首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2009 pandemic influenza A (H1N1) virus exhibits hemagglutinin protein sequence homology with the 1918 pandemic influenza virus. We found that human monoclonal antibodies recognized the Sa antigenic site on the head domains of both 1918 and 2009 hemagglutinins, a site that is hypervariable due to immune selection. These antibodies exhibited high potency against the 2009 virus in vitro, and one exerted a marked therapeutic effect in vivo.In March and April of 2009, an outbreak of a swine-origin novel H1N1 influenza A virus began in Mexico (2). As of 29 November 2009, worldwide, more than 207 countries and overseas territories or communities have reported laboratory-confirmed cases of 2009 A (H1N1), including at least 8,768 deaths. (http://www.who.int/csr/don/2009_12_04/en/index.html). The hemagglutinin (HA) gene of the 2009 A (H1N1) strain has been present in classical swine H1N1 viruses that have circulated in pigs at least since the discovery by Shope in the 1930s (Table 10, 11, 16). In contrast, the HA of human H1N1 influenza viruses circulating from 1918 to 1957 and from 1977 to present drifted progressively away from the 1918 virus HA (Table (Table1d)1d) (8, 14). Elderly subjects born prior to 1918 were found to have serum neutralizing antibody titers to the A/California/04/2009 (CA04) virus (5, 6).

TABLE 1.

Alignment of the amino acids in site Sa of the HA of representative swine or human influenza viruses from the 20th centurya
Open in a separate window
Open in a separate windowaDashes in the table indicate amino acid identity with the 1918 pandemic virus sequence, shown in the first row. *, K indicates the K166 amino acid that is most frequently mutated in monoclonal-antibody-resistant mutant viruses selected with site Sa-specific neutralizing antibody 2B12.Four major antigenic areas have been identified on the influenza virus HA protein, designated sites Sa, Sb, Ca, and Cb (1, 4). The Sa site of mid-century influenza virus H1 strains differs from that of both the 1918 and 2009 pandemic influenza viruses, but amino acid sequences in the HA protein Sa sites of these two viruses are nearly identical (Table 20). Three of these MAbs, designated MAbs 2D1, 2B12, and 4D20, bind the Sa antigenic site. In this paper, we report that the 1918 virus-specific MAbs 2D1 and 2B12 bind and inhibit the 2009 A (H1N1) virus in vitro and that MAb 2D1 also exhibited a marked therapeutic effect in vivo.  相似文献   

2.
The hemagglutinin (HA) protein is a major virulence determinant for the 1918 pandemic influenza virus; however, it encodes no known virulence-associated determinants. In comparison to seasonal influenza viruses of lesser virulence, the 1918 H1N1 virus has fewer glycosylation sequons on the HA globular head region. Using site-directed mutagenesis, we found that a 1918 HA recombinant virus, of high virulence, could be significantly attenuated in mice by adding two additional glycosylation sites (asparagine [Asn] 71 and Asn 286) on the side of the HA head. The 1918 HA recombinant virus was further attenuated by introducing two additional glycosylation sites on the top of the HA head at Asn 142 and Asn 172. In a reciprocal experimental approach, deletion of HA glycosylation sites (Asn 142 and Asn 177, but not Asn 71 and Asn 104) from a seasonal influenza H1N1 virus, A/Solomon Islands/2006 (SI/06), led to increased virulence in mice. The addition of glycosylation sites to 1918 HA and removal of glycosylation sites from SI/06 HA imposed constraints on the theoretical structure surrounding the glycan receptor binding sites, which in turn led to distinct glycan receptor binding properties. The modification of glycosylation sites for the 1918 and SI/06 viruses also caused changes in viral antigenicity based on cross-reactive hemagglutinin inhibition antibody titers with antisera from mice infected with wild-type or glycan mutant viruses. These results demonstrate that glycosylation patterns of the 1918 and seasonal H1N1 viruses directly contribute to differences in virulence and are partially responsible for their distinct antigenicity.  相似文献   

3.
Besides the classical respiratory and systemic symptoms, unusual complications of influenza A infection in humans involve the skeletal muscles. Numerous cases of acute myopathy and/or rhabdomyolysis have been reported, particularly following the outbreak of pandemic influenza A(H1N1) in 2009. The pathogenesis of these influenza-associated myopathies (IAM) remains unkown, although the direct infection of muscle cells is suspected. Here, we studied the susceptibility of cultured human primary muscle cells to a 2009 pandemic and a 2008 seasonal influenza A(H1N1) isolate. Using cells from different donors, we found that differentiated muscle cells (i. e. myotubes) were highly susceptible to infection by both influenza A(H1N1) isolates, whereas undifferentiated cells (i. e. myoblasts) were partially resistant. The receptors for influenza viruses, α2-6 and α2-3 linked sialic acids, were detected on the surface of myotubes and myoblasts. Time line of viral nucleoprotein (NP) expression and nuclear export showed that the first steps of the viral replication cycle could take place in muscle cells. Infected myotubes and myoblasts exhibited budding virions and nuclear inclusions as observed by transmission electron microscopy and correlative light and electron microscopy. Myotubes, but not myoblasts, yielded infectious virus progeny that could further infect naive muscle cells after proteolytic treatment. Infection led to a cytopathic effect with the lysis of muscle cells, as characterized by the release of lactate dehydrogenase. The secretion of proinflammatory cytokines by muscle cells was not affected following infection. Our results are compatible with the hypothesis of a direct muscle infection causing rhabdomyolysis in IAM patients.  相似文献   

4.
Natural killer (NK) cells are the effectors of innate immunity and are recruited into the lung 48 h after influenza virus infection. Functional NK cell activation can be triggered by the interaction between viral hemagglutinin (HA) and natural cytotoxicity receptors NKp46 and NKp44 on the cell surface. Recently, novel subtypes of influenza viruses, such as H5N1 and 2009 pandemic H1N1, transmitted directly to the human population, with unusual mortality and morbidity rates. Here, the human NK cell responses to these viruses were studied. Differential activation of heterogeneous NK cells (upregulation of CD69 and CD107a and gamma interferon [IFN-γ] production as well as downregulation of NKp46) was observed following interactions with H5N1, 1918 H1N1, and 2009 H1N1 pseudotyped particles (pps), respectively, and the responses of the CD56dim subset predominated. Much stronger NK activation was triggered by H5N1 and 1918 H1N1 pps than by 2009 H1N1 pps. The interaction of pps with NK cells and subsequent internalization were mediated by NKp46 partially. The NK cell activation by pps showed a dosage-dependent manner, while an increasing viral HA titer attenuated NK activation phenotypes, cytotoxicity, and IFN-γ production. The various host innate immune responses to different influenza virus subtypes or HA titers may be associated with disease severity.Influenza is a contagious, acute respiratory disease caused by influenza viruses and has caused substantial human morbidity and mortality over the past century (24, 27). The 1918-1919 pandemic caused by influenza virus type A H1N1 was responsible for an estimated 50 million deaths (21). In recent years, novel subtype influenza viruses, such as H5N1 and the 2009 pandemic H1N1, have been transmitted directly from animals to the human population. These infections were characterized by unusually high rates of severe respiratory disease and mortality among young patients (8, 18). Various genetic shifts have occurred in these viruses, allowing them to evade the host protective effects of specific antihemagglutinin (HA) or antineuraminidase (NA) antibodies (27). Therefore, host innate immunity in the early phase of infection, which includes a variety of pattern recognition molecules, inflammatory cytokines, and immune cells, such as macrophages and natural killer (NK) cells, plays a critical role in host defense.NK cells are bone marrow-derived, large, granular lymphocytes and are key effector cells in innate immunity for host defense against invading infectious pathogens and malignant transformation through cytolytic activity and production of cytokines, such as gamma interferon (IFN-γ) (10, 28, 43, 51). In humans, NK cells account for approximately 10% of all blood lymphocytes and are identified by their expression of the CD56 surface antigen and their lack of CD3. Two distinct subsets of human NK cells have been defined according to the cell surface density of CD56 expression (10). The majority (∼90% in blood) of human NK cells are CD56dim, and a minor population (∼10% in blood) is CD56bright. These NK subsets are functionally distinct, with the immunoregulatory CD56bright cells producing abundant cytokines and the cytotoxic CD56dim cells probably functioning as efficient effectors of natural and antibody-dependent target cell lysis (11).Many lines of evidence suggest that NK cells can be functionally activated by the interaction between natural cytotoxicity receptors (NCRs) on the cell surface and influenza virus HA protein or stress-induced proteins from infected cells (2, 13, 33, 44, 46). On the other hand, influenza virus is able to evade host immunity by infecting NK cells and triggering cell apoptosis or by attenuating NK cell lysis of H3N2-infected cells, owing to alterations in HA binding properties (35, 39). The infiltration of macrophages and lymphocytes into the lung and strong inflammatory responses were detected in H5N1 and the 1918 and 2009 pandemic H1N1 infections. Nevertheless, little is known about the precise roles of NK cells in these infections.In this study, the responses of NK cells to 1918 H1N1, 2009 H1N1, and H5N1 influenza A viruses were evaluated using three strains of influenza A virus pseudotyped particles (pps). Our findings may aid in understanding the pathogenicity of influenza viruses and its correlation with clinical severity.  相似文献   

5.
6.
Since dendritic cells may play a key role in defense against influenza virus infection, we examined the effects of recombinant hemagglutinin (HA) proteins derived from mouse-adapted H1N1 (A/WSN/1933), swine-origin 2009 pandemic H1N1 (A/Texas/05/2009), and highly pathogenic avian influenza H5N1 (A/Thailand/KAN-1/2004) viruses on mouse myeloid dendritic cells (mDCs). The results reveal that tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12) p70, and major histocompatibility complex class II (MHC-II) expression was increased in mDCs after treatment with recombinant HA proteins of H1N1 and H5N1. The specificity of recombinant HA treatments for mDC activation was diminished after proteinase K digestion. HA apparently promotes mDC maturation by enhancing CD40 and CD86 expression and suppressing endocytosis. No significant differences in mDC activation were observed among recombinant proteins of H1N1 and H5N1. The stimulation of mDCs by HA proteins of H1N1 and H5N1 was completely MyD88 dependent. These findings may provide useful information for the development of more-effective influenza vaccines.Influenza viruses trigger seasonal epidemics or pandemics of contagious diseases with mild to severe consequences in human and poultry populations worldwide (28). Members of the Orthomyxoviridae family, influenza viruses consist of single-stranded, eight-segment, negative-sense genomic RNAs, helical viral ribonucleoprotein (RNP) complexes (RNA segments, NP, PB2, PB1, and PA) and four viral envelope proteins (hemagglutinin [HA], neuraminidase [NA], and M1 and M2 matrix proteins). Type A influenza viruses are further classified into various serotypes based on the antigenic characteristics of HA and NA glycoproteins (14).In 2009, a swine-origin H1N1 strain emerged from the genetic reassortants of existing human, avian, and swine influenza viruses, resulting in a global pandemic marked by symptoms more severe than those associated with seasonal influenza virus (3, 24). According to comparative pathology in macaque monkeys, H5N1 induces greater cytokinemia, tissue damage, and interference with immune regulatory mechanisms than H1N1 infection (2). The HA spike protein of influenza virus is believed to play important roles in viral receptor binding, fusion, transmission, host range restriction, virulence, and pathogenesis (13, 27-30).Dendritic cells (DCs), considered the most potent professional antigen-presenting cells, serve as links between innate and adaptive immunity (31). Upon encountering microbial pathogens, endogenous danger signals, or inflammatory mediators, DCs mature and elicit rapid and short-lived innate immune responses before migrating to secondary lymphoid organs and enhancing adaptive immunity (17). Two major subsets of DCs are recognized in mice and humans: (i) myeloid DCs (mDCs, also called conventional DCs), which participate most directly in antigen presentation and activation of naïve T cells, and (ii) plasmacytoid DCs (pDCs), which produce type I interferons in response to viral infection (16, 42) and are also capable of inducing immunotolerance under some conditions (9). mDCs and pDCs also comprise different heterologous subsets, with unique localizations, phenotypes, and functions (36). Due to their key role in immune regulation, DCs have been developed for immunotherapeutic agents or prophylactic or therapeutic vaccines for cancer, infectious diseases, and immune system-related diseases (32, 34).DCs are essential in controlling the innate and adaptive immune responses against influenza virus infection (21). Viral RNA is recognized by various pattern recognition receptors (PRRs), including RIG-I-like receptors (RLRs), Toll-like receptors (TLRs), and nucleotide oligomerization domain (NOD)-like receptors (NLRs). TLRs play an especially important role in detecting virus invasion and activating DCs (18, 35). However, the mechanisms causing DC activation and maturation in response to influenza viruses are not clear. HA has been described as playing an important role in modulating influenza virus virulence and host immune responses (29). In this study, we examined the effects of several recombinant HA proteins (rHAs) derived from rHA of H1N1 (rH1HA) (A/WSN/1933) and (A/Texas/05/2009) and rHA of H5N1 (rH5HA) (A/Thailand/KAN-1/2004) viruses on the activation and maturation of the mDC subset derived from mouse bone marrow.  相似文献   

7.
Influenza viruses resistant to antiviral drugs emerge frequently. Not surprisingly, the widespread treatment in many countries of patients infected with 2009 pandemic influenza A (H1N1) viruses with the neuraminidase (NA) inhibitors oseltamivir and zanamivir has led to the emergence of pandemic strains resistant to these drugs. Sporadic cases of pandemic influenza have been associated with mutant viruses possessing a histidine-to-tyrosine substitution at position 274 (H274Y) in the NA, a mutation known to be responsible for oseltamivir resistance. Here, we characterized in vitro and in vivo properties of two pairs of oseltaimivir-sensitive and -resistant (possessing the NA H274Y substitution) 2009 H1N1 pandemic viruses isolated in different parts of the world. An in vitro NA inhibition assay confirmed that the NA H274Y substitution confers oseltamivir resistance to 2009 H1N1 pandemic viruses. In mouse lungs, we found no significant difference in replication between oseltamivir-sensitive and -resistant viruses. In the lungs of mice treated with oseltamivir or even zanamivir, 2009 H1N1 pandemic viruses with the NA H274Y substitution replicated efficiently. Pathological analysis revealed that the pathogenicities of the oseltamivir-resistant viruses were comparable to those of their oseltamivir-sensitive counterparts in ferrets. Further, the oseltamivir-resistant viruses transmitted between ferrets as efficiently as their oseltamivir-sensitive counterparts. Collectively, these data indicate that oseltamivir-resistant 2009 H1N1 pandemic viruses with the NA H274Y substitution were comparable to their oseltamivir-sensitive counterparts in their pathogenicity and transmissibility in animal models. Our findings highlight the possibility that NA H274Y-possessing oseltamivir-resistant 2009 H1N1 pandemic viruses could supersede oseltamivir-sensitive viruses, as occurred with seasonal H1N1 viruses.  相似文献   

8.
While few children and young adults have cross-protective antibodies to the pandemic H1N1 2009 (pdmH1N1) virus, the illness remains mild. The biological reasons for these epidemiological observations are unclear. In this study, we demonstrate that the bulk memory cytotoxic T lymphocytes (CTLs) established by seasonal influenza viruses from healthy individuals who have not been exposed to pdmH1N1 can directly lyse pdmH1N1-infected target cells and produce gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Using influenza A virus matrix protein 1 (M158-66) epitope-specific CTLs isolated from healthy HLA-A2+ individuals, we further found that M158-66 epitope-specific CTLs efficiently killed both M158-66 peptide-pulsed and pdmH1N1-infected target cells ex vivo. These M158-66-specific CTLs showed an effector memory phenotype and expressed CXCR3 and CCR5 chemokine receptors. Of 94 influenza A virus CD8 T-cell epitopes obtained from the Immune Epitope Database (IEDB), 17 epitopes are conserved in pdmH1N1, and more than half of these conserved epitopes are derived from M1 protein. In addition, 65% (11/17) of these epitopes were 100% conserved in seasonal influenza vaccine H1N1 strains during the last 20 years. Importantly, seasonal influenza vaccination could expand the functional M158-66 epitope-specific CTLs in 20% (4/20) of HLA-A2+ individuals. Our results indicated that memory CTLs established by seasonal influenza A viruses or vaccines had cross-reactivity against pdmH1N1. These might explain, at least in part, the unexpected mild pdmH1N1 illness in the community and also might provide some valuable insights for the future design of broadly protective vaccines to prevent influenza, especially pandemic influenza.Since its first identification in North America in April 2009, the novel pandemic H1N1 2009 (pdmH1N1) virus has been spreading in humans worldwide, giving rise to the first pandemic in the 21st century (13, 18). The pdmH1N1 virus contains a unique gene constellation, with its NA and M gene segments being derived from the Eurasian swine lineage while the other gene segments originated from the swine triple-reassortant H1N1 lineage. The triple-reassortant swine viruses have in turn derived the HA, NP, and NS gene segments from the classical swine lineage (20). The 1918 pandemic virus gave rise to both the seasonal influenza H1N1 and the classical swine H1N1 virus lineages (41). Evolution in different hosts during the subsequent 90 years has led to increasing antigenic differences between recent seasonal H1N1 viruses and swine H1 viruses (42). Thus, younger individuals have no antibodies that cross neutralize pdmH1N1, while those over 65 years of age are increasingly likely to have cross-neutralizing antibodies to pdmH1N1 (10, 25).Currently available seasonal influenza vaccines do not induce cross-reactive antibodies against this novel virus in any age group (10, 25). In animal models, it has been shown that pdmH1N1 replicated more efficiently and caused more severe pathological lesions than the current seasonal influenza virus (28). However, most patients with pdmH1N1 virus infection show a mild illness comparable to seasonal influenza (9, 42). The incidence of severe cases caused by pdmH1N1 was not significantly higher than that caused by human seasonal influenza viruses (43). These findings imply that seasonal influenza A virus-specific memory T cells preexisting in previously infected individuals may have cross-protection to this novel pdmH1N1.Cross-reactivity of influenza A virus-specific T-cell immunity against heterosubtypic strains which are serologically distinct has been demonstrated (5, 29, 33, 47). Humans who have not been exposed to avian influenza A (H5N1) virus do have cross-reactive memory CD4 and CD8 T cells to a wide range of H5N1 peptides (33, 47). More recently, one study also showed that some seasonal influenza A virus-specific memory T cells in individuals without exposure to prior pdmH1N1 infection can recognize pdmH1N1 (24). However, the results in most of these studies were determined by the gamma interferon (IFN-γ) responses to influenza virus peptides. Although the recalled IFN-γ response is commonly used to detect memory CD4 and CD8 T cells, the activated T cells that bind major histocompatibility complex (MHC)-presented peptide are not necessarily capable of lysing the target cells (6). In addition, the peptides, but not the whole virus, may not be able to fully represent the human cross-response against the virus as a whole. Therefore, in addition to cytokine production, the demonstration of direct antigen-specific cytotoxicity of cytotoxic T lymphocytes (CTLs) against both peptide-pulsed and virus-infected target cells is needed for better understanding of human CTL responses against pdmH1N1 virus.In this study, using bulk memory CTLs and epitope-specific CTLs established by seasonal influenza A viruses and epitope-specific peptide from healthy individuals, respectively, we evaluated their cross-cytotoxicity and cytokine responses to pdmH1N1. We also examined the expression of chemokine receptors CXCR3 and CCR5, which could help CTLs to migrate to the site of infection. In addition, to understand whether the seasonal influenza vaccines have benefit for people who have not been exposed to pdmH1N1, we further examined the ability of seasonal influenza vaccines to induce the conserved M158-66 epitope-specific CTLs in HLA-A2-seropositive healthy individuals.  相似文献   

9.
Limited antiviral compounds are available for the control of influenza, and the emergence of resistant variants would further narrow the options for defense. The H275Y neuraminidase (NA) mutation, which confers resistance to oseltamivir carboxylate, has been identified among the seasonal H1N1 and 2009 pandemic influenza viruses; however, those H275Y resistant variants demonstrated distinct epidemiological outcomes in humans. Specifically, dominance of the H275Y variant over the oseltamivir-sensitive viruses was only reported for a seasonal H1N1 variant during 2008-2009. Here, we systematically analyze the effect of the H275Y NA mutation on viral fitness and transmissibility of A(H1N1)pdm09 and seasonal H1N1 influenza viruses. The NA genes from A(H1N1)pdm09 A/California/04/09 (CA04), seasonal H1N1 A/New Caledonia/20/1999 (NewCal), and A/Brisbane/59/2007 (Brisbane) were individually introduced into the genetic background of CA04. The H275Y mutation led to reduced NA enzyme activity, an increased Km for 3′-sialylactose or 6′-sialylactose, and decreased infectivity in mucin-secreting human airway epithelial cells compared to the oseltamivir-sensitive wild-type counterparts. Attenuated pathogenicity in both RG-CA04NA-H275Y and RG-CA04 × BrisbaneNA-H275Y viruses was observed in ferrets compared to RG-CA04 virus, although the transmissibility was minimally affected. In parallel experiments using recombinant Brisbane viruses differing by hemagglutinin and NA, comparable direct contact and respiratory droplet transmissibilities were observed among RG-NewCalHA,NA, RG-NewCalHA,NA-H275Y, RG-BrisbaneHA,NA-H275Y, and RG-NewCalHA × BrisbaneNA-H275Y viruses. Our results demonstrate that, despite the H275Y mutation leading to a minor reduction in viral fitness, the transmission potentials of three different antigenic strains carrying this mutation were comparable in the naïve ferret model.  相似文献   

10.
Influenza A viruses, including H1N1 and H5N1 subtypes, pose a serious threat to public health. Neuraminidase (NA)-related immunity contributes to protection against influenza virus infection. Antibodies to the N1 subtype provide protection against homologous and heterologous H1N1 as well as H5N1 virus challenge. Since neither the strain-specific nor conserved epitopes of N1 have been identified, we generated a panel of mouse monoclonal antibodies (MAbs) that exhibit different reactivity spectra with H1N1 and H5N1 viruses and used these MAbs to map N1 antigenic domains. We identified 12 amino acids essential for MAb binding to the NA of a recent seasonal H1N1 virus, A/Brisbane/59/2007. Of these, residues 248, 249, 250, 341, and 343 are recognized by strain-specific group A MAbs, while residues 273, 338, and 339 are within conserved epitope(s), which allows cross-reactive group B MAbs to bind the NAs of seasonal H1N1 and the 1918 and 2009 pandemic (09pdm) H1N1 as well as H5N1 viruses. A single dose of group B MAbs administered prophylactically fully protected mice against lethal challenge with seasonal and 09pdm H1N1 viruses and resulted in significant protection against the highly pathogenic wild-type H5N1 virus. Another three N1 residues (at positions 396, 397, and 456) are essential for binding of cross-reactive group E MAbs, which differ from group B MAbs in that they do not bind 09pdm H1N1 viruses. The identification of conserved N1 epitopes reveals the molecular basis for NA-mediated immunity between H1N1 and H5N1 viruses and demonstrates the potential for developing broadly protective NA-specific antibody treatments for influenza.  相似文献   

11.
Human disease caused by highly pathogenic avian influenza (HPAI) H5N1 can lead to a rapidly progressive viral pneumonia leading to acute respiratory distress syndrome. There is increasing evidence from clinical, animal models and in vitro data, which suggests a role for virus-induced cytokine dysregulation in contributing to the pathogenesis of human H5N1 disease. The key target cells for the virus in the lung are the alveolar epithelium and alveolar macrophages, and we have shown that, compared to seasonal human influenza viruses, equivalent infecting doses of H5N1 viruses markedly up-regulate pro-inflammatory cytokines in both primary cell types in vitro. Whether this H5N1-induced dysregulation of host responses is driven by qualitative (i.e activation of unique host pathways in response to H5N1) or quantitative differences between seasonal influenza viruses is unclear. Here we used microarrays to analyze and compare the gene expression profiles in primary human macrophages at 1, 3, and 6 h after infection with H5N1 virus or low-pathogenic seasonal influenza A (H1N1) virus. We found that host responses to both viruses are qualitatively similar with the activation of nearly identical biological processes and pathways. However, in comparison to seasonal H1N1 virus, H5N1 infection elicits a quantitatively stronger host inflammatory response including type I interferon (IFN) and tumor necrosis factor (TNF)-α genes. A network-based analysis suggests that the synergy between IFN-β and TNF-α results in an enhanced and sustained IFN and pro-inflammatory cytokine response at the early stage of viral infection that may contribute to the viral pathogenesis and this is of relevance to the design of novel therapeutic strategies for H5N1 induced respiratory disease.  相似文献   

12.

Background

Cross-immunity between seasonal and pandemic A/H1N1 influenza viruses remains uncertain. In particular, the extent that previous infection or vaccination by seasonal A/H1N1 viruses can elicit protective immunity against pandemic A/H1N1 is unclear.

Methodology/Principal Findings

Neutralizing titers against seasonal A/H1N1 (A/Brisbane/59/2007) and against pandemic A/H1N1 (A/California/04/2009) were measured using an HIV-1-based pseudovirus neutralization assay. Using this highly sensitive assay, we found that a large fraction of subjects who had never been exposed to pandemic A/H1N1 express high levels of pandemic A/H1N1 neutralizing titers. A significant correlation was seen between neutralization of pandemic A/H1N1 and neutralization of a standard seasonal A/H1N1 strain. Significantly higher pandemic A/H1N1 neutralizing titers were measured in subjects who had received vaccination against seasonal influenza in 2008–2009. Higher pandemic neutralizing titers were also measured in subjects over 60 years of age.

Conclusions/Significance

Our findings reveal that the extent of protective cross-immunity between seasonal and pandemic A/H1N1 influenza viruses may be more important than previously estimated. This cross-immunity could provide a possible explanation of the relatively mild profile of the recent influenza pandemic.  相似文献   

13.
14.
A total of 100 H1N1 flu real-time-PCR positive throat swabs collected from fever patients in Zhejiang, Hubei and Guangdong between June and November 2009, were provided by local CDC laboratories. After MDCK cell culture, 57 Influenza A Pandemic (H1N1) viruses were isolated and submitted for whole genome sequencing. A total of 39 HA sequences, 52 NA sequences, 36 PB2 sequences, 31 PB1 sequences, 40 PA sequences, 48 NP sequences, 51 MP sequences and 36 NS sequences were obtained, including 20 whole genome seq...  相似文献   

15.
The 1957 A/H2N2 influenza virus caused an estimated 2 million fatalities during the pandemic. Since viruses of the H2 subtype continue to infect avian species and pigs, the threat of reintroduction into humans remains. To determine factors involved in the zoonotic origin of the 1957 pandemic, we performed analyses on genetic sequences of 175 newly sequenced human and avian H2N2 virus isolates and all publicly available influenza virus genomes.  相似文献   

16.

Background

The mortality burden of the 2009 A/H1N1 pandemic remains unclear in many countries due to delays in reporting of death statistics. We estimate the age- and cause-specific excess mortality impact of the pandemic in France, relative to that of other countries and past epidemic and pandemic seasons.

Methods

We applied Serfling and Poisson excess mortality approaches to model weekly age- and cause-specific mortality rates from June 1969 through May 2010 in France. Indicators of influenza activity, time trends, and seasonal terms were included in the models. We also reviewed the literature for country-specific estimates of 2009 pandemic excess mortality rates to characterize geographical differences in the burden of this pandemic.

Results

The 2009 A/H1N1 pandemic was associated with 1.0 (95% Confidence Intervals (CI) 0.2–1.9) excess respiratory deaths per 100,000 population in France, compared to rates per 100,000 of 44 (95% CI 43–45) for the A/H3N2 pandemic and 2.9 (95% CI 2.3–3.7) for average inter-pandemic seasons. The 2009 A/H1N1 pandemic had a 10.6-fold higher impact than inter-pandemic seasons in people aged 5–24 years and 3.8-fold lower impact among people over 65 years.

Conclusions

The 2009 pandemic in France had low mortality impact in most age groups, relative to past influenza seasons, except in school-age children and young adults. The historical A/H3N2 pandemic was associated with much larger mortality impact than the 2009 pandemic, across all age groups and outcomes. Our 2009 pandemic excess mortality estimates for France fall within the range of previous estimates for high-income regions. Based on the analysis of several mortality outcomes and comparison with laboratory-confirmed 2009/H1N1 deaths, we conclude that cardio-respiratory and all-cause mortality lack precision to accurately measure the impact of this pandemic in high-income settings and that use of more specific mortality outcomes is important to obtain reliable age-specific estimates.  相似文献   

17.
18.
19.
20.

Background

The current spread of pandemic influenza A(H1N1)v virus necessitates an intensified surveillance of influenza virus infections worldwide. So far, in many laboratories routine diagnostics were limited to generic influenza virus detection only. To provide interested laboratories with real-time PCR assays for type and subtype identification, we present a bundle of PCR assays with which any human influenza A and B virus can be easily identified, including assays for the detection of the pandemic A(H1N1)v virus.

Principal Findings

The assays show optimal performance characteristics in their validation on plasmids containing the respective assay target sequences. All assays have furthermore been applied to several thousand clinical samples since 2007 (assays for seasonal influenza) and April 2009 (pandemic influenza assays), respectively, and showed excellent results also on clinical material.

Conclusions

We consider the presented assays to be well suited for the detection and subtyping of circulating influenza viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号