首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases.  相似文献   

3.
G protein-coupled receptors (GPCRs) are the largest and most versatile family of transmembrane receptors in the cell, occupying the highest hierarchical positions in the regulation of many physiological processes. Although they have been extensively studied in a number of model insects, there have been few investigations of GPCRs in large Lepidopterans, such as Bombyx mori, an organism that provides a means to perform detailed tissue expression analyses, which may help to characterize GPCRs and their ligands. In addition, B. mori, also known as the silkworm, is an insect of substantial economic importance, due to its use in silk production and traditional medicines. In this work, we computationally identified 90 putative GPCRs in B. mori, 33 of which represent novel proteins. These GPCRs were annotated and compared with their homologs in Drosophila melanogaster and Anopheles gambiae. Phylogenetics analyses of the GPCRs from these three insects showed that GPCRs may easily duplicate or disappear during insect evolution, especially in the neuropeptide and protein hormone receptor subfamily. Interestingly, we observed a decrease in the quantity and diversity of the stress-tolerance gene, Methuselah, in B. mori, which may be related to its long history of domestication. Moreover, the presence of many Bombyx-specific GPCRs suggests that neither Drosophila nor Anopheles is good representatives for the GPCRs in the Class Insecta.  相似文献   

4.
The silkworm Bombyx mori represents an established in vivo system for the production of recombinant proteins. Baculoviruses have been extensively investigated and optimised for the expression of high protein levels inside the haemolymph of larvae and pupae of this lepidopteran insect. Current technology includes deletion of genes responsible for the activity of virus-borne proteases, which in wild-type viruses, cause liquefaction of the host insect and enhance horizontal transmission of newly synthesised virus particles. Besides the haemolymph, the silk gland of B. mori provides an additional expression system for recombinant proteins. In this paper, we investigated how silk gland can be efficiently infected by a Autographa californica multicapsid nuclear polyhedrosis virus (AcMNPV). We demonstrated that the viral chitinase and the cysteine protease cathepsin are necessary to permit viral entry into the silk gland cells of intrahaemocoelically infected B. mori larvae. Moreover, for the first time, we showed AcMNPV crossing the basal lamina of silk glands in B. mori larvae, and we assessed a new path of infection of silk gland cells that can be exploited for protein production.  相似文献   

5.
6.
7.
8.
Horizontal gene transfer (HGT) is a potentially critical source of material for ecological adaptation and the evolution of novel genetic traits. However, reports on posttransfer duplication in organism genomes are lacking, and the evolutionary advantages conferred on the recipient are generally poorly understood. Sucrase plays an important role in insect physiological growth and development. Here, we performed a comprehensive analysis of the evolution of insect β-fructofuranosidase transferred from bacteria via HGT. We found that posttransfer duplications of β-fructofuranosidase were widespread in Lepidoptera and sporadic occurrences of β-fructofuranosidase were found in Coleoptera and Hymenoptera. β-fructofuranosidase genes often undergo modifications, such as gene duplication, differential gene loss, and changes in mutation rates. Lepidopteran β-fructofuranosidase gene (SUC) clusters showed marked divergence in gene expression patterns and enzymatic properties in Bombyx mori (moth) and Papilio xuthus (butterfly). We generated SUC1 mutations in B. mori using CRISPR/Cas9 to thoroughly examine the physiological function of SUC. BmSUC1 mutant larvae were viable but displayed delayed growth and reduced sucrase activities that included susceptibility to the sugar mimic alkaloid found in high concentrations in mulberry. BmSUC1 served as a critical sucrase and supported metabolic homeostasis in the larval midgut and silk gland, suggesting that gene transfer of β-fructofuranosidase enhanced the digestive and metabolic adaptation of lepidopteran insects. These findings highlight not only the universal function of β-fructofuranosidase with a link to the maintenance of carbohydrate metabolism but also an underexplored function in the silk gland. This study expands our knowledge of posttransfer duplication and subsequent functional diversification in the adaptive evolution and lineage-specific adaptation of organisms.  相似文献   

9.
10.
RNA interference has been described as a powerful genetic tool for gene functional analysis and a promising approach for pest management. However, RNAi efficiency varies significantly among insect species due to distinct RNAi machineries. Lepidopteran insects include a large number of pests as well as model insects, such as the silkworm, Bombyx mori. However, only limited success of in vivo RNAi has been reported in lepidoptera, particularly during the larval stages when the worms feed the most and do the most harm to the host plant. Enhancing the efficiency of larval RNAi in lepidoptera is urgently needed to develop RNAi-based pest management strategies. In the present study, we investigate the function of the conserved RNAi core factor, Argonaute2 (Ago2), in mediating B. mori RNAi efficiency. We demonstrate that introducing BmAgo2 dsRNA inhibits the RNAi response in both BmN cells and embryos. Furthermore, we establish several transgenic silkworm lines to assess the roles of BmAgo2 in larval RNAi. Over-expressing BmAgo2 significantly facilitated both dsRNA-mediated larval RNAi when targeting DsRed using dsRNA injection and shRNA-mediated larval RNAi when targeting BmBlos2 using transgenic shRNA expression. Our results show that BmAgo2 is involved in RNAi in B. mori and provides a promising approach for improving larval RNAi efficiency in B. mori and in lepidopteran insects in general.  相似文献   

11.
《Journal of Asia》2022,25(1):101835
The domesticated silkworm Bombyx mori is an economically important insect that produces large quantities of silk during its 5th instar larval stage. Polyamines are important regulators of growth and have been shown to affect silk production, however their role in larval development is not completely understood. L-ornithine decarboxylase (ODC), a key regulatory enzyme in the polyamine biosynthetic pathway catalyzes the conversion of ornithine to putrescine, which is further broken down to spermidine and spermine. In this study, we set out to understand the role of ODC on the growth and development of silkworm larvae. We fed 5th instar larvae with α-difluoromethylornithine (DFMO), an ODC inhibitor and studied its impact on larval silk glands. Feeding DFMO did not alter the expression of L-ODC but led to a significant reduction in putrescine and spermidine levels. Furthermore, reduced cellular levels of polyamine led to increased oxidative stress and decreased cell viability. Subsequently, this resulted in several developmental defects at the pupal and moth stages. These findings highlight the importance of ODC in the growth and development of B. mori larvae.  相似文献   

12.
Fenoxycarb, O‐ethyl N‐(2‐(4‐phenoxyphenoxy)‐ethyl) carbamate has been shown to be one of the most potent juvenile hormone analogues against a variety of insect species. In the present study, topical application of fenoxycarb to fifth‐instar larvae of the silkworm Bombyx mori (Lepidoptera: Bombycidae) was performed immediately after the fourth ecdysis (on day 0), day 3 and day 6 of the instar and then its effects on the anterior silk glands (ASG) and ecdysone receptor B1 (EcR‐B1) protein were investigated during larval pupal development. Fenoxycarb application increased the instar length and prevented metamorphic events, depending on the application time. The ASGs of B. mori undergo programmed cell death during the larval–pupal metamorphosis and an insect steroid, 20‐hydroxyecdysone (20E), triggers this cell death. The exact mechanism by which 20E and juvenile hormone regulates programmed cell death in insect tissues is poorly understood. To gain insights into how juvenile hormone regulates metamorphic events like programmed cell death in the anterior silk glands, we analyzed the progression of programmed cell death with morphological observations and biochemical experiments like acid phosphatase activity and DNA electrophoresis. Then we examined the EcR‐B1 protein levels and their relationships with programmed cell death. Our results indicated that fenoxycarb modulates programmed cell death of the anterior silk glands and EcR‐B1 protein level, depending on the application time. Fenoxycarb may exhibit its effects in at least two different ways: (i) acting on prothoracic gland secretory activity; and/or (ii) regulation of EcR‐B1 expression in the anterior silk glands for programmed cell death process.  相似文献   

13.
Bacillus thuringiensis and Bacillus cereus belong to the B. cereus species group. The two species share substantial chromosomal similarity and differ mostly in their plasmid content. The phylogenetic relationship between these species remains a matter of debate. There is genetic exchange both within and between these species, and current evidence indicates that insects are a particularly suitable environment for the growth of and genetic exchange between these species. We investigated the conjugation efficiency of B. thuringiensis var. kurstaki KT0 (pHT73-EmR) as a donor and a B. thuringiensis and several B. cereus strains as recipients; we used one-recipient and two-recipient conjugal transfer systems in vitro (broth and filter) and in Bombyx mori larvae, and assessed multiplication following conjugation between Bacillus strains. The B. thuringiensis KT0 strain did not show preference for genetic exchange with the B. thuringiensis recipient strain over that with the B. cereus recipient strains. However, B. thuringiensis strains germinated and multiplied more efficiently than B. cereus strains in insect larvae and only B. thuringiensis maintained complete spore germination for at least 24 h in B. mori larvae. These findings show that there is no positive association between bacterial multiplication efficiency and conjugation ability in infected insects for the used strains.  相似文献   

14.
The domesticated silkworm, Bombyx mori, is a fundamental insect for silk industry. Silk is obtained from cocoons, protective envelopes produced during pupation and composed of single raw silk filaments secreted by the insect silk glands. Currently, silk is used as a textile fibre and to produce new materials for technical and biomedical applications. To enhance the use of both fabrics and silk-based materials, great efforts to obtain silk with antimicrobial properties have been made. In particular, a convincing approach is represented by the enrichment of the textile fibre with antimicrobial peptides, the main effectors of the innate immunity. To this aim, silkworm-based transgenic techniques appear to be cost-effective strategies to obtain cocoons in which antimicrobial peptides are integrated among the silk proteins. Recently, cocoons transgenic for a recombinant silk protein conjugated to the silkworm Cecropin B antimicrobial peptide were obtained and showed enhanced antibacterial properties (Li et al. in Mol Biol Rep 42:19–25,  https://doi.org/10.1007/s11033-014-3735-z, 2015a). In this work we used the piggyBac-mediated germline transformation to generate several transgenic B. mori lines able to overexpress Cecropin B or Moricin antimicrobial peptides at the level of the silk gland. The derived cocoons were characterised by increased antimicrobial properties and the resulting silk fibre was able to inhibit the bacterial growth of the Gram-negative Escherichia coli. Our results suggest that the generation of silkworm overexpressing unconjugated antimicrobial peptides in the silk gland might represent an additional strategy to obtain antimicrobial peptide-enriched silk, for the production of new silk-based materials.  相似文献   

15.
Juvenile hormone (JH) contributes to the regulation of larval molting and metamorphosis in insects. Herein, we comprehensively identified 55 genes involved in JH biosynthesis, metabolism and signaling in the silkworm (Bombyx mori) as well as 35 in Drosophila melanogaster, 35 in Anopheles gambiae, 36 in Apis mellifera, 47 in Tribolium castaneum, and 44 in Danaus plexippus. Comparative analysis showed that each gene involved in the early steps of the mevalonate (MVA) pathway, in the neuropeptide regulation of JH biosynthesis, or in JH signaling is a single copy in B. mori and other surveyed insects, indicating that these JH-related pathways or steps are likely conserved in all surveyed insects. However, each gene participating in the isoprenoid branch of JH biosynthesis and JH metabolism, together with the FPPS genes for catalyzing the final step of the MVA pathway of JH biosynthesis, exhibited an obvious duplication in Lepidoptera, including B. mori and D. plexippus. Microarray and real-time RT-PCR analysis revealed that different copies of several JH-related genes presented expression changes that correlated with the dynamics of JH titer during larval growth and metamorphosis. Taken together, the findings suggest that duplication-derived copy variation of JH-related genes might be evolutionarily associated with the variation of JH types between Lepidoptera and other insect orders. In conclusion, our results provide useful clues for further functional analysis of JH-related genes in B. mori and other insects.  相似文献   

16.
The last few years have witnessed a considerable expansion in the number of tools available to perform molecular and genetic studies on the genome of Anopheles mosquitoes, the vectors of human malaria. As a consequence, knowledge of aspects of the biology of mosquitoes, such as immunity, reproduction and behaviour, that are relevant to their ability to transmit disease is rapidly increasing, and could be translated into concrete benefits for malaria control strategies. Amongst the most important scientific advances, the development of transgenic technologies for Anopheles mosquitoes provides a crucial opportunity to improve current vector control measures or design novel ones. In particular, the use of genetic modification of the mosquito genome could provide for a more effective deployment of the sterile insect technique (SIT) against vector populations in the field. Currently, SIT relies on the release of radiation sterilized males, which compete with wild males for mating with wild females. The induction of sterility in males through the genetic manipulation of the mosquito genome, already achieved in a number of other insect species, could eliminate the need for radiation and increase the efficiency of SIT-based strategies. This paper provides an overview of the mechanisms already in use for inducing sterility by transgenesis in Drosophila and other insects, and speculates on possible ways to apply similar approaches to Anopheles mosquitoes.  相似文献   

17.
18.
Insect silks have been used by mankind for millennia to produce textiles and in particular, the cocoon silk of Bombyx mori was the base of one of the most important industries in history. In fact, B. mori is probably the only domesticated insect if not invertebrate in its true and strict sense, comparable to cattle and other livestock that humans have known and bred since the Neolithic period. In contrast, reports regarding the use of spider silk throughout history have the character of travellers’ tales or anecdotes, and serious attempts to exploit these biomaterials on a large scale have not been undertaken until recently. Indeed, the cannibalism of these carnivores makes their farming difficult and the production of significant yields of spider silk virtually impossible. Only today, with recombinant technologies available, does this problem seem to have been overcome. But why use spider silk at all – if we have the infrastructure to produce significant yields of silk from Bombyx? In contrast to most insects, spiders do not spin from labial glands, and many spiders possess different types of gland, most of them active throughout the whole lifespan. Typical orb‐weavers (Araneoidea) for instance possess up to seven different types of silk gland to produce different silk fibers and glues. Each of these products has evolved for a particular use and the respective material properties are highly adapted to that use. As the group of Araneae is about 400 million years old, the oldest fossil orb‐weaver is dated about 150 million years, and the use of silk is crucial to a spider's survival, we can expect that evolution will have “squeezed out every iota” to achieve optimum performance at minimum cost. Indeed, some dragline silks such as the major ampullate silks of some Nephila species show amazing mechanical properties that, in terms of toughness, are far superior to Bombyx silk. Labels like “stronger than steel” or “even better than Kevlar” were attached to them, and the Canadian‐based biotech company Nexia created the trademark “bio‐steel” for their prospective product. The discovery of these exceptional mechanical properties of those protein fibers triggered intense research on spider silk, with the goal of their commercial exploitation. But there is more to Arachne's weave and science is beginning to pick up those threads.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号