首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent bioterrorism concerns have prompted renewed efforts towards understanding the biology of bacterial spore resistance to radiation with a special emphasis on the spores of Bacillus anthracis. A review of the literature revealed that B. anthracis Sterne spores may be three to four times more resistant to 254-nm-wavelength UV than are spores of commonly used indicator strains of Bacillus subtilis. To test this notion, B. anthracis Sterne spores were purified and their UV inactivation kinetics were determined in parallel with those of the spores of two indicator strains of B. subtilis, strains WN624 and ATCC 6633. When prepared and assayed under identical conditions, the spores of all three strains exhibited essentially identical UV inactivation kinetics. The data indicate that standard UV treatments that are effective against B. subtilis spores are likely also sufficient to inactivate B. anthracis spores and that the spores of standard B. subtilis strains could reliably be used as a biodosimetry model for the UV inactivation of B. anthracis spores.  相似文献   

2.
3.
Previous studies implicated loss of motility and mutations of the alsR and sigW regulatory genes in enhanced fitness of the Bacillus subtilis evolved strain WN716 over that of its ancestral strain WN624. The fitness of strains carrying knockout mutations alsR::spc, sigD::kan, and/or sigW::erm was measured and compared to that of the congenic ancestral strain by competition experiments.  相似文献   

4.
Biosurfactant production was investigated using two strains ofBacillus subtilis, being one a reference strain (B. subtilis 1012) and the other a genetically-modified strain (B. subtilis W1012) made able to produce the green fluorescent protein (GFP). A new method based on oil displacement technique was set up to measure the biosurfactant level in the medium. Although the tested microorganisms showed similar results in terms of cell growth parameters, the recombinant strain, besides expressing GFP, exhibited an average yield of extracellular surfactant on biomass (Y B/X, av =239 mgB gx ?1) more than twice that of the reference strain. The ability of the genetically-modified strain to simultaneously overproduce biosurfactant and GFP even at low cell concentration makes it an interesting candidate for possible use as a biological index-finger to monitor cell viability in bioremediation and oil recovery operations.  相似文献   

5.
6.
Myxococcus xanthus and Bacillus subtilis are common soil-dwelling bacteria that produce a wide range of secondary metabolites and sporulate under nutrient-limiting conditions. Both organisms affect the composition and dynamics of microbial communities in the soil. However, M. xanthus is known to be a predator, while B. subtilis is not. A screen of various prey led to the finding that M. xanthus is capable of consuming laboratory strains of B. subtilis, while the ancestral strain, NCIB3610, was resistant to predation. Based in part on recent characterization of several strains of B. subtilis, we were able to determine that the pks gene cluster, which is required for production of bacillaene, is the major factor allowing B. subtilis NCIB3610 cells to resist predation by M. xanthus. Furthermore, purified bacillaene was added exogenously to domesticated strains, resulting in resistance to predation. Lastly, we found that M. xanthus is incapable of consuming B. subtilis spores even from laboratory strains, indicating the evolutionary fitness of sporulation as a survival strategy. Together, the results suggest that bacillaene inhibits M. xanthus predation, allowing sufficient time for development of B. subtilis spores.  相似文献   

7.
Bacillus cyclic lipopeptides (LPs) have been well studied for their phytopathogen-antagonistic activities. Recently, research has shown that these LPs also contribute to the phenotypic features of Bacillus strains, such as hemolytic activity, swarming motility, biofilm formation, and colony morphology. Bacillus subtilis 916 not only coproduces the three families of well-known LPs, i.e., surfactins, bacillomycin Ls (iturin family), and fengycins, but also produces a new family of LP called locillomycins. The genome of B. subtilis 916 contains four nonribosomal peptide synthase (NRPS) gene clusters, srf, bmy, fen, and loc, which are responsible for the biosynthesis of surfactins, bacillomycin Ls, fengycins, and locillomycins, respectively. By studying B. subtilis 916 mutants lacking production of one, two, or three LPs, we attempted to unveil the connections between LPs and phenotypic features. We demonstrated that bacillomycin Ls and fengycins contribute mainly to antifungal activity. Although surfactins have weak antifungal activity in vitro, the strain mutated in srfAA had significantly decreased antifungal activity. This may be due to the impaired productions of fengycins and bacillomycin Ls. We also found that the disruption of any LP gene cluster other than fen resulted in a change in colony morphology. While surfactins and bacillomycin Ls play very important roles in hemolytic activity, swarming motility, and biofilm formation, the fengycins and locillomycins had little influence on these phenotypic features. In conclusion, B. subtilis 916 coproduces four families of LPs which contribute to the phenotypic features of B. subtilis 916 in an intricate way.  相似文献   

8.
Escherichia coli possesses only one essential oligoribonuclease (Orn), an enzyme that can degrade oligoribonucleotides of five residues and shorter in length (nanoRNA). Firmicutes including Bacillus subtilis do not have an Orn homolog. We had previously identified YtqI (NrnA) as functional analog of Orn in B. subtilis. Screening a genomic library from B. subtilis for genes that can complement a conditional orn mutant, we identify here YngD (NrnB) as a second nanoRNase in B. subtilis. Like NrnA, NrnB is a member of the DHH/DHHA1 protein family of phosphoesterases. NrnB degrades nanoRNA 5-mers in vitro similarily to Orn. Low expression levels of NrnB are sufficient for orn complementation. YhaM, a known RNase present in B. subtilis, degrades nanoRNA efficiently in vitro but requires high levels of expression for only partial complementation of the orn strain. A triple mutant (nrnA, nrnB, yhaM) in B. subtilis is viable and shows almost no impairment in growth. Lastly, RNase J1 seems also to have some 5′-to-3′ exoribonuclease activity on nanoRNA and thus can potentially finish degradation of RNA. We conclude that, unlike in E. coli, degradation of nanoRNA is performed in a redundant fashion in B. subtilis.  相似文献   

9.
Enzootic transmission of West Nile virus (WNV; Flaviviridae, Flavivirus) involves various species of birds and ornithophilic mosquitoes. Single nucleotide substitutions in the WNV genome may impact viral fitness necessary for WNV adaptation and evolution as previously shown for the WN02 genotype. In an effort to study phenotypic change, we developed an in vivo fitness competition model in two biologically relevant hosts for WNV. The House Finch (HOFI; Haemorhous mexicanus) and Culex tarsalis mosquitoes represent moderately susceptible hosts for WNV, are highly abundant in Western North America and frequently are infected with WNV in nature. Herein, we inoculated HOFIs and Cx. tarsalis competitively (dually) and singly with infectious-clone derived viruses of the founding California isolate COAV997-2003 (COAV997-IC), the founding North American isolate NY99 (NY99-IC), and a 2004 field isolate from California (CA-04), and compared the replicative capacities (fitness) of these viruses to a genetically marked virus of COAV997 (COAV997-5nt) by measuring RNA copy numbers. COAV997 and COAV997-5nt exhibited neutral fitness in HOFIs and Cx. tarsalis, and the temperature-sensitive phenotype of COAV997 did not affect replication in HOFIs as none of the infected birds became febrile. The NY99 and CA-04 isolates demonstrated elevated fitness in HOFIs compared to COAV997-5nt, whereas all viruses replicated to similar titers and RNA copies in Cx. tarsalis, and the only fitness differences were related to infection rates. Our data demonstrated that competitive replication allows for the sensitive comparison of fitness differences among two genetically closely related viruses using relevant hosts of WNV while eliminating host-to-host differences. In conclusion, our approach may be helpful in understanding the extent of phenotypic change in fitness associated with genetic changes in WNV.  相似文献   

10.
Enteric bacteria encounter a wide range of pHs throughout the human intestinal tract. We conducted experimental evolution of Escherichia coli K-12 to isolate clones with increased fitness during growth under acidic conditions (pH 4.5 to 4.8). Twenty-four independent populations of E. coli K-12 W3110 were evolved in LBK medium (10 g/liter tryptone, 5 g/liter yeast extract, 7.45 g/liter KCl) buffered with homopiperazine-N,N′-bis-2-(ethanosulfonic acid) and malate at pH 4.8. At generation 730, the pH was decreased to 4.6 with HCl. By 2,000 generations, all populations had achieved higher endpoint growth than the ancestor at pH 4.6 but not at pH 7.0. All evolving populations showed a progressive loss of activity of lysine decarboxylase (CadA), a major acid stress enzyme. This finding suggests a surprising association between acid adaptation and moderation of an acid stress response. At generation 2,000, eight clones were isolated from four populations, and their genomes were sequenced. Each clone showed between three and eight missense mutations, including one in a subunit of the RNA polymerase holoenzyme (rpoB, rpoC, or rpoD). Missense mutations were found in adiY, the activator of the acid-inducible arginine decarboxylase (adiA), and in gcvP (glycine decarboxylase), a possible acid stress component. For tests of fitness relative to that of the ancestor, lacZ::kan was transduced into each strain. All acid-evolved clones showed a high fitness advantage at pH 4.6. With the cytoplasmic pH depressed by benzoate (at external pH 6.5), acid-evolved clones showed decreased fitness; thus, there was no adaptation to cytoplasmic pH depression. At pH 9.0, acid-evolved clones showed no fitness advantage. Thus, our acid-evolved clones showed a fitness increase specific to low external pH.  相似文献   

11.
Mutants of Bacillus subtilis can be developed to overproduce Val in vitro. It was hypothesized that addition of Bacillus subtilis mutants to pig diets can be a strategy to supply the animal with Val. The objective was to investigate the effect of Bacillus subtilis mutants on growth performance and blood amino acid (AA) concentrations when fed to piglets. Experiment 1 included 18 pigs (15.0±1.1 kg) fed one of three diets containing either 0.63 or 0.69 standardized ileal digestible (SID) Val: Lys, or 0.63 SID Val: Lys supplemented with a Bacillus subtilis mutant (mutant 1). Blood samples were obtained 0.5 h before feeding and at 1, 2, 3, 4, 5 and 6 h after feeding and analyzed for AAs. In Experiment 2, 80 piglets (9.1±1.1 kg) were fed one of four diets containing 0.63 or 0.67 SID Val: Lys, or 0.63 SID Val: Lys supplemented with another Bacillus subtilis mutant (mutant 2) or its parent wild type. Average daily feed intake, daily weight gain and feed conversion ratio were measured on days 7, 14 and 21. On day 17, blood samples were taken and analyzed for AAs. On days 24 to 26, six pigs from each dietary treatment were fitted with a permanent jugular vein catheter, and blood samples were taken for AA analysis 0.5 h before feeding and at 1, 2, 3, 4, 5 and 6 h after feeding. In experiment 1, Bacillus subtilis mutant 1 tended (P<0.10) to increase the plasma levels of Val at 2 and 3 h post-feeding, but this was not confirmed in Experiment 2. In Experiment 2, Bacillus subtilis mutant 2 and the wild type did not result in a growth performance different from the negative and positive controls. In conclusion, results obtained with the mutant strains of Bacillus subtilis were not better than results obtained with the wild-type strain, and for both strains, the results were not different than the negative control.  相似文献   

12.
This work shows that the ribC wild-type gene product has both flavokinase and flavin adenine dinucleotide synthetase (FAD-synthetase) activities. RibC plays an essential role in the flavin metabolism of Bacillus subtilis, as growth of a ribC deletion mutant strain was dependent on exogenous supply of FMN and the presence of a heterologous FAD-synthetase gene in its chromosome. Upon cultivation with growth-limiting amounts of FMN, this ribC deletion mutant strain overproduced riboflavin, while with elevated amounts of FMN in the culture medium, no riboflavin overproduction was observed. In a B. subtilis ribC820 mutant strain, the corresponding ribC820 gene product has reduced flavokinase/FAD-synthetase activity. In this strain, riboflavin overproduction was also repressed by exogenous FMN but not by riboflavin. Thus, flavin nucleotides, but not riboflavin, have an effector function for regulation of riboflavin biosynthesis in B. subtilis, and RibC seemingly is not directly involved in the riboflavin regulatory system. The mutation ribC820 leads to deregulation of riboflavin biosynthesis in B. subtilis, most likely by preventing the accumulation of the effector molecule FMN or FAD.  相似文献   

13.
A small RNA sequence identified in an rRNA-tRNA cluster from the thermophilic Bacillus sp. strain PS3 was examined. An oligonucleotide probe specific for the RNA bound to multiple restriction fragments in Bacillus sp. strain PS3 DNA, thus several copies of this sequence occur in its genome. Similar findings were observed using DNA from B. subtilis, B. stearothermophilus, Escherichia coli, Staphylococcus aureus, Haemophilus influenzae and Thermus thermophilus. This sequence apparently is widespread in the eubacteria. Northern analysis of RNA from sporulating Bacillus sp. strain PS3 and B. subtilis cells revealed RNA species homologous to the probe in both bacteria. Expression of the small RNA in B. subtilis depended on σH.  相似文献   

14.
15.
A 4-Chloro-2-nitrophenol (4C2NP) decolourizing strain RKJ 700 was isolated from soil collected from a pesticide contaminated site of India and identified as Bacillus subtilis on the basis of the 16S rRNA gene sequence analysis. Bacillus subtilis RKJ 700 decolourized 4C2NP up to concentration of 1.5 mM in the presence of additional carbon source. The degradation pathway of 4C2NP was studied and 4-chloro-2-aminophenol, 4-chloro-2-acetaminophenol and 5-chloro-2-methylbenzoxazole (5C2MBZ) were identified as metabolites by high performance liquid chromatography and gas chromatography-mass spectrometry. Resting cell studies showed that Bacillus subtilis RKJ 700 depleted 4C2NP completely with stoichiometric formation of 5C2MBZ. This is the first report of (i) the degradation of 4C2NP at high concentration (1.5 mM) and, (ii) the formation of 5C2MBZ by a soil bacterium.  相似文献   

16.
Seven microorganisms were evaluated for their biocontrol potential against Monilinia vaccinii-corymbosi which causes mummy berry disease through gynoecial (stigma-style-ovary) infection of blueberry flowers: the bacteria Bacillus subtilis QRD137, B. mojavensis RRC101, B. mycoides 7IIC4, and Pantoea agglomerans C9-1S; the yeast Wickerhamiella australiensis Y-27360; and the filamentous fungi Trichoderma harzianum KRL-AG2 and Gliocladium roseum H47. The epiphytic fitness of each organism was investigated by evaluating population dynamics or fungal growth on the stigmas of detached blueberry flowers, and such flowers, co-inoculated with M. vaccinii-corymbosi, were used to determine efficacy in reducing pathogen infection of the style. In addition, all organisms were tested in vitro for antibiosis using dual cultures and for nutrient competition (niche overlap) using Biolog microplates. The most promising antagonists were P. agglomerans, which exhibited high epiphytic fitness on the stigma and consistently reduced stylar infection by the pathogen; B. subtilis, which showed strong antibiotic activity in vitro and considerably reduced pathogen ingress into styles, but whose limited epiphytic fitness decreases its potential for field-use; and G. roseum, which exhibited complete niche overlap with the pathogen in vitro but produced more variable results in reducing stylar infection. Future work should evaluate combinations of these antagonists to determine whether there are additive effects and whether the variability inherent in biocontrol can be reduced.  相似文献   

17.
In order to achieve the optimal number of colony forming units and a high level of antifungal metabolites synthesis, we carried out the periodic cultivation of the Bacillus subtilis BZR 336 g and Bacillus subtilis BZR 517 strains at various pH and temperature levels. In the experiment for determining the optimal temperature, the maximum titer of B. subtilis BZR 336 g bacterium (1.6–1.7 × 109 CFU/ml) was recorded at a cultivation temperature of 20–25 °C. For B. subtilis BZR 517 strain, the temperature turned out to be optimal at 30 °C: the titer was 8.9 × 108 CFU/ml. The maximum antifungal activity of B. subtilis BZR 336 g strain against the test culture of Fusarium oxysporum var. orthoceras was observed at a cultivation temperature of 20–25 °C; for B. subtilis BZR 517 strain, 25–30 °C. When determining the optimal pH level, it was found that a high titer of B. subtilis BZR 336 g strain cells was determined at pH 8.0 (2.7 × 109 CFU/ml), for B. subtilis BZR 517 strain it was at pH 6.0–8.0 (1.0 × 109 CFU/ml). The maximum antifungal activity was noted with the same indicators. Chromatographic and bioautographic analyses suggest that the synthesized antifungal metabolites belong to surfactin and iturin A. The data obtained in this research can be used in the development of the technology for the production of effective biofungicides to protect crops against Fusarium pathogens.  相似文献   

18.
Blue multicopper oxidases, laccases displayed on the surface of Bacillus spores were used to decolorize a widely used textile dyestuff, indigo carmine. The laccase-encoding gene of Bacillus subtilis, cotA, was cloned and expressed in B. subtilis DB104, and the expressed enzyme was spontaneously localized on Bacillus spores. B. subtilis spores expressing laccase exhibited maximal activity for the oxidation of 2,2′-azino-bis (3-ethylthiazoline-6-sulfonate) (ABTS) at pH 4.0 and 80 °C, and for the decolorization of indigo carmine at pH 8.0 and 60 °C. The displayed enzyme retained 80% of its original activity after pre-treatment with organic solvents such as 50% acetonitrile and n-hexane for 2 h at 37 °C. The apparent Km of the enzyme displayed on spores was 443 ± 124 μM for ABTS with a Vmax of 150 ± 16 U/mg spores. Notably, 1 mg of spores displaying B. subtilis laccase (3.4 × 102 U for ABTS as a substrate) decolorized 44.6 μg indigo carmine in 2 h. The spore reactor (0.5 g of spores corresponding to 1.7 × 105 U in 50 mL) in a consecutive batch recycling mode decolorized 223 mg indigo carmine/L to completion within 42 h at pH 8.0 and 60 °C. These results suggest that laccase displayed on B. subtilis spores can serve as a powerful environmental tool for the treatment of textile dye effluent.  相似文献   

19.
The capacity of ribosomal modification to improve antibiotic production by Streptomyces spp. has already been demonstrated. Here we show that introduction of mutations that produce streptomycin resistance (str) also enhances α-amylase (and protease) production by a strain of Bacillus subtilis as estimated by measuring the enzyme activity. The str mutations are point mutations within rpsL, the gene encoding the ribosomal protein S12. In vivo as well as in vitro poly(U)-directed cell-free translation systems showed that among the various rpsL mutations K56R (which corresponds to position 42 in E. coli) was particularly effective at enhancing α-amylase production. Cells harboring the K56R mutant ribosome exhibited enhanced translational activity during the stationary phase of cell growth. In addition, the K56R mutant ribosome exhibited increased 70S complex stability in the presence of low Mg2+ concentrations. We therefore conclude that the observed increase in protein synthesis activity by the K56R mutant ribosome reflects increased stability of the 70S complex and is responsible for the increase in α-amylase production seen in the affected strain.  相似文献   

20.
Antimicrobial peptides are promising alternative antimicrobial agents compared to conventional antibiotics. Understanding the mode of action is important for their further application. We examined the interaction between trichokonin VI, a peptaibol isolated from Trichoderma pseudokoningii, and Bacillus subtilis, a representative Gram-positive bacterium. Trichokonin VI was effective against B. subtilis with a minimal inhibitory concentration of 25 µM. Trichokonin VI exhibited a concentration- and time-dependent effect against B. subtilis, which was studied using atomic force microscopy. The cell wall of B. subtilis collapsed and the roughness increased upon treatment with trichokonin VI. Nanoindentation experiments revealed a progressive decrease in the stiffness of the cells. Furthermore, the membrane permeabilization effect of trichokonin VI on B. subtilis was monitored, and the results suggest that the leakage of intracellular materials is a possible mechanism of action for trichokonin VI, which led to alterations in the morphological and nanomechanical properties of B. subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号