首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Vascular patterning depends on coordinated timing of arteriovenous specification of endothelial cells and the concomitant hemodynamic forces supplied by the onset of cardiac function. Using a combination of 3D imaging by OPT and embryo registration techniques, we sought to identify structural differences between three different mouse models of cardiovascular perturbation.

Results

Endoglin mutant mice shared a high degree of similarity to Mlc2a mutant mice, which have been shown to have a primary developmental heart defect causing secondary vessel remodeling failures. Dll4 mutant mice, which have well-characterized arterial blood vessel specification defects, showed distinct differences in vascular patterning when compared to the disruptions seen in Mlc2a -/- and Eng -/- models. While Mlc2a -/- and Eng -/- embryos exhibited significantly larger atria than wild-type, Dll4 -/- embryos had significantly smaller hearts than wild-type, but this quantitative volume decrease was not limited to the developing atrium. Dll4 -/- embryos also had atretic dorsal aortae and smaller trunks, suggesting that the cardiac abnormalities were secondary to primary arterial blood vessel specification defects.

Conclusions

The similarities in Eng -/- and Mlc2a -/- embryos suggest that Eng -/- mice may suffer from a primary heart developmental defect and secondary defects in vessel patterning, while defects in Dll4 -/- embryos are consistent with primary defects in vessel patterning.  相似文献   

2.

Background

Heparanase, an endoglycosidase that cleaves heparan sulfate (HS), is involved in various biologic processes. Recently, an association between heparanase and glomerular injury was suggested. The present study examines the involvement of heparanase in the pathogenesis of Adriamycin-induced nephrotic syndrome (ADR-NS) in a mouse model.

Methods

BALB/c wild-type (wt) mice and heparanase overexpressing transgenic mice (hpa-TG) were tail-vein injected with either Adriamycin (ADR, 10 mg/kg) or vehicle. Albuminuria was investigated at days 0, 7, and 14 thereafter. Mice were sacrificed at day 15, and kidneys were harvested for various analyses: structure and ultrastructure alterations, podocyte proteins expression, and heparanase enzymatic activity.

Results

ADR-injected wt mice developed severe albuminuria, while ADR-hpa-TG mice showed only a mild elevation in urinary albumin excretion. In parallel, light microscopy of stained cross sections of kidneys from ADR-injected wt mice, but not hpa-TG mice, showed mild to severe glomerular and tubular damage. Western blot and immunofluorescence analyses revealed significant reduction in nephrin and podocin protein expression in ADR-wt mice, but not in ADR-hpa-TG mice. These results were substantiated by electron-microscopy findings showing massive foot process effacement in injected ADR-wt mice, in contrast to largely preserved integrity of podocyte architecture in ADR-hpa-TG mice.

Conclusions

Our results suggest that heparanase may play a nephroprotective role in ADR-NS, most likely independently of HS degradation. Moreover, hpa-TG mice comprise an invaluable in vivo platform to investigate the interplay between heparanase and glomerular injury.  相似文献   

3.

Background

Healthy individuals rarely have problems with wound healing. Most skin lesions heal rapidly and efficiently within one to two weeks. However, many medical and surgical complications can be attributed to deficiencies in wound repair. Open wounds have lost the barrier that protects tissues from bacterial invasion and allows the escape of vital fluids. Without expeditious healing, infections become more frequent. The CD24 gene encodes a heavily-glycosylated cell surface protein anchored to the membrane by phosphatidylinositol. CD24 plays an important role in the adaptive immune response and controls an important genetic checkpoint for homeostasis and autoimmune diseases in both mice and humans. We have previously shown that overexpression of CD24 results in increased proliferation and migration rates.

Aim

To examine the role of CD24 in the wound healing process.

Methods

An excisional model of wound healing was used and delayed wound healing was studied in genetically modified heat stable antigen (HSA/CD24)-deficient mice (HSA -/-) compared to wild-type (WT) mice.

Results

Large full-thickness skin wounds, excised on the back of mice, exhibited a significant delay in the formation of granulation tissue, and in wound closure when compared to their WTHSA +/+ littermates. Wounds were histologically analyzed and scored, based on the degree of cellular invasion, granulation tissue formation, vascularity, and re-epithelialization. Additionally, in stitched wounds, the HSA -/- mice failed to maintain their stitches; they did not hold and fell already 24 hours, revealing erythematous wound fields. Re-expression of HSA, delivered by lentivirus, restored the normal healing phenotype, within 24 hours post-injury, and even improved the healing in WT, and in BalbC mice.

Conclusions

Delayed wound-healing in the absence of HSA/CD24 suggests that CD24 plays an important role in this process. Increased expression of CD24, even in the normal state, may be used to enhance wound repair.  相似文献   

4.

Purpose

Vision originates in rods and cones at the outer retina. Already at these early stages, diverse processing schemes shape and enhance image information to permit perception over a wide range of lighting conditions. In this work, we address the role of hyperpolarization-activated and cyclic nucleotide-gated channels 1 (HCN1) in rod photoreceptors for the enhancement of rod system responsivity under conditions of light exposure.

Methods

To isolate HCN1 channel actions in rod system responses, we generated double mutant mice by crossbreeding Hcn1-/- mice with Cnga3-/- mice in which cones are non-functional. Retinal function in the resulting Hcn1-/- Cnga3-/- animals was followed by means of electroretinography (ERG) up to the age of four month. Retinal imaging via scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) was also performed to exclude potential morphological alterations.

Results

This study on Hcn1-/- Cnga3-/- mutant mice complements our previous work on HCN1 channel function in the retina. We show here in a functional rod-only setting that rod responses following bright light exposure terminate without the counteraction of HCN channels much later than normal. The resulting sustained signal elevation does saturate the retinal network due to an intensity-dependent reduction in the dynamic range. In addition, the lack of rapid adaptational feedback modulation of rod photoreceptor output via HCN1 in this double mutant limits the ability to follow repetitive (flicker) stimuli, particularly under mesopic conditions.

Conclusions

This work corroborates the hypothesis that, in the absence of HCN1-mediated feedback, the amplitude of rod signals remains at high levels for a prolonged period of time, leading to saturation of the retinal pathways. Our results demonstrate the importance of HCN1 channels for regular vision.  相似文献   

5.

Background

Transient receptor potential (TRP) ion channels of the A1 (TRPA1) and V1 (TRPV1) subtypes are key regulators of vasomotor tone. Propofol is an intravenous anesthetic known to cause vasorelaxation. Our objectives were to examine the extent to which TRPA1 and/or TRPV1 ion channels mediate propofol-induced depressor responses in vivo and to delineate the signaling pathway(s) involved.

Methods

Mice were subjected to surgery under 1.5–2.5% sevoflurane gas with supplemental oxygen. After a stable baseline in mean arterial pressure (MAP) was achieved propofol (2.5, 5.0, 10.0 mg/kg/min) was administered to assess the hemodynamic actions of the intravenous anesthetic. The effect of nitric oxide synthase (NOS) inhibition with L-NAME and/or calcium-gated K+ channel (BKCa) inhibition with Penetrim A (Pen A), alone and in combination, on propofol-induced decreases in mean arterial pressure were assessed in control C57Bl/6J, TRPA1-/-, TRPV1-/- and double-knockout mice (TRPAV-/-).

Results

Propofol decreased MAP in control mice and this effect was markedly attenuated in TRPA1-/- and TRPAV-/- mice but unaffected in TRPV1-/-mice. Moreover, pretreatment with L-NAME or Pen A attenuated the decrease in MAP in control and TRPV1-/- mice, and combined inhibition abolished the depressor response. In contrast, the markedly attenuated propofol-induced depressor response observed in TRPA1-/- and TRPAV-/- mice was unaffected by pre-treatment with Pen A or L-NAME when used either alone or in combination.

Conclusion

These data demonstrate for the first time that propofol-induced depressor responses in vivo are predominantly mediated by TRPA1 ion channels with no involvement of TRPV1 ion channels and includes activation of both NOS and BKCa channels.  相似文献   

6.

Objective

Chronic stress is an important risk factor for atherosclerotic diseases. Our previous studies have shown that chronic unpredictable mild stress (CUMS) accelerates atherosclerosis and up-regulates TLR4/NF-κB expression in apoE-/- mice. However, TLR4/NF-κB signaling whether directly contributes to the development of atherosclerosis in CUMS mice is unclear. We hypothesized that the interference of TLR4/NF-κB can ameliorate CUMS-induced inflammation and atherosclerosis in apoE-/- mice.

Methods

ApoE-/- mice were exposed to 12 weeks CUMS. Ad-siRNA TLR4 was given by tail vein injection (10 μl/mouse, every 5 days), and PDTC (an inhibitor of NF-κB) was given by intraperitoneal injection (60 mg/kg, once a day). Plasma corticosterone concentrations were determined by solid-phase 125I radioimmunoassay. Atherosclerosis lesions in aortic sinuses were evaluated and quantified by IMAGEPRO PLUS. Western blotting was used to detect the expression of TLR4, NF-κB, and IL-1β in aortas of the mice. Plasma lipid profiles, IL-1β, TNF-α, and MCP-1 were measured by ELISA.

Results

Our results indicated that CUMS apoE-/- mice treatment with siRNA TLR4 significantly decreased atherosclerosis and down-regulated TLR4, NF-κB, and inflammatory cytokines. PDTC also remarkably reduced atherosclerosis and the levels of IL-1β, TNF-α and MCP-1 in plasma. However, Treatment with siRNA TLR4 or PDTC had no effect on plasma corticosterone levels, and lipid profiles.

Conclusions

TLR4/NF-κB pathway may participate in CUMS-induced atherosclerosis through activation of proinflammatory cytokines in apoE-/- mice. Our data may provide a new potential therapeutic target for prevention of CUMS -induced atherosclerosis.  相似文献   

7.

Background

Bam32, a 32 kDa adaptor molecule, plays important role in B cell receptor signalling, T cell receptor signalling and antibody affinity maturation in germinal centres. Since antibodies against trypanosome variant surface glycoproteins (VSG) are critically important for control of parasitemia, we hypothesized that Bam32 deficient (Bam32-/-) mice would be susceptible to T. congolense infection.

Methodology/Principal Findings

We found that T. congolense-infected Bam32-/- mice successfully control the first wave of parasitemia but then fail to control subsequent waves and ultimately succumb to their infection unlike wild type (WT) C57BL6 mice which are relatively resistant. Although infected Bam32-/- mice had significantly higher hepatomegaly and splenomegaly, their serum AST and ALT levels were not different, suggesting that increased liver pathology may not be responsible for the increased susceptibility of Bam32-/- mice to T. congolense. Using direct ex vivo flow cytometry and ELISA, we show that CD4+ T cells from infected Bam32-/- mice produced significantly increased amounts of disease-exacerbating proinflammatory cytokines (including IFN-γ, TNF-α and IL-6). However, the percentages of regulatory T cells and IL-10-producing CD4+ cells were similar in infected WT and Bam32-/- mice. While serum levels of parasite-specific IgM antibodies were normal, the levels of parasite-specific IgG, (particularly IgG1 and IgG2a) were significantly lower in Bam32-/- mice throughout infection. This was associated with impaired germinal centre response in Bam32-/- mice despite increased numbers of T follicular helper (Tfh) cells. Adoptive transfer studies indicate that intrinsic B cell defect was responsible for the enhanced susceptibility of Bam32-/- mice to T. congolense infection.

Conclusions/Significance

Collectively, our data show that Bam32 is important for optimal anti-trypanosome IgG antibody response and suppression of disease-promoting proinflammatory cytokines and its deficiency leads to inability to control T. congolense infection in mice.  相似文献   

8.

Background

Mutations in the LMNA gene, which encodes all A-type lamins, result in a variety of human diseases termed laminopathies. Lmna-/- mice appear normal at birth but become runted as early as 2 weeks of age and develop multiple tissue defects that mimic some aspects of human laminopathies. Lmna-/- mice also display smaller spleens and thymuses. In this study, we investigated whether altered lymphoid organ sizes are correlated with specific defects in lymphocyte development.

Principal Findings

Lmna-/- mice displayed severe age-dependent defects in T and B cell development which coincided with runting. Lmna-/- bone marrow reconstituted normal T and B cell development in irradiated wild-type recipients, driving generation of functional and self-MHC restricted CD4+ and CD8+ T cells. Transplantation of Lmna-/- neonatal thymus lobes into syngeneic wild-type recipients resulted in good engraftment of thymic tissue and normal thymocyte development.

Conclusions

Collectively, these data demonstrate that the severe defects in lymphocyte development that characterize Lmna-/- mice do not result directly from the loss of A-type lamin function in lymphocytes or thymic stroma. Instead, the immune defects in Lmna -/- mice likely reflect indirect damage, perhaps resulting from prolonged stress due to the striated muscle dystrophies that occur in these mice.  相似文献   

9.

Objective/Purpose

Febrile urinary tract infection (UTI) is a common bacterial disease that may lead to substantial morbidity and mortality especially among the elderly. Little is known about biomarkers that predict a complicated course. Our aim was to determine the role of certain urinary cytokines or antimicrobial proteins, plasma vitamin D level, and genetic variation in host defense of febrile UTI and its relation with bacteremia.

Methods

A case-control study. Out of a cohort of consecutive adults with febrile UTI (n = 787) included in a multi-center observational cohort study, 46 cases with bacteremic E.coli UTI and 45 cases with non-bacteremic E.coli UTI were randomly selected and compared to 46 controls. Urinary IL-6, IL-8, LL37, β-defensin 2 and uromodulin as well as plasma 25-hydroxyvitamin D were measured. In 440 controls and 707 UTI patients polymorphisms were genotyped in the genes CXCR1, DEFA4, DEFB1, IL6, IL8, MYD88, UMOD, TIRAP, TLR1, TLR2, TLR5 and TNF.

Results

IL-6, IL-8, and LL37 are different between controls and UTI patients, although these proteins do not distinguish between patients with and without bacteremia. While uromodulin did not differ between groups, inability to produce uromodulin is more common in patients with bacteremia. Most participants in the study, including the controls, had insufficient vitamin D and, at least in winter, UTI patients have lower vitamin D than controls. Associations were found between the CC genotype of IL6 SNP rs1800795 and occurrence of bacteremia and between TLR5 SNP rs5744168 and protection from UTI. The rare GG genotype of IL6 SNP rs1800795 was associated with higher β-defensin 2 production.

Conclusion

Although no biomarker was able to distinguish between UTI with or without bacteremia, two risk factors for bacteremia were identified. These were inability to produce uromodulin and an IL6 rs1800795 genotype.  相似文献   

10.
11.

Objective

Atherosclerosis, a chronic inflammatory disease, arises from metabolic disorders and is driven by inappropriate recruitment and proliferation of monocytes / macrophages and vascular smooth-muscle-cells. The receptor for the urokinase-type plasminogen activator (uPAR, Plaur) regulates the proteolytic activation of plasminogen. It is also a coactivator of integrins and facilitates leukocyte-endothelial interactions and vascular smooth-muscle-cell migration. The role of uPAR in atherogenesis remains elusive.

Methods and Results

We generated C57Bl6/J low-density lipoprotein receptor (LDL) and uPAR double knockout (uPAR-/-/LDLR-/-) mice to test the role of uPAR in two distinct atherosclerosis models. In LDLR-/- mice, hepatic overexpression following hydrodynamic transfection of soluble uPAR that competes with endogenous membrane-bound uPAR was performed as an interventional strategy. Aortic root atherosclerotic lesions induced by feeding a high-fat diet were smaller and comprised less macrophages and vascular smooth-muscle-cells in double knockout mice and animals overexpressing soluble uPAR when compared to controls. In contrast, lesion size, lipid-, macrophage-, and vascular smooth muscle cell content of guide-wire-induced intima lesions in the carotid artery were not affected by uPAR deficiency. Adhesion of uPAR-/--macrophages to TNFα-stimulated endothelial cells was decreased in vitro accompanied by reduced VCAM-1 expression on primary endothelial cells. Hepatic overexpression of soluble full-length murine uPAR in LDLR-/- mice led to a reduction of diet-induced atherosclerotic lesion formation and monocyte recruitment into plaques. Ex vivo incubation with soluble uPAR protein also inhibited adhesion of macrophages to TNFα-stimulated endothelial cells in vitro.

Conclusion

uPAR-deficiency as well as competitive soluble uPAR reduced diet-promoted but not guide-wire induced atherosclerotic lesions in mice by preventing monocyte recruitment and vascular smooth-muscle-cell infiltration. Soluble uPAR may represent a therapeutic tool for the modulation of hyperlipidemia-associated atherosclerotic lesion formation.  相似文献   

12.

Background & Aims

Bile acids (BAs) regulate energy expenditure by activating G-protein Coupled Bile Acid Receptor Gpbar1/TGR5 by cAMP-dependent mechanisms. Cholecystectomy (XGB) increases BAs recirculation rates resulting in increased tissue exposure to BAs during the light phase of the diurnal cycle in mice. We aimed to determine: 1) the effects of XGB on basal metabolic rate (BMR) and 2) the roles of TGR5 on XGB-dependent changes in BMR.

Methods

BMR was determined by indirect calorimetry in wild type and Tgr5 deficient (Tgr5-/-) male mice. Bile flow and BAs secretion rates were measured by surgical diversion of biliary duct. Biliary BAs and cholesterol were quantified by enzymatic methods. BAs serum concentration and specific composition was determined by liquid chromatography/tandem mass spectrometry. Gene expression was determined by qPCR analysis.

Results

XGB increased biliary BAs and cholesterol secretion rates, and elevated serum BAs concentration in wild type and Tgr5-/- mice during the light phase of the diurnal cycle. BMR was ~25% higher in cholecystectomized wild type mice (p <0.02), whereas no changes were detected in cholecystectomized Tgr5-/- mice compared to wild-type animals.

Conclusion

XGB increases BMR by TGR5-dependent mechanisms in mice.  相似文献   

13.

Background

Inflammation is commonly followed by the release of endogenous proteins called danger associated molecular patterns (DAMPs) that are able to warn the host for eminent danger. S100A8/A9 subunits are DAMPs that belong to the S100 family of calcium binding proteins. S100A8/A9 complexes induce an inflammatory response and their expression correlates with disease severity in several inflammatory disorders. S100A8/A9 promote endotoxin- and Escherichia (E.) coli-induced sepsis showing its contribution in systemic infection. The role of S100A8/A9 during a local infection of the urinary tract system caused by E. coli remains unknown.

Methodology/Principal Findings

We investigated the contribution of S100A8/A9 in acute urinary tract infection (UTI) by instilling 2 different doses of uropathogenic E. coli transurethrally in wild type (WT) and S100A9 knockout (KO) mice. Subsequently, we determined bacterial outgrowth, neutrophilic infiltrate and inflammatory mediators in bladder and kidney 24 and 48 hours later. UTI resulted in a substantial increase of S100A8/A9 protein in bladder and kidney tissue of WT mice. S100A9 KO mice displayed similar bacterial load in bladder or kidney homogenate compared to WT mice using 2 different doses at 2 different time points. S100A9 deficiency had little effect on the inflammatory responses to E. Coli-induced UTI infection, as assessed by myeloperoxidase activity in bladder and kidneys, histopathologic analysis, and renal and bladder cytokine concentrations.

Conclusions

We show that despite high S100A8/A9 expression in bladder and kidney tissue upon UTI, S100A8/A9 does not contribute to an effective host response against E. Coli in the urinary tract system.  相似文献   

14.

Objective

Secretoglobin (SCGB) 3A2 is a novel lung-enriched cytokine, previously shown to exhibit anti-inflammatory, growth factor, and anti-fibrotic activities. The latter activity was demonstrated using exogenously-administered recombinant SCGB3A2 in the bleomycin (BLM)-induced pulmonary fibrosis model. Whether SCGB3A2 exhibits anti-fibrotic activity in vivo is not known.

Methods

Mice null for the Scgb3a2 gene were subjected to the BLM-induced pulmonary fibrosis model, and the severity of pulmonary fibrosis determined using histological and biochemical methods.

Results

BLM treatment caused weight loss of both Scgb3a2-null and wild-type mice, however, the loss was far more pronounced in BLM-treated Scgb3a2-null than wild-type mice, and the weight of day 21 of BLM-treated Scgb3a2-null mice was about half of that of BLM-treated wild-type mice. Hematoxylin & Eosin, Masson Trichrome, and Sirius Red staining of lung sections, Ashcroft fibrosis scores, hydroxyproline contents, and the levels of mRNAs encoding various collagens demonstrated that BLM-treated Scgb3a2-null mouse lungs had more severe fibrosis than those of wild-type mouse lungs. Total and differential inflammatory cell numbers in bronchoalveolar lavage fluids, and levels of lung mRNAs including those encoding Th2 cytokines such as IL-4 and profibrotic cytokines such as TGFβ were higher in BLM-treated Scgb3a2-null mouse lungs as compared to those of wild-type mouse lungs. In contrast, mRNAs encoding surfactant proteins A, B, C, and D, and SCGB1A1 did not differ between BLM-treated Scgb3a2-null and wild-type mouse lungs.

Conclusion

The role of SCGB3A2 in fibrosis was revisited using Scgb3a2-null mice and littermate controls in the BLM-induced pulmonary fibrosis model. The pulmonary fibrosis in the Scgb3a2-null mice was more severe than the wild-type controls, thus establishing that SCGB3A2 has anti-fibrotic activity in vivo. Importantly, surfactant proteins and SCGB1A1 appear not to be involved in the susceptibility of Scgb3a2-null mice to BLM-induced pulmonary fibrosis.  相似文献   

15.

Background

Phenylketonuria (PKU) was the first disorder in which severe neurocognitive dysfunction could be prevented by dietary treatment. However, despite this effect, neuropsychological outcome in PKU still remains suboptimal and the phenylalanine-restricted diet is very demanding. To improve neuropsychological outcome and relieve the dietary restrictions for PKU patients, supplementation of large neutral amino acids (LNAA) is suggested as alternative treatment strategy that might correct all brain biochemical disturbances caused by high blood phenylalanine, and thereby improve neurocognitive functioning.

Objective

As a proof-of-principle, this study aimed to investigate all hypothesized biochemical treatment objectives of LNAA supplementation (normalizing brain phenylalanine, non-phenylalanine LNAA, and monoaminergic neurotransmitter concentrations) in PKU mice.

Methods

C57Bl/6 Pah-enu2 (PKU) mice and wild-type mice received a LNAA supplemented diet, an isonitrogenic/isocaloric high-protein control diet, or normal chow. After six weeks of dietary treatment, blood and brain amino acid and monoaminergic neurotransmitter concentrations were assessed.

Results

In PKU mice, the investigated LNAA supplementation regimen significantly reduced blood and brain phenylalanine concentrations by 33% and 26%, respectively, compared to normal chow (p<0.01), while alleviating brain deficiencies of some but not all supplemented LNAA. Moreover, LNAA supplementation in PKU mice significantly increased brain serotonin and norepinephrine concentrations from 35% to 71% and from 57% to 86% of wild-type concentrations (p<0.01), respectively, but not brain dopamine concentrations (p = 0.307).

Conclusions

This study shows that LNAA supplementation without dietary phenylalanine restriction in PKU mice improves brain biochemistry through all three hypothesized biochemical mechanisms. Thereby, these data provide proof-of-concept for LNAA supplementation as a valuable alternative dietary treatment strategy in PKU. Based on these results, LNAA treatment should be further optimized for clinical application with regard to the composition and dose of the LNAA supplement, taking into account all three working mechanisms of LNAA treatment.  相似文献   

16.

Background & Aims

While non-alcoholic steatohepatitis (NASH) is characterized by hepatic steatosis combined with inflammation, the mechanisms triggering hepatic inflammation are unknown. In Ldlr-/- mice, we have previously shown that lysosomal cholesterol accumulation in Kupffer cells (KCs) correlates with hepatic inflammation and cholesterol crystallization. Previously, cholesterol crystals have been shown to induce the activation of inflammasomes. Inflammasomes are protein complexes that induce the processing and release of pro-inflammatory cytokines IL-1b and IL-18 via caspase-1 activation. Whereas caspase-1 activation is independent of caspase-11 in the canonical pathway of inflammasome activation, caspase-11 was found to trigger caspase-1-dependent IL-1b and IL-18 in response to non-canonical inflammasome activators. So far, it has not been investigated whether inflammasome activation stimulates the formation of cholesterol crystals. We hypothesized that inflammasome activation in KCs stimulates cholesterol crystallization, thereby leading to hepatic inflammation.

Methods

Ldlr -/- mice were transplanted (tp) with wild-type (Wt) or caspase-1/11-/- (dKO) bone marrow and fed either regular chow or a high-fat, high-cholesterol (HFC) diet for 12 weeks. In vitro, bone marrow derived macrophages (BMDM) from wt or caspase-1/11-/- mice were incubated with oxLDL for 24h and autophagy was assessed.

Results

In line with our hypothesis, caspase-1/11-/--tp mice had less severe hepatic inflammation than Wt-tp animals, as evident from liver histology and gene expression analysis in isolated KCs. Mechanistically, KCs from caspase-1/11-/--tp mice showed less cholesterol crystals, enhanced cholesterol efflux and increased autophagy. In wt BMDM, oxLDL incubation led to disturbed autophagy activity whereas BMDM from caspase-1/11-/- mice had normal autophagy activity.

Conclusion

Altogether, these data suggest a vicious cycle whereby disturbed autophagy and decreased cholesterol efflux leads to newly formed cholesterol crystals and thereby maintain hepatic inflammation during NASH by further activating the inflammasome.  相似文献   

17.
Ma X  Lin L  Qin G  Lu X  Fiorotto M  Dixit VD  Sun Y 《PloS one》2011,6(1):e16391

Background

Obesity is a hallmark of aging in many Western societies, and is a precursor to numerous serious age-related diseases. Ghrelin (Ghrl), via its receptor (growth hormone secretagogue receptor, GHS-R), is shown to stimulate GH secretion and appetite. Surprisingly, our previous studies showed that Ghrl-/- mice have impaired thermoregulatory responses to cold and fasting stresses, while Ghsr-/- mice are adaptive.

Methodology/Principal Findings

To elucidate the mechanism, we analyzed the complete metabolic profiles of younger (3–4 months) and older (10–12 months) Ghrl-/- and Ghsr-/- mice. Food intake and locomotor activity were comparable for both null mice and their wild-type (WT) counterparts, regardless of age. There was also no difference in body composition between younger null mice and their WT counterparts. As the WT mice aged, as expected, the fat/lean ratio increased and energy expenditure (EE) decreased. Remarkably, however, older Ghsr-/- mice exhibited reduced fat/lean ratio and increased EE when compared to older WT mice, thus retaining a youthful lean and high EE phenotype; in comparison, there was no significant difference with EE in Ghrl-/- mice. In line with the EE data, the thermogenic regulator, uncoupling protein 1 (UCP1), was significantly up-regulated in brown adipose tissue (BAT) of Ghsr-/- mice, but not in Ghrl-/- mice.

Conclusions

Our data therefore suggest that GHS-R ablation activates adaptive thermogenic function(s) in BAT and increases EE, thereby enabling the retention of a lean phenotype. This is the first direct evidence that the ghrelin signaling pathway regulates fat-burning BAT to affect energy balance during aging. This regulation is likely mediated through an as-yet-unidentified new ligand of GHS-R.  相似文献   

18.
19.

Background

Cystic Fibrosis (CF) is the most prevalent autosomal recessive disease in the Caucasian population. A cystic fibrosis transmembrane conductance regulator knockout (CFTR-/-) pig that displays most of the features of the human CF disease has been recently developed. However, CFTR -/- pigs presents a 100% prevalence of meconium ileus that leads to death in the first hours after birth, requiring a rapid diagnosis and surgical intervention to relieve intestinal obstruction. Identification of CFTR -/- piglets is usually performed by PCR genotyping, a procedure that lasts between 4 to 6 h. Here, we aimed to develop a procedure for rapid identification of CFTR -/- piglets that will allow placing them under intensive care soon after birth and immediately proceeding with the surgical correction.

Methods and Principal Findings

Male and female CFTR +/- pigs were crossed and the progeny was examined by computed tomography (CT) scan to detect the presence of meconium ileus and facilitate a rapid post-natal surgical intervention. Genotype was confirmed by PCR. CT scan presented a 94.4% sensitivity to diagnose CFTR -/- piglets. Diagnosis by CT scan reduced the birth-to-surgery time from a minimum of 10 h down to a minimum of 2.5 h and increased the survival of CFTR -/- piglets to a maximum of 13 days post-surgery as opposed to just 66 h after later surgery.

Conclusion

CT scan imaging of meconium ileus is an accurate method for rapid identification of CFTR -/- piglets. Early CT detection of meconium ileus may help to extend the lifespan of CFTR -/- piglets and, thus, improve experimental research on CF, still an incurable disease.  相似文献   

20.

Background

Adenosine is a powerful trigger for ischemic preconditioning (IPC). Myocardial ischemia induces intracellular and extracellular ATP degradation to adenosine, which then activates adenosine receptors and elicits cardioprotection. Conventionally extracellular adenosine formation by ecto-5’-nucleotidase (CD73) during ischemia was thought to be negligible compared to the massive intracellular production, but controversial reports in the past demand further evaluation. In this study we evaluated the relevance of ecto-5’-nucleotidase (CD73) for infarct size reduction by ischemic preconditioning in in vitro and in vivo mouse models of myocardial infarction, comparing CD73-/- and wild type (WT) mice.

Methods and Results

3x5 minutes of IPC induced equal cardioprotection in isolated saline perfused hearts of wild type (WT) and CD73-/- mice, reducing control infarct sizes after 20 minutes of ischemia and 90 minutes of reperfusion from 46 ± 6.3% (WT) and 56.1 ± 7.6% (CD73-/-) to 26.8 ± 4.7% (WT) and 25.6 ± 4.7% (CD73-/-). Coronary venous adenosine levels measured after IPC stimuli by high-pressure liquid chromatography showed no differences between WT and CD73-/- hearts. Pharmacological preconditioning of WT hearts with adenosine, given at the measured venous concentration, was evenly cardioprotective as conventional IPC. In vivo, 4x5 minutes of IPC reduced control infarct sizes of 45.3 ± 8.9% (WT) and 40.5 ± 8% (CD73-/-) to 26.3 ± 8% (WT) and 22.6 ± 6.6% (CD73-/-) respectively, eliciting again equal cardioprotection. The extent of IPC-induced cardioprotection in male and female mice was identical.

Conclusion

The infarct size limiting effects of IPC in the mouse heart in vitro and in vivo are not significantly affected by genetic inactivation of CD73. The ecto-5’-nucleotidase derived extracellular formation of adenosine does not contribute substantially to adenosine’s well known cardioprotective effect in early phase ischemic preconditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号