首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ATG13     
《Autophagy》2013,9(6):944-956
During the past 20 years, autophagy signaling has entered the main stage of the cell biological theater. Autophagy represents an intracellular degradation process that is involved in both the bulk recycling of cytoplasmic components and the selective removal of organelles, protein aggregates, or intracellular pathogens. The understanding of autophagy has been greatly facilitated by the characterization of the molecular machinery governing this process. In yeast, initiation of autophagy is controlled by the Atg1 kinase complex, which is composed of the Ser/Thr kinase Atg1, the adaptor protein Atg13, and the ternary complex of Atg17-Atg31-Atg29. In vertebrates, the orthologous ULK1 kinase complex contains the Ser/Thr kinase ULK1 and the accessory proteins ATG13, RB1CC1, and ATG101. Among these components, Atg1/ULK1 have gained major attention in the past, i.e., for the identification of upstream regulatory kinases, the characterization of downstream substrates controlling the autophagic flux, or as a druggable target for the modulation of autophagy. However, accumulating data indicate that the function of Atg13/ATG13 has been likely underestimated so far. In addition to ensuring proper Atg1/ULK1 recruitment and activity, this adaptor molecule has been implicated in ULK1-independent autophagy processes. Furthermore, recent data have identified additional binding partners of Atg13/ATG13 besides the components of the Atg1/ULK1 complex, e.g., Atg8 family proteins or acidic phospholipids. Therefore, in this review we will center the spotlight on Atg13/ATG13 and summarize the role that Atg13/ATG13 assumes in the autophagy stage play.  相似文献   

2.
Macroautophagy/autophagy is an evolutionarily conserved cellular process whose induction is regulated by the ULK1 protein kinase complex. The subunit ATG13 functions as an adaptor protein by recruiting ULK1, RB1CC1 and ATG101 to a core ULK1 complex. Furthermore, ATG13 directly binds both phospholipids and members of the Atg8 family. The central involvement of ATG13 in complex formation makes it an attractive target for autophagy regulation. Here, we analyzed known interactions of ATG13 with proteins and lipids for their potential modulation of ULK1 complex formation and autophagy induction. Targeting the ATG101-ATG13 interaction showed the strongest autophagy-inhibitory effect, whereas the inhibition of binding to ULK1 or RB1CC1 had only minor effects, emphasizing that mutations interfering with ULK1 complex assembly do not necessarily result in a blockade of autophagy. Furthermore, inhibition of ATG13 binding to phospholipids or Atg8 proteins had only mild effects on autophagy. Generally, the observed phenotypes were more severe when autophagy was induced by MTORC1/2 inhibition compared to amino acid starvation. Collectively, these data establish the interaction between ATG13 and ATG101 as a promising target in disease-settings where the inhibition of autophagy is desired.  相似文献   

3.
4.
5.
Poliovirus (PV), like many positive-strand RNA viruses, subverts the macroautophagy/autophagy pathway to promote its own replication. Here, we investigate whether the virus uses the canonical autophagic signaling complex, consisting of the ULK1/2 kinases, ATG13, RB1CC1, and ATG101, to activate autophagy. We find that the virus sends autophagic signals independent of the ULK1 complex, and that the members of the autophagic complex are not required for normal levels of viral replication. We also show that the SQSTM1/p62 receptor protein is not degraded in a conventional manner during infection, but is likely cleaved in a manner similar to that shown for coxsackievirus B3. This means that SQSTM1, normally used to monitor autophagic degradation, cannot be used to accurately monitor degradation during poliovirus infection. In fact, autophagic degradation may be affected by the loss of SQSTM1 at the same time as autophagic signals are being sent. Finally, we demonstrate that ULK1 and ULK2 protein levels are greatly reduced during PV infection, and ATG13, RB1CC1, and ATG101 protein levels are reduced as well. Surprisingly, autophagic signaling appears to increase as ULK1 levels decrease. Overexpression of wild-type or dominant-negative ULK1 constructs does not affect virus replication, indicating that ULK1 degradation may be a side effect of the ULK1-independent signaling mechanism used by PV, inducing complex instability. This demonstration of ULK1-independent autophagic signaling is novel and leads to a model by which the virus is signaling to generate autophagosomes downstream of ULK1, while at the same time, cleaving cargo receptors, which may affect cargo loading and autophagic degradative flux. Our data suggest that PV has a finely-tuned relationship with the autophagic machinery, generating autophagosomes without using the primary autophagy signaling pathway.

Abbreviations: ACTB - actin beta; ATG13 - autophagy related 13; ATG14 - autophagy related 14; ATG101 - autophagy related 101; BECN1 - beclin 1; CVB3 - coxsackievirus B3; DMV - double-membraned vesicles; EM - electron microscopy; EMCV - encephalomyocarditis virus; EV-71 - enterovirus 71; FMDV - foot and mouth disease virus; GFP - green fluorescent protein; MAP1LC3B/LC3B - microtubule associated protein 1 light chain 3 beta; MOI - multiplicity of infection; MTOR - mechanistic target of rapamycin kinase; PIK3C3 - phosphatidylinositol 3-kinase catalytic subunit type 3; PRKAA2 - protein kinase AMP-activated catalytic subunit alpha 2; PSMG1 - proteasome assembly chaperone 1; PSMG2 - proteasome assembly chaperone 2PV - poliovirus; RB1CC1 - RB1 inducible coiled-coil 1; SQSTM1 - sequestosome 1; ULK1 - unc-51 like autophagy activating kinase 1; ULK2 - unc-51 like autophagy activating kinase 2; WIPI1 - WD repeat domain, phosphoinositide interacting 1  相似文献   


6.
During the past 20 years, autophagy signaling has entered the main stage of the cell biological theater. Autophagy represents an intracellular degradation process that is involved in both the bulk recycling of cytoplasmic components and the selective removal of organelles, protein aggregates, or intracellular pathogens. The understanding of autophagy has been greatly facilitated by the characterization of the molecular machinery governing this process. In yeast, initiation of autophagy is controlled by the Atg1 kinase complex, which is composed of the Ser/Thr kinase Atg1, the adaptor protein Atg13, and the ternary complex of Atg17-Atg31-Atg29. In vertebrates, the orthologous ULK1 kinase complex contains the Ser/Thr kinase ULK1 and the accessory proteins ATG13, RB1CC1, and ATG101. Among these components, Atg1/ULK1 have gained major attention in the past, i.e., for the identification of upstream regulatory kinases, the characterization of downstream substrates controlling the autophagic flux, or as a druggable target for the modulation of autophagy. However, accumulating data indicate that the function of Atg13/ATG13 has been likely underestimated so far. In addition to ensuring proper Atg1/ULK1 recruitment and activity, this adaptor molecule has been implicated in ULK1-independent autophagy processes. Furthermore, recent data have identified additional binding partners of Atg13/ATG13 besides the components of the Atg1/ULK1 complex, e.g., Atg8 family proteins or acidic phospholipids. Therefore, in this review we will center the spotlight on Atg13/ATG13 and summarize the role that Atg13/ATG13 assumes in the autophagy stage play.  相似文献   

7.
Mammalian ULK1 (unc-51 like kinase 1) and ULK2, Caenorhabditis elegans UNC-51, and Drosophila melanogaster Atg1 are serine/threonine kinases that regulate flux through the autophagy pathway in response to various types of cellular stress. C. elegans UNC-51 and D. melanogaster Atg1 also promote axonal growth and defasciculation; disruption of these genes results in defective axon guidance in invertebrates. Although disrupting ULK1/2 function impairs normal neurite outgrowth in vitro, the role of ULK1 and ULK2 in the developing brain remains poorly characterized. Here, we show that ULK1 and ULK2 are required for proper projection of axons in the forebrain. Mice lacking Ulk1 and Ulk2 in their central nervous systems showed defects in axonal pathfinding and defasciculation affecting the corpus callosum, anterior commissure, corticothalamic axons and thalamocortical axons. These defects impaired the midline crossing of callosal axons and caused hypoplasia of the anterior commissure and disorganization of the somatosensory cortex. The axon guidance defects observed in ulk1/2 double-knockout mice and central nervous system-specific (Nes-Cre) Ulk1/2-conditional double-knockout mice were not recapitulated in mice lacking other autophagy genes (i.e., Atg7 or Rb1cc1 [RB1-inducible coiled-coil 1]). The brains of Ulk1/2-deficient mice did not show stem cell defects previously attributed to defective autophagy in ambra1 (autophagy/Beclin 1 regulator 1)- and Rb1cc1-deficient mice or accumulation of SQSTM1 (sequestosome 1)+ or ubiquitin+ deposits. Together, these data demonstrate that ULK1 and ULK2 regulate axon guidance during mammalian brain development via a noncanonical (i.e., autophagy-independent) pathway.  相似文献   

8.
Taki Nishimura 《Autophagy》2017,13(10):1795-1796
In our recent paper, we biochemically analyzed autophagosome-related membranes at the initiation stage of macroautophagy/autophagy using atg knockout (KO) cells and demonstrated that the ULK complex is recruited to 2 distinct membranes: the ER membrane and ATG9A-positive autophagosome precursors. We have also identified phosphatidylinositol synthase (PIS)-enriched ER subdomains as the initiation site of autophagosome formation. Based on these findings, we propose that the ULK complex, the PIS-enriched ER subdomain, and ATG9A vesicles together initiate autophagosome formation.  相似文献   

9.
ULK1 (unc-51 like autophagy activating kinase 1), the key mediator of MTORC1 signaling to autophagy, regulates early stages of autophagosome formation in response to starvation or MTORC1 inhibition. How ULK1 regulates the autophagy induction process remains elusive. Here, we identify that ATG13, a binding partner of ULK1, mediates interaction of ULK1 with the ATG14-containing PIK3C3/VPS34 complex, the key machinery for initiation of autophagosome formation. The interaction enables ULK1 to phosphorylate ATG14 in a manner dependent upon autophagy inducing conditions, such as nutrient starvation or MTORC1 inhibition. The ATG14 phosphorylation mimics nutrient deprivation through stimulating the kinase activity of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex and facilitates phagophore and autophagosome formation. By monitoring the ATG14 phosphorylation, we determined that the ULK1 activity requires BECN1/Beclin 1 but not the phosphatidylethanolamine (PE)-conjugation machinery and the PIK3C3 kinase activity. Monitoring the phosphorylation also allowed us to identify that ATG9A is required to suppress the ULK1 activity under nutrient-enriched conditions. Furthermore, we determined that ATG14 phosphorylation depends on ULK1 and dietary conditions in vivo. These results define a key molecular event for the starvation-induced activation of the ATG14-containing PtdIns3K complex by ULK1, and demonstrate hierarchical relations between the ULK1 activation and other autophagy proteins involved in phagophore formation.  相似文献   

10.
11.
Xin Wen 《Autophagy》2020,16(9):1557-1558
ABSTRACT

There is a type of noncanonical autophagy, which is independent of ATG5 (autophagy related 5), also referred to as alternative autophagy. Both canonical and ATG5-independent alternative autophagy require the initiator ULK1 (unc-51 like kinase 1), but how ULK1 regulates these two types of autophagy differently remains unclear. A recent paper from Torii et al. demonstrates that phosphorylation of ULK1 at Ser746 by RIPK3 (receptor interacting serine/threonine kinase 3) is the key difference between these two types of autophagy; this phosphorylation is exclusively found during alternative autophagy.  相似文献   

12.
Autophagy plays a critical role in the maintenance of bone homeostasis. Osteoprotegerin (OPG) is an inhibitor of osteoclast-mediated bone resorption. However, whether autophagy is involved in the antiosteoclastogenic effects of OPG remains unclear. The present study aimed to investigate the potential mechanism of autophagy during OPG-induced bone resorption via inhibition of osteoclasts differentiated from bone marrow-derived macrophages in BALB/c mice. The results showed that after treatment with receptor activator of nuclear factor-κΒ ligand and macrophage colony-stimulating factor for 3 days, TRAP+ osteoclasts formed, representing the resting state of autophagy. These osteoclasts were treated with OPG and underwent autophagy, as demonstrated by LC3-II accumulation, acidic vesicular organelle formation, and the presence of autophagosomes. The levels of autophagy-related proteins, LC3-II increased and P62 decreased at 3 hr in OPG-treated osteoclasts. The viability, differentiation, and bone resorption activity of osteoclasts declined after OPG treatment. Treatment with OPG and chloroquine, an autophagy inhibitor, attenuated OPG-induced inhibition of osteoclastic bone resorption, whereas rapamycin (RAP), an autophagy inducer, enhanced OPG-induced inhibition of differentiation, survival, and bone resorption activity of osteoclasts. Furthermore, OPG reduced the amount of phosphorylated(p) protein kinase B (AKT) and pmTOR and increased the level of pULK, in a dose-dependant manner. LY294002, a phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT pathway inhibitor, attenuated the decline in pAKT, but enhanced the decline in pmTOR and the increase in pULK1 following OPG treatment. RAP enhanced the OPG-induced increase in pULK1. The PI3K inhibitor 3-methyladenine partly blocked OPG-induced autophagy. Thus, the results revealed that OPG inhibits osteoclast bone resorption by inducing autophagy via the AKT/mTOR/ULK1 signaling pathway.  相似文献   

13.
ULK1 (unc51-like autophagy activating kinase 1) is a serine/threonine kinase that plays a key role in regulating macroautophagy/autophagy induction in response to amino acid starvation. Despite the recent progress in understanding ULK1 functions, the molecular mechanism by which ULK1 regulates the induction of autophagy remains elusive. In this study, we determined that ULK1 phosphorylates Ser30 of BECN1 (Beclin 1) in association with ATG14 (autophagy-related 14) but not with UVRAG (UV radiation resistance associated). The Ser30 phosphorylation was induced by deprivation of amino acids or treatments with Torin 1 or rapamycin, the conditions that inhibit MTORC1 (mechanistic target of rapamycin complex 1), and requires ATG13 and RB1CC1 (RB1 inducible coiled-coil 1), proteins that interact with ULK1. Hypoxia or glutamine deprivation, which inhibit MTORC1, was also able to increase the phosphorylation in a manner dependent upon ULK1 and ULK2. Blocking the BECN1 phosphorylation by replacing Ser30 with alanine suppressed the amino acid starvation-induced activation of the ATG14-containing PIK3C3/VPS34 (phosphatidylinositol 3-kinase catalytic subunit type 3) kinase, and reduced autophagy flux and the formation of phagophores and autophagosomes. The Ser30-to-Ala mutation did not affect the ULK1-mediated phosphorylations of BECN1 Ser15 or ATG14 Ser29, indicating that the BECN1 Ser30 phosphorylation might regulate autophagy independently of those 2 sites. Taken together, these results demonstrate that BECN1 Ser30 is a ULK1 target site whose phosphorylation activates the ATG14-containing PIK3C3 complex and stimulates autophagosome formation in response to amino acid starvation, hypoxia, and MTORC1 inhibition.  相似文献   

14.
《Autophagy》2013,9(8):1466-1467
Autophagy is essential for nutrient recycling and intracellular housekeeping in plants by removing unwanted cytoplasmic constituents, aggregated polypeptides, and damaged organelles. The autophagy-related (ATG)1-ATG13 kinase complex is an upstream regulator that integrates metabolic and environmental cues into a coherent autophagic response directed by other ATG components. Our recent studies with Arabidopsis thaliana revealed that ATG11, an accessory protein of the ATG1-ATG13 complex, acts as a scaffold that connects the complex to autophagic membranes. We showed that ATG11 encourages proper behavior of the ATG1-ATG13 complex and faithful delivery of autophagic vesicles to the vacuole, likely through its interaction with ATG8. In addition, we demonstrated that Arabidopsis mitochondria are degraded during senescence via an autophagic route that requires ATG11 and other ATG components. Together, ATG11 appears to be an important modulator of the ATG1-ATG13 complex and a multifunctional scaffold required for bulk autophagy and the selective clearance of mitochondria.  相似文献   

15.
《Molecular cell》2021,81(18):3820-3832.e7
  1. Download : Download high-res image (183KB)
  2. Download : Download full-size image
  相似文献   

16.
Autophagy is essential for nutrient recycling and intracellular housekeeping in plants by removing unwanted cytoplasmic constituents, aggregated polypeptides, and damaged organelles. The autophagy-related (ATG)1-ATG13 kinase complex is an upstream regulator that integrates metabolic and environmental cues into a coherent autophagic response directed by other ATG components. Our recent studies with Arabidopsis thaliana revealed that ATG11, an accessory protein of the ATG1-ATG13 complex, acts as a scaffold that connects the complex to autophagic membranes. We showed that ATG11 encourages proper behavior of the ATG1-ATG13 complex and faithful delivery of autophagic vesicles to the vacuole, likely through its interaction with ATG8. In addition, we demonstrated that Arabidopsis mitochondria are degraded during senescence via an autophagic route that requires ATG11 and other ATG components. Together, ATG11 appears to be an important modulator of the ATG1-ATG13 complex and a multifunctional scaffold required for bulk autophagy and the selective clearance of mitochondria.  相似文献   

17.
Recently, macroautophagy/autophagy has emerged as a promising target in various types of solid tumor treatment. However, the impact of autophagy on acute myeloid leukemia (AML) maintenance and the validity of autophagy as a viable target in AML therapy remain unclear. Here we show that Kmt2a/Mll-Mllt3/Af9 AML (MA9-AML) cells have high autophagy flux compared with normal bone marrow cells, but autophagy-specific targeting, either through Rb1cc1-disruption to abolish autophagy initiation, or via Atg5-disruption to prevent phagophore (the autophagosome precursor) membrane elongation, does not affect the growth or survival of MA9-AML cells, either in vitro or in vivo. Mechanistically, neither Atg5 nor Rb1cc1 disruption impairs endolysosome formation or survival signaling pathways. The autophagy inhibitor chloroquine shows autophagy-independent anti-leukemic effects in vitro but has no efficacy in vivo likely due to limited achievable drug efficacy in blood. Further, vesicular exocytosis appears to mediate chloroquine resistance in AML cells, and exocytotic inhibition significantly enhances the anti-leukemic effect of chloroquine. Thus, chloroquine can induce leukemia cell death in vitro in an autophagy-independent manner but with inadequate efficacy in vivo, and vesicular exocytosis is a possible mechanism of chloroquine resistance in MA9-AML. This study also reveals that autophagy-specific targeting is unlikely to benefit MA9-AML therapy.  相似文献   

18.
《Autophagy》2013,9(10):1426-1433
Autophagy is an evolutionarily conserved catabolic process that involves the engulfment of cytoplasmic contents in a closed double-membrane structure, called the autophagosome, and their subsequent delivery to the vacuole/lysosomes for degradation. Genetic screens in Saccharomyces cerevisiae have identified more than 30 autophagy-related (Atg) genes that are essential for autophagosome formation. Here we isolated a novel autophagy gene, epg-9, whose loss of function causes defective autophagic degradation of a variety of protein aggregates during C. elegans embryogenesis. Mutations in epg-9 also reduce survival of animals under food depletion conditions. epg-9 mutants exhibit autophagy phenotypes characteristic of those associated with loss of function of unc-51/Atg1 and epg-1/Atg13. epg-9 encodes a protein with significant homology to mammalian ATG101. EPG-9 directly interacts with EPG-1/Atg13. Our study indicates that EPG-9 forms a complex with EPG-1 in the aggrephagy pathway in C. elegans.  相似文献   

19.
Satoru Torii 《Autophagy》2020,16(8):1532-1533
ABSTRACT

Alternative autophagy is an ATG5 (autophagy related 5)-independent, Golgi membrane-derived form of macroautophagy. ULK1 (unc-51 like kinase 1) is an essential initiator not only for canonical autophagy but also for alternative autophagy. However, the mechanism as to how ULK1 differentially regulates both types of autophagy has remained unclear. Recently, we identified a novel phosphorylation site of ULK1 at Ser746, which is required for alternative autophagy, but not canonical autophagy. We also identify RIPK3 (receptor-interacting serine-threonine kinase 3) as the kinase responsible for genotoxic stress-induced ULK1 S746 phosphorylation. These findings indicate that RIPK3-dependent ULK1 S746 phosphorylation plays a pivotal role in genotoxic stress-induced alternative autophagy.  相似文献   

20.
Numerous studies have confirmed that in addition to interfering with the tumor inflammatory environment, anti-inflammatory agents can directly increase apoptosis and sensitivity to conventional therapies and decrease invasion and metastasis, making them useful candidates for cancer therapy. Here, we first used high-throughput screening and had screened one compound candidate, ebastine (a H1-histamine receptor antagonist), for osteosarcoma therapy. Cell viability assays, colony formation assays, wound healing assays, and Transwell assays demonstrated that ebastine elicited antitumor effects in osteosarcoma cells. In addition, ebastine treatment exerted obvious effects on cell cycle arrest, metastasis inhibition, apoptosis and autophagy induction both in vitro and in vivo. Mechanistically, we observed that ebastine treatment triggered proapoptotic autophagy by activating AMPK/ULK1 signaling in osteosarcoma cells. Treatment with the AMPK inhibitor dorsomorphin reversed ebastine-induced apoptosis and autophagy. More importantly, we found that IPMK interacted with AMPK and functioned as a positive regulator of AMPK protein in osteosarcoma cells. A rescue study showed that the induction of autophagy and activation of the AMPK/ULK1 signaling pathway by ebastine treatment were reversed by IPMK knockdown, indicating that the activity of ebastine was IPMK dependent. We provide experimental evidence demonstrating that ebastine has antitumor activity in osteosarcoma and promotes autophagy by activating the AMPK/ULK1 signaling pathway, which is IPMK dependent. Our results provide insight into the clinical application potential of ebastine, which may represent a new potential therapeutic candidate for the treatment of osteosarcoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号