首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Understanding how genetic variation is maintained within species is a major goal of evolutionary genetics that can shed light on the preservation of biodiversity. Here, we examined the maintenance of a regulatory single-nucleotide polymorphism (SNP) of the X-linked Drosophila melanogaster gene fezzik. The derived variant at this site is at intermediate frequency in many worldwide populations but absent in populations from the ancestral species range in sub-Saharan Africa. We collected and genotyped wild-caught individuals from a single European population biannually over a period of 5 years, which revealed an overall difference in allele frequency between the sexes and a consistent change in allele frequency across seasons in females but not in males. Modeling based on the observed allele and genotype frequencies suggested that both sexually antagonistic and temporally fluctuating selection may help maintain variation at this site. The derived variant is predicted to be female-beneficial and mostly recessive; however, there was uncertainty surrounding our dominance estimates and long-term modeling projections suggest that it is more likely to be dominant. By examining gene expression phenotypes, we found that phenotypic dominance was variable and dependent upon developmental stage and genetic background, suggesting that dominance may be variable at this locus. We further determined that fezzik expression and genotype are associated with starvation resistance in a sex-dependent manner, suggesting a potential phenotypic target of selection. By characterizing the mechanisms of selection acting on this SNP, our results improve our understanding of how selection maintains genetic and phenotypic variation in natural populations.  相似文献   

3.
Snakes exhibit a diverse array of body shapes despite their characteristically simplified morphology. The most extreme shape changes along the precloacal axis are seen in fully aquatic sea snakes (Hydrophiinae): “microcephalic” sea snakes have tiny heads and dramatically reduced forebody girths that can be less than a third of the hindbody girth. This morphology has evolved repeatedly in sea snakes that specialize in hunting eels in burrows, but its developmental basis has not previously been examined. Here, we infer the developmental mechanisms underlying body shape changes in sea snakes by examining evolutionary patterns of changes in vertebral number and postnatal ontogenetic growth. Our results show that microcephalic species develop their characteristic shape via changes in both the embryonic and postnatal stages. Ontogenetic changes cause the hindbodies of microcephalic species to reach greater sizes relative to their forebodies in adulthood, suggesting heterochronic shifts that may be linked to homeotic effects (axial regionalization). However, microcephalic species also have greater numbers of vertebrae, especially in their forebodies, indicating that somitogenetic effects also contribute to evolutionary changes in body shape. Our findings highlight sea snakes as an excellent system for studying the development of segment number and regional identity in the snake precloacal axial skeleton.  相似文献   

4.
5.
6.
7.
Recent studies have interpreted intraspecific divergence in relative head sizes in snakes as evidence for adaptation of the trophic apparatus in gape-limited predators to local prey size. However, such variation might also arise from non-adaptive processes (such as allometry, correlated response, genetic drift, or non-adaptive phenotypic plasticity). We test predictions from these alternative hypotheses using data on the allometric relationship between head size and body size in two wide-ranging snake species: eight populations of adders ( Vipera berus ) and 30 populations of common gartersnakes ( Thamnophis sirtalis ). Our data enable strong rejection of the alternative (non-adaptive) hypotheses, because the relationship between head and body size differed significantly among populations, the geographic distance separating pairs of populations explained less than 1.5% of their divergence in allometric coefficients, and the within-population allometric coefficients were higher than the among-population coefficients in each species. In addition, the geographical variability of allometric coefficients in females did not parallel that in males, suggesting that allometric coefficients have evolved independently in the two sexes. Phenotypic plasticity also cannot explain the data, because laboratory studies show that the allometric relationship between head size and body size is relatively insensitive to differing growth rates. We conclude that the intraspecific head size divergence in these snakes is better explained by spatially heterogeneous selection to optimize prey handling ability, than by non-adaptive processes.  相似文献   

8.
9.
Patterns of vertebral variation across mammals have seldom been quantified, making it difficult to test hypotheses of covariation within the axial skeleton and mechanisms behind the high level of vertebral conservatism among mammals. We examined variation in vertebral counts within 42 species of mammals, representing monotremes, marsupials and major clades of placentals. These data show that xenarthrans and afrotherians have, on average, a high proportion of individuals with meristic deviations from species' median series counts. Monotremes, xenarthrans, afrotherians and primates show relatively high variation in thoracolumbar vertebral count. Among the clades sampled in our dataset, rodents are the least variable, with several species not showing any deviations from median vertebral counts, or vertebral anomalies such as asymmetric ribs or transitional vertebrae. Most mammals show significant correlations between sacral position and length of the rib cage; only a few show a correlation between sacral position and number of sternebrae. The former result is consistent with the hypothesis that adult axial skeletal structures patterned by distinct mesodermal tissues are modular and covary; the latter is not. Variable levels of correlation among these structures may indicate that the boundaries of prim/abaxial mesodermal precursors of the axial skeleton are not uniform across species. We do not find evidence for a higher frequency of vertebral anomalies in our sample of embryos or neonates than in post-natal individuals of any species, contrary to the hypothesis that stabilizing selection plays a major role in vertebral patterning.  相似文献   

10.
Hox(homeobox genes)基因是存在于染色体上的一段高度保守序列,其蛋白产物作为转录因子也是高度保守的。这些基因调节胚胎发育,尤其在脊椎动物前-后轴(antero-posterior axis)的发育过程中起着重要作用,并指导脊椎动物的体型形成。海胆是海洋中一类比较常见的无脊椎动物和主要的海水养殖动物,它的Hox基因对它动-植物轴(animal-vegetalaxis)的形成有调控作用,并对进化研究和养殖生产具有重要意义。综述了近年来Hox基因在海胆中的研究进展。  相似文献   

11.
Several models of speciation suggest that in species that are phenotypically plastic, selection can act on phenotypic variation that is environmentally induced in the earliest stages of divergence. One trait that could be subject to this process is foraging behaviour, where discrete foraging strategies are common. One species which is highly plastic in the expression of phenotype, the Arctic charr, Salvelinus alpinus (L.), is characterized by discrete variation in the anatomy of the head and mouthparts. These traits have been shown to have a functional significance, but the expression of which is thought to be at least partly phenotypically plastic. Here we test the hypothesis that foraging behaviour may regulate the anatomy of the head and mouthparts in Arctic charr. In a dyad experiment, size‐matched pairs of fish from a mixed family group were fed a diet of either Mysis (a hard‐bodied shrimp) or Chironomid larvae. Nine morphometric measures of head dimensions that describe wild trophic morphs were measured at the start of the experiment and 24 weeks later. Principal component scores of size‐corrected morphometric measures showed highly significant differences between fish exposed to the two diets. Univariate ANOVA analysis of the head morphometric variables showed that fish fed on Chironomids developed longer, wider jaws, longer heads and a larger eye for a given body length than did those fish fed upon Mysis. We conclude that foraging anatomy in Arctic charr is phenotypically plastic and that variation in foraging behaviour that results in feeding specialization in the wild could induce variation in head anatomy. This in turn could reinforce foraging specialization. Very rapid epigenetic divergence into distinct feeding morphs (as demonstrated here) would allow selection to act at more than one mode and thus could promote rapid evolutionary divergence, initially prior to genetic segregation, in species which are highly plastic. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 78 , 43–49.  相似文献   

12.
One major difference between simple metazoans such as cnidarians and all the bilaterian animals is thought to involve the invention of mesoderm. The terms diploblasts and triploblasts are therefore, often used to group prebilaterian and bilaterian animals, respectively. However, jellyfish contain well developed striated and smooth muscle tissues that derive from the entocodon, a mesoderm-like tissue formed during medusa development. We investigated the hypothesis, that the entocodon could be homologous to the third germ layer of bilaterians by analyzing the structures and expression patterns of the homologues of Brachyury, Mef2, and Snail in the jellyfish Podocoryne carnea. These are regulatory genes from the T-box, MADS-box and zinc finger families known to play important roles in bilaterian mesoderm patterning and muscle differentiation. The sequence and expression data demonstrate that the genes are structurally and functionally conserved and even more similar to humans or other deuterostomes than to protostome model organisms such as Drosophila or Caenorhabditis elegans. Based on these data we conclude that the common ancestor of the cnidarians and bilaterians not only shared genes that play a role in regulating myogenesis but already used them to develop and differentiate muscle systems similar to those of triploblasts.  相似文献   

13.
Anurans (frogs, toads, and their larvae) are among the most morphologically derived of vertebrates. While tightly conserved across the order, the anuran Bauplan (body plan) diverges widely from that of other vertebrates, particularly with respect to the skeleton. Here we address the adaptive, ontogenetic, and genetic bases of three such hallmark anuran features: (1) the absence of discrete caudal vertebrae, (2) a truncated axial skeleton, and (3) elongate hind limbs. We review the functional significance of each as it relates to the anuran lifestyle, which includes locomotor adaptations to both aquatic and terrestrial environments. We then shift our focus to the proximal origins of each feature, namely, ontogeny and its molecular regulation. Drawing on relatively limited data, we detail the development of each character and then, by extrapolating from comparative vertebrate data, propose molecular bases for these processes. Cast in this light, the divergent morphology of anurans emerges as a product of evolutionary modulation of the generalised vertebrate developmental machinery. Specifically, we hypothesise that: (1) the formation of caudal vertebrae is precluded due to a failure of sclerotomes to form cartilaginous condensations, perhaps resulting from altered expression of a suite of genes, including Pax1, Pax9, Msx1, Uncx-4.1, Sonic hedgehog, and noggin; (2) anteriorised Hox gene expression in the paraxial mesoderm has led to a rostral shift of morphological boundaries of the vertebral column; and, (3) spatial and temporal shifts in Hox expression may underlie the expanded tarsal elements of the anuran hind limb. Technology is currently in place to investigate each of these scenarios in the African clawed frog Xenopus. Experimental corroboration will further our understanding of the molecular regulation of the anuran Bauplan and provide insight into the origin of vertebrate morphological diversity as well as the role of development in evolution.  相似文献   

14.
A central issue in evolutionary biology is to understand the mechanisms promoting morphological evolution during speciation. In a previous study, we showed that the Neotropical cactophilic sibling species Drosophila gouveai and Drosophila antonietae can be reared in media prepared with their presumptive natural host plants (Pilosocereus machrisis and Cereus hildmaniannus) and that egg to adult viability is not independent of the cactus host. In the present study, we investigate the effects of ecological and genetic factors on interspecific divergence in wing morphology, in relation to the pattern of wing venation and phenotypic plasticity in D. gouveai and D. antonietae, by means of the comparative analysis of isofemale lines reared in the two cactus hosts. The species differed significantly in wing size and shape, although specific differences were mainly localized in a particular portion of the wing. We detected significant variation in form among lines, which was not independent of the breeding cactus, suggesting the presence of genetic variation for phenotypic plasticity and wing shape variation in both species. We discuss the results considering the plausible role of host plant use in the evolutionary history of cactophilic Drosophila inhabiting the arid zones of South America. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 655–665.  相似文献   

15.
Incubation is a vital component of reproduction and parental care in birds. Maintaining temperatures within a narrow range is necessary for embryonic development and hatching of young, and exposure to both high and low temperatures can be lethal to embryos. Although it is widely recognized that temperature is important for hatching success, little is known about how variation in incubation temperature influences the post‐hatching phenotypes of avian offspring. However, among reptiles it is well known that incubation temperature affects many phenotypic traits of offspring with implications for their future survival and reproduction. Although most birds, unlike reptiles, physically incubate their eggs, and thus behaviourally control nest temperatures, variation in temperature that influences embryonic development still occurs among nests within a population. Recent research in birds has primarily been limited to populations of megapodes and waterfowl; in each group, incubation temperature has substantial effects on hatchling phenotypic traits important for future development, survival, and reproduction. Such observations suggest that incubation temperature (and incubation behaviours of parents) is an important but underappreciated parental effect in birds and may represent a selective force instrumental in shaping avian reproductive ecology and life‐history traits. However, much more research is needed to understand how pervasive phenotypic effects of incubation temperature are among birds, the sources of variation in incubation temperature, and how effects on phenotype arise. Such insights will not only provide foundational information regarding avian evolution and ecology, but also contribute to avian conservation.  相似文献   

16.
An investigation of intraspecific habitat‐related patterns of variation in oculoscapular lateral‐line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat‐generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat‐related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat‐specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral‐line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments.  相似文献   

17.
Variation in early life history traits often leads to differentially expressed morphological and behavioral phenotypes. We investigated whether variation in egg size and emergence timing influence subsequent morphology associated with migration timing in juvenile spring Chinook Salmon, Oncorhynchus tshawytscha. Based on evidence for a positive relationship between growth rate and migration timing, we predicted that fish from small eggs and fish that emerged earlier would have similar morphology to fall migrants, while fish from large eggs and individuals that emerged later would be more similar to older spring yearling migrants. We sorted eyed embryos within females into two size categories: small and large. We collected early and late‐emerging juveniles from each egg size category. We used landmark‐based geometric morphometrics and found that egg size appears to drive morphological differences. Egg size shows evidence for an absolute rather than relative effect on body morphology. Fish from small eggs were morphologically more similar to fall migrants, while fish from large eggs were morphologically more similar to older spring yearling migrants. Previous research has shown that the body morphology of fish that prefer the surface or bottom location in a tank soon after emergence also correlates with the morphological variations between wild fall and spring migrants, respectively. We found that late‐emerging fish spent more time near the surface. Our study shows that subtle differences in early life history characteristics may correlate with a diversity of future phenotypes.  相似文献   

18.
Body shape and size are important axes of organismal diversification. The elongate body form has evolved repeatedly in disparate vertebrate clades, and is associated with a variety of maximum body lengths. We used a time‐calibrated phylogeny for 40 species of moray eels to analyse the evolution of elongation and the morphological mechanisms underlying variation in body shape and maximum body length. We find that body elongation in morays evolves independently of elongation of the vertebral column. In contrast, maximum body length evolves by a different mechanism: through region‐specific increases in vertebral number, elongation of individual vertebral centra, and postembryonic somatic growth. We reconstruct an ancestral moray eel and provide evidence for accelerated morphological evolution in three highly elongate species that are associated with a burrowing lifestyle. We compare these patterns with those described for other vertebrates, and show that body shape and body length may evolve independently of each other and (in the case of shape) of the vertebral column. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 861–875.  相似文献   

19.
Because of their importance for proper development of the bilaterian embryo, Hox genes have taken center stage for investigations into the evolution of bilaterian metazoans. Taxonomic surveys of major protostome taxa have shown that Hox genes are also excellent phylogenetic markers, as specific Hox genes are restricted to one of the two great protostome clades, the Lophotrochozoa or the Ecdysozoa, and thus support the phylogenetic relationships as originally deduced by 18S rDNA studies. Deuterostomes are the third major group of bilaterians and consist of three major phyla, the echinoderms, the hemichordates, and the chordates. Most morphological studies have supported Hemichordata+Chordata, whereas molecular studies support Echinodermata+Hemichordata, a clade known as Ambulacraria. To test these competing hypotheses, complete or near complete cDNAs of eight Hox genes and four Parahox genes were isolated from the enteropneust hemichordate Ptychodera flava. Only one copy of each Hox gene was isolated suggesting that the Hox genes of P. flava are arranged in a single cluster. Of particular importance is the isolation of three posterior or Abd-B Hox genes; these genes are only shared with echinoderms, and thus support the monophyly of Ambulacraria.  相似文献   

20.
Abstract.
  • 1 An examination of phenotypic variation in colour pattern was carried out on four Eristalis hoverfly species using museum material.
  • 2 The amount of phenotypic variation varied substantially among the species with E.arbustorum being the most variable. The other species showed a wide colour pattern range but less variation within that range (E.abusivus and E.nemorum), or a narrow range of colour variation (E.horticola).
  • 3 Sexual colour dimorphism was apparent in all four species, but most pronounced in E.abusivus and E.nemorum.
  • 4 There were good phenotype-season relationships shown by both sexes in all species, except for female E.abusivus and E.nemorum, with paler insects being more abundant during the warmer summer months.
  • 5 Female, but not male, E.arbustorum collected at inland sites were on average paler than those collected at coastal sites. This observation is considered with respect to temperature during the developmental stages.
  • 6 The function of colour plasticity in hoverflies is discussed with reference to the need to maintain optimal thermal conditions for activity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号