and candidate gene analysis of RppP25 from the near-isogenic line F939, which harbors RppP25 in the genetic background of the susceptible inbred line F349. The inheritance of resistance to southern rust was investigated in the BC1F1 and BC3F1 populations, which were derived from a cross between F939 and F349 (as the recurrent parent). The 1:1 segregation ratio of resistance to susceptible plants in these two populations indicated that the resistance is controlled by a single dominant gene. Ten markers, including three simple sequence repeat (SSR) markers and seven insertion/deletion (InDel) markers, were developed in the RppP25 region. RppP25 was delimited to an interval between P091 and M271, with an estimated length of 40 kb based on the physical map of B73. In this region, a candidate gene was identified that was predicted to encode a putative nucleotide-binding site leucine-rich repeat (NBS-LRR) protein. Two co-segregated markers will aid in pyramiding diverse southern rust resistance alleles into elite materials, and thereby improve southern rust resistance worldwide.  相似文献   

19.
The rice bacterial blight resistance gene, Xa2, confers resistance to T7147 of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. It is located on the long arm of chromosome 4. Here, we report the fine mapping of Xa2 by genetic recombination analysis with simple sequence repeat (SSR) markers according to the genome sequence. Two F2 populations are constructed to localize Xa2. In a primary analysis with 136 random F2 plants of Zhenzhuai/IRBB2, it was found that Xa2 was located in approximately 20 cM region. To accurately determine the locus of Xa2, 120 new SSR markers were developed in this region by screening the sequence. Twelve new SSR markers were successfully used in genetic recombination analysis in IR24/IRBB2 population, while 20 in ZZA/IRBB2 population. We found that the nearest SSR markers to Xa2 are HZR950-5 and HZR970-4, which cover approximately 190-kb region. The sequence analysis of this 190-kb region revealed the presence of a homologous sequence of leucine rich repeat (LRR)-kinase. These results are very useful for transferring or pyramiding Xa2 by molecular marker-assistant selection in rice breeding programs and for cloning Xa2 by map-based cloning in combination with a long-range PCR strategy. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

20.
干旱是限制向日葵生长发育的重要因素之一。为探究向日葵苗期抗旱性分子机制,该研究以向日葵K55与K58杂交构建的150个F7重组自交系群体为材料,对其在正常浇水和干旱胁迫两种水分处理条件下的叶片相对电导率、叶绿素含量、叶面积、叶片相对含水量、根长进行表型测定,利用前期建立的SNP、SSR分子标记遗传连锁图谱,通过复合区间作图法对5个抗旱相关的性状进行QTL定位。结果表明:(1)共定位到向日葵QTL位点11个,其中正常浇水条件下5个,干旱胁迫条件下6个,表型贡献率为0.768%~7.547%,且5号连锁群上定位到的QTL位点最多(3个)。(2)QTL置信区间内共筛选到62个与干旱相关的候选基因,包括位于qLA 8 1上的rna23019、rna23004、rna22661、rna22193、rna23294、rna22783和位于qCC 13 1上的rna40140,这些基因可作为后续基因克隆及功能研究的重点候选基因。该研究结果为向日葵抗旱性研究及其遗传改良奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号