首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions.  相似文献   

2.
Recent evidence has questioned whether the Latitudinal Diversity Gradient (LDG), whereby species richness increases towards the Equator, results in higher rates of speciation in the tropics. Allowing for time heterogeneity in speciation rate estimates for over 60,000 angiosperm species, we found that the LDG does not arise from variation in speciation rates because lineages do not speciate faster in the tropics. These results were consistently retrieved using two other methods to test the association between occupancy of tropical habitats and speciation rates. Our speciation rate estimates were robust to the effects of both undescribed species and missing taxa. Overall, our results show that speciation rates follow an opposite pattern to global variation in species richness. Greater ecological opportunity in the temperate zones, stemming from less saturated communities, higher species turnover or greater environmental change, may ultimately explain these results.  相似文献   

3.
Are rates of evolution and speciation fastest where diversity is greatest – the tropics? A commonly accepted theory links the latitudinal diversity gradient to a speciation pump model whereby the tropics produce species at a faster rate than extra‐tropical regions. In this issue of Molecular Ecology, Botero et al. ( 2014 ) test the speciation pump model using subspecies richness patterns for more than 9000 species of birds and mammals as a proxy for incipient speciation opportunity. Rather than using latitudinal centroids, the authors investigate the role of various environmental correlates of latitude as drivers of subspecies richness. Their key finding points to environmental harshness as a positive predictor of subspecies richness. The authors link high subspecies richness in environmental harsh areas to increased opportunities for geographic range fragmentation and/or faster rates of trait evolution as drivers of incipient speciation. Because environmental harshness generally increases with latitude, these results suggest that opportunity for incipient speciation is lowest where species richness is highest. The authors interpret this finding as incompatible with the view of the tropics as a cradle of diversity. Their results are consistent with a growing body of evidence that reproductive isolation and speciation occur fastest at high latitudes.  相似文献   

4.
Understanding the mechanisms driving declines in biodiversity with latitude requires assessing if there are ecological limits to the number of species that can coexist, and if these limits vary with latitude, both of which are long‐standing and currently debated questions. Here I show that diversification of North American mammals across the Cenozoic Era slowed as diversity increased. This damping of diversification rates indicates ecological limitation, which occurred even though diversity fluctuated through time and was almost never at an equilibrium ‘saturation’ point. The estimated environmental carrying capacity was correlated with global temperature positively at high latitudes and negatively at low latitudes. Geographical variation in how standing diversity affects diversification rates could help explain the latitudinal biodiversity gradient as well as changes in the strength of the gradient over time.  相似文献   

5.
6.
7.
Inferring speciation rates from phylogenies   总被引:6,自引:0,他引:6  
Abstract It is possible to estimate the rate of diversification of clades from phylogenies with a temporal dimension. First, I present several methods for constructing confidence intervals for the speciation rate under the simple assumption of a pure birth process. I discuss the relationships among these methods in the hope of clarifying some fundamental theory in this area. Their performances are compared in a simulation study and one is recommended for use as a result. A variety of other questions that may, in fact, be the questions of primary interest (e.g., Has the rate of cladogenesis been declining?) are then recast as biological variants of the purely statistical question—Is the birth process model appropriate for my data? Seen in this way, a preexisting arsenal of statistical techniques is opened up for use in this area: in particular, techniques developed for the analysis of Poisson processes and the analysis of survival data. These two approaches start from different representations of the data—the branch lengths in the tree—and I explicitly relate the two. Aiming for a synoptic account of useful theory in this area, I briefly discuss some important results from the analysis of two distinct birth‐death processes: the one introduced into this area by Hey (1992) is refitted with some powerful statistical tools.  相似文献   

8.
Diversification rate is one of the most important metrics in macroecological and macroevolutionary studies. Here I demonstrate that diversification analyses can be misleading when researchers assume that diversity increases unbounded through time, as is typical in molecular phylogenetic studies. If clade diversity is regulated by ecological factors, then species richness may be independent of clade age and it may not be possible to infer the rate at which diversity arose. This has substantial consequences for the interpretation of many studies that have contrasted rates of diversification among clades and regions. Often, it is possible to estimate the total diversification experienced by a clade but not diversification rate itself. I show that the evidence for ecological limits on diversity in higher taxa is widespread. Finally, I explore the implications of ecological limits for a variety of ecological and evolutionary questions that involve inferences about speciation and extinction rates from phylogenetic data.  相似文献   

9.
Summary It was recently suggested that bird species which breed colonially might be under stronger sexual selection, have faster rates of evolution and might therefore speciate more rapidly than bird species which do not. If true, then colonial taxa should contain more species than non-colonial taxa, other things being equal. When similarity through common descent is accounted for, there is little evidence for an association between the number of species in a clade and whether it is colonial or not.  相似文献   

10.
The importance of ecologically mediated divergent selection in accelerating trait evolution has been poorly studied in the most species‐rich biome of the planet, the continental Neotropics. We performed macroevolutionary analyses of trait divergence and diversification rates across closely related pairs of Andean and Amazonian passerine birds, to assess whether the difference in elevational range separating species pairs – a proxy for the degree of ecological divergence – influences the speed of trait evolution and diversification rates. We found that elevational differentiation is associated with faster divergence of song frequency, a trait important for pre‐mating isolation, and several morphological traits, which may contribute to extrinsic post‐mating isolation. However, elevational differentiation did not increase recent speciation rates, possibly due to early bursts of diversification during the uplift of the eastern Andes followed by a slow‐down in speciation rate. Our results suggest that ecological differentiation may speed up trait evolution, but not diversification of Neotropical birds.  相似文献   

11.
Determinants of contemporary patterns of diversity, particularly those spanning extensive latitudinal gradients, are some of the most intensely debated issues in ecology. Recently, focus has shifted from a contemporary environmental perspective to a historical one in an attempt to better understand the construction of latitudinal gradients. Although the vast majority of research on historical mechanisms has focused on tropical niche conservatism (TNC), other historical scenarios could produce similar latitudinal gradients. Herein, I formalize predictions to distinguish between two such historical processes--namely time for speciation (TFS) and TNC--and test relative support based on diversity gradients of New World bats. TFS and TNC are distinctly spatial and environmental mechanisms, respectively. Nonetheless, because of the way that environmental characteristics vary spatially, these two mechanisms are hard to distinguish. Evidence provided herein suggests that TNC has had a more important effect than TFS in determining diversity gradients of New World bats. Indeed, relative effects of different historical mechanisms, as well as relative effects of historical and contemporary environmental determinants, are probably context-dependent. Future research should move away from attempting to identify the mechanism with primacy and instead attempt to understand the particular contexts in which different mechanisms have greater influence on diversity gradients.  相似文献   

12.
Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution contributes to diversification. Furthermore, the developmental mode by which behavioral traits are acquired may affect rates of behavioral evolution, although this hypothesis is seldom tested in a phylogenetic framework. Here, we examine evidence for rate shifts in vocal evolution and speciation across two major radiations of codistributed passerines: one oscine clade with learned songs (Thraupidae) and one suboscine clade with innate songs (Furnariidae). We find that evolutionary bursts in rates of speciation and song evolution are coincident in both thraupids and furnariids. Further, overall rates of vocal evolution are higher among taxa with learned rather than innate songs. Taken together, these findings suggest an association between macroevolutionary bursts in speciation and vocal evolution, and that the tempo of behavioral evolution can be influenced by variation in developmental modes among lineages.  相似文献   

13.
A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.  相似文献   

14.
Physiological and behavioural constraints arising from ecological specialisation are proposed to limit gene flow and promote diversification in tropical lineages. In this study, we use phylogenetic analyses to test this idea in 739 Amazonian bird species. We show that patterns of species and subspecies richness are best predicted by a suite of avian specialisms common in tropical avifaunas but rare in the temperate zone. However, this only applied to niche traits associated with dispersal limitation rather than vagility. These findings are consistent with the view that diversity is promoted by more finely partitioned niches, although not simply by coevolutionary adaptation and niche packing as is often assumed. Instead, they suggest that diversification is driven by dispersal constraints, and that niches characterised by these constraints are biased towards tropical systems. We conclude that specialised tropical niches reduce the likelihood of dispersal across barriers, thereby increasing allopatric diversification and contributing to the latitudinal diversity gradient.  相似文献   

15.
Continental biodiversity gradients result not only from ecological processes, but also from evolutionary and geohistorical processes involving biotic turnover in landscape and climatic history over millions of years. Here, we investigate the evolutionary and historical contributions to the gradient of increasing species richness with topographic complexity. We analysed a dataset of 418 fossil rodent species from western North America spanning 25 to 5 Ma. We compared diversification histories between tectonically active (Intermontane West) and quiescent (Great Plains) regions. Although diversification histories differed between the two regions, species richness, origination rate and extinction rate per million years were not systematically different over the 20 Myr interval. In the tectonically active region, the greatest increase in originations coincided with a Middle Miocene episode of intensified tectonic activity and global warming. During subsequent global cooling, species richness declined in the montane region and increased on the Great Plains. These results suggest that interactions between tectonic activity and climate change stimulate diversification in mammals. The elevational diversity gradient characteristic of modern mammalian faunas was not a persistent feature over geologic time. Rather, the Miocene rodent record suggests that the elevational diversity gradient is a transient feature arising during particular episodes of Earth''s history.  相似文献   

16.
Aim The latitudinal diversity gradient, in which taxonomic richness is greatest at low latitudes and declines towards the poles, is a pervasive feature of the biota through geological time. This study utilizes fossil data to examine how the latitudinal diversity gradient and associated spatial patterns covaried through the major climate shifts at the onset and end of the late Palaeozoic ice age. Location Data were acquired from fossil localities from around the world. Methods Latitudinal patterns of diversity, mean geographical range size and macroevolutionary rates were constructed from a literature‐derived data base of occurrences of fossil brachiopod genera in space and time. The literature search resulted in a total of 18,596 occurrences for 991 genera from 2320 localities. Results Climate changes associated with the onset of the late Palaeozoic ice age (c. 327 Ma) altered the biogeographical structure of the brachiopod fauna by the preferential elimination of narrowly distributed, largely tropical genera when glaciation began. Because the oceans were left populated primarily with widespread genera, the slope of the diversity gradient became gentle at this time, and the gradient of average latitudinal range size weakened. In addition, because narrowly distributed genera had intrinsically high rates of origination and extinction, the gradients of both of these macroevolutionary rates were also reduced. These patterns were reversed when the ice age climate abated in early Permian time (c. 290 Ma): narrowly distributed genera rediversified at low latitudes, restoring steep gradients of diversity, average latitudinal range size and macroevolutionary rates. Main conclusions During late Palaeozoic time, these latitudinal gradients for brachiopods may have been linked by the increased magnitude of seasonality during the late Palaeozoic ice age. Pronounced seasonality would have prevented the existence of genera with narrow latitudinal ranges. These results for the late Palaeozoic ice age suggest a climatic basis for the present‐day latitudinal diversity gradient.  相似文献   

17.
Estimates of diversification rates are invaluable for many macroevolutionary studies. Recently, an approach called BAMM (Bayesian Analysis of Macro‐evolutionary Mixtures) has become widely used for estimating diversification rates and rate shifts. At the same time, several articles have concluded that estimates of net diversification rates from the method‐of‐moments (MS) estimators are inaccurate. Yet, no studies have compared the ability of these two methods to accurately estimate clade diversification rates. Here, we use simulations to compare their performance. We found that BAMM yielded relatively weak relationships between true and estimated diversification rates. This occurred because BAMM underestimated the number of rates shifts across each tree, and assigned high rates to small clades with low rates. Errors in both speciation and extinction rates contributed to these errors, showing that using BAMM to estimate only speciation rates is also problematic. In contrast, the MS estimators (particularly using stem group ages), yielded stronger relationships between true and estimated diversification rates, by roughly twofold. Furthermore, the MS approach remained relatively accurate when diversification rates were heterogeneous within clades, despite the widespread assumption that it requires constant rates within clades. Overall, we caution that BAMM may be problematic for estimating diversification rates and rate shifts.  相似文献   

18.
Declining diversification rates over time are a well-established evolutionary pattern, often interpreted as indicating initial rapid radiation with filling of ecological niche space. Here, we test the hypothesis that island radiations may show constant net diversification rates over time, due to continued expansion into new niche space in highly dispersive taxa. We investigate diversification patterns of four passerine bird families originating from the Indo-Pacific archipelagos, and link these to biogeographic patterns to provide independent indications of niche filling. We find a declining diversification rate for only one family, the Paradisaeidae (41 species). These are almost completely restricted to New Guinea, and have on average smaller species ranges and higher levels of species richness within grid cells than the other three families. In contrast, we cannot reject constant diversification rates for Campephagidae (93 species), Oriolidae (35 species), and Pachycephalidae (53 species), groups that have independently colonized neighboring archipelagos and continents. We propose that Paradisaeidae have reached the diversity limit imposed by their restricted distribution, whereas high dispersal and colonization success across the geologically dynamic Indo-Pacific archipelagos may have sustained high speciation rates for the other three families. Alternatively, increasing extinction rates may have obscured declining speciation rates in those three phylogenies.  相似文献   

19.
Identifying the ecological factors that shape parasite distributions remains a central goal in disease ecology. These factors include dispersal capability, environmental filters and geographic distance. Using 520 haemosporidian parasite genetic lineages recovered from 7,534 birds sampled across tropical and temperate South America, we tested (a) the latitudinal diversity gradient hypothesis and (b) the distance–decay relationship (decreasing proportion of shared species between communities with increasing geographic distance) for this host–parasite system. We then inferred the biogeographic processes influencing the diversity and distributions of this cosmopolitan group of parasites across South America. We found support for a latitudinal gradient in diversity for avian haemosporidian parasites, potentially mediated through higher avian host diversity towards the equator. Parasite similarity was correlated with climate similarity, geographic distance and host composition. Local diversification in Amazonian lineages followed by dispersal was the most frequent biogeographic events reconstructed for haemosporidian parasites. Combining macroecological patterns and biogeographic processes, our study reveals that haemosporidian parasites are capable of circumventing geographic barriers and dispersing across biomes, although constrained by environmental filtering. The contemporary diversity and distributions of haemosporidian parasites are mainly driven by historical (speciation) and ecological (dispersal) processes, whereas the parasite community assembly is largely governed by host composition and to a lesser extent by environmental conditions.  相似文献   

20.
The latitudinal gradient of species richness has frequently been attributed to higher diversification rates of tropical groups. In order to test this hypothesis for mammals, we used a set of 232 genera taken from a mammalian supertree and, additionally, we reconstructed dated Bayesian phylogenetic trees of 100 genera. For each genus, diversification rate was estimated taking incomplete species sampling into account and latitude was assigned considering the heterogeneity in species distribution ranges. For both datasets, we found that the average diversification rate was similar among all latitudinal bands. Furthermore, when we used phylogenetically independent contrasts, we did not find any significant correlation between latitude and diversification parameters, including different estimates of speciation and extinction rates. Thus, other factors, such as the dynamics of dispersal through time, may be required to explain the latitudinal gradient of diversity in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号