首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
G protein-coupled receptor 116 (GPR116) is a novel member of the G protein-coupled receptors and its function is largely unknown. To investigate the physiological function of GPR116 in vivo, we generated adipose tissue specific conditional Gpr116 knockout mice (CKO) and fed them on standard chow or high fat diets. Selective deletion of Gpr116 in adipose tissue caused a pronounced glucose intolerance and insulin resistance in mice, especially when challenged with a high fat diet. Biochemical analysis revealed a more severe hepatosteatosis in CKO mice. Additionally, we found that CKO mice showed a lowered concentration of circulating adiponectin and an increased level of serum resistin. Our study suggests that GPR116 may play a critical role in controlling adipocyte biology and systemic energy homeostasis.  相似文献   

2.
3.
Elevated levels of homocysteine produce detrimental effects in humans but its role in preterm birth is not known. Here we used a mouse model of hyperhomocysteinemia to examine the relevance of homocysteine to preterm birth. The mouse carries a heterozygous deletion of cystathionine β-synthase (Cbs+/?). Gestational period was monitored in wild type and Cbs+/? female mice. Mouse uterine and placental tissues, human primary trophoblast cells, and human myometrial and placental cell lines were used to determine the influence of homocysteine on expression of specific genes in vitro. The activity of BKCa channel in the myometrial cell line was monitored using the patch-clamp technique. We found that hyperhomocysteinemia had detrimental effects on pregnancy and induced preterm birth in mice. Homocysteine increased the expression of oxytocin receptor and Cox-2 as well as PGE2 production in uterus and placenta, and initiated premature uterine contraction. A Cox-2 inhibitor reversed these effects. Gpr109a, a receptor for niacin, induced Cox-2 in uterus. Homocysteine upregulated GPR109A and suppressed BKCa channel activity in human myometrial cells. Deletion of Gpr109a in Cbs+/? mice reversed premature birth. We conclude that hyperhomocysteinemia causes preterm birth in mice through upregulation of the Gpr109a/Cox-2/PGE2 axis and that pharmacological blockade of Gpr109a may have potential in prevention of preterm birth.  相似文献   

4.
Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta+/+ and Ig-Hepta−/− mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i) balanced synthesis of surfactant lipids and proteins and (ii) surfactant secretion, and (iii) a stimulating effect on recycling (uptake) in response to elevated levels of Sp-D in alveolar space.  相似文献   

5.
Loss of function mutations in GPR56, which encodes a G protein-coupled receptor, cause a specific human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). Studies from BFPP postmortem brain tissue and Gpr56 knockout mice have previously showed that GPR56 deletion leads to breaches in the pial basement membrane (BM) and neuronal ectopias during cerebral cortical development. Since α3β1 integrin also plays a role in pial BM assembly and maintenance, we evaluated whether it functions together with GPR56 in regulating the same developmental process. We reveal that loss of α3 integrin enhances the cortical phenotype associated with Gpr56 deletion, and that neuronal overmigration through a breached pial BM occurs earlier in double knockout than in Gpr56 single knockout mice. These observations provide compelling evidence of the synergism of GPR56 and α3β1 integrin in regulating the development of cerebral cortex.  相似文献   

6.
Gpr97 is an orphan adhesion GPCR and is highly conserved among species. Up to now, its physiological function remains largely unknown. Here, we show that Gpr97 deficiency results in an extensive reduction in B220+ lymphocytes in mice. More intensive analyses reveal an expanded marginal zone but a decreased follicular B-cell population in Gpr97−/−spleen, which displays disorganized architecture characterized by diffuse, irregular B-cell areas and the absence of discrete perifollicular marginal and mantle zones. In vivo functional studies reveal that the mutant mice could generate antibody responses to T cell-dependent and independent antigens, albeit enhanced response to the former and weakened response to the latter. By screening for the molecular events involved in the observed phenotypes, we found that lambda 5 expression is downregulated and its upstream inhibitor Aiolos is increased in the spleen of mutant mice, accompanied by significantly enhanced phosphorylation and nuclear translocation of cAMP response element-binding protein. Interestingly, increased constitutive Nf-κb p50/p65 expression and activity were observed in Gpr97−/− spleen, implicating a crucial role of Gpr97 in regulating Nf-κb activity. These findings uncover a novel biological function of Gpr97 in regulating B-cell development, implying Gpr97 as a potential therapeutic target for treatment of immunological disorders.  相似文献   

7.
Under specific environmental conditions, the yeast Saccharomyces cerevisiae can undergo a morphological switch to a pseudohyphal growth pattern. Pseudohyphal differentiation is generally studied upon induction by nitrogen limitation in the presence of glucose. It is known to be controlled by several signaling pathways, including mitogen-activated protein kinase, cyclic AMP-protein kinase A (cAMP-PKA), and Snf1 kinase pathways. We show that the alpha-glucoside sugars maltose and maltotriose, and especially sucrose, are more potent inducers of filamentation than glucose. Sucrose even induces filamentation in nitrogen-rich media and in the mep2Δ/mep2Δ ammonium permease mutant on ammonium-limiting medium. We demonstrate that glucose also inhibits filamentation by means of a pathway parallel to the cAMP-PKA pathway. Deletion of HXK2 shifted the pseudohyphal growth pattern on glucose to that of sucrose, while deletion of SNF4 abrogated filamentation on both sugars, indicating a negative role of glucose repression and a positive role for Snf1 activity in the control of filamentation. In all strains and in all media, sucrose induction of filamentation is greatly diminished by deletion of the sucrose/glucose-sensing G-protein-coupled receptor Gpr1, whereas it has no effect on induction by maltose and maltotriose. The competence of alpha-glucoside sugars to induce filamentation is reflected in the increased expression of the cell surface flocculin gene FLO11. In addition, sucrose is the only alpha-glucoside sugar capable of rapidly inducing FLO11 expression in a Gpr1-dependent manner, reflecting the sensitivity of Gpr1 for this sugar and its involvement in rapid sucrose signaling. Our study identifies sucrose as the most potent nutrient inducer of pseudohyphal growth and shows that glucose inactivation of Snf1 kinase signaling is responsible for the lower potency of glucose.  相似文献   

8.
9.
10.
G protein-coupled receptors (GPCRs) are a class of integral membrane proteins mediating physiological functions fundamental for survival, including energy homeostasis. A few years ago, an amino acid sequence of a novel GPCR gene was identified and named GPR178. In this study, we provide new insights regarding the biological significance of Gpr178 protein, investigating its evolutionary history and tissue distribution as well as examining the relationship between its expression level and feeding status. Our phylogenetic analysis indicated that GPR178 is highly conserved among all animal species investigated, and that GPR178 is not a member of a protein family. Real-time PCR and in situ hybridization revealed wide expression of Gpr178 mRNA in both the brain and periphery, with high expression density in the hypothalamus and brainstem, areas involved in the regulation of food intake. Hence, changes in receptor expression were assessed following several feeding paradigms including starvation and overfeeding. Short-term starvation (12–48h) or food restriction resulted in upregulation of Gpr178 mRNA expression in the brainstem, hypothalamus and prefrontal cortex. Conversely, short-term (48h) exposure to sucrose or Intralipid solutions downregulated Gpr178 mRNA in the brainstem; long-term exposure (10 days) to a palatable high-fat and high-sugar diet resulted in a downregulation of Gpr178 in the amygdala but not in the hypothalamus. Our results indicate that hypothalamic Gpr178 gene expression is altered during acute exposure to starvation or acute exposure to palatable food. Changes in gene expression following palatable diet consumption suggest a possible involvement of Gpr178 in the complex mechanisms of feeding reward.  相似文献   

11.
Angiogenesis, the formation of new blood vessels from pre-existing ones, is essential for development, wound healing, and tumor progression. The VEGF pathway plays irreplaceable roles during angiogenesis, but how other signals cross-talk with and modulate VEGF cascades is not clearly elucidated. Here, we identified that Gpr126, an endothelial cell-enriched gene, plays an important role in angiogenesis by regulating endothelial cell proliferation, migration, and tube formation. Knockdown of Gpr126 in the mouse retina resulted in the inhibition of hypoxia-induced angiogenesis. Interference of Gpr126 expression in zebrafish embryos led to defects in intersegmental vessel formation. Finally, we identified that GPR126 regulated the expression of VEGFR2 by targeting STAT5 and GATA2 through the cAMP-PKA-cAMP-response element-binding protein signaling pathway during angiogenesis. Our findings illustrate that GPR126 modulates both physiological and pathological angiogenesis through VEGF signaling, providing a potential target for the treatment of angiogenesis-related diseases.  相似文献   

12.
The GPR88 orphan G protein-coupled receptor is expressed throughout the striatum, being preferentially localised in medium spiny neurons. It is also present in lower densities in frontal cortex and thalamus. Rare mutations in humans suggest a role in cognition and motor function, while common variants are associated with psychosis. Here we evaluate the influence of genetic deletion of GPR88 upon performance in translational tasks interrogating motivation, reward evaluation and cognitive function. In an automated radial arm maze ‘N-back’ working memory task, Gpr88 KO mice showed impaired correct responding, suggesting a role for GPR88 receptors in working memory circuitry. Associative learning performance was similar to wild-type controls in a touchscreen task but performance was impaired at the reversal learning stage, suggesting cognitive inflexibility. Gpr88 KO mice showed higher breakpoints, reduced latencies and lengthened session time in a progressive ratio task consistent with enhanced motivation. Simultaneously, locomotor hyperactivity was apparent in this task, supporting previous findings of actions of GPR88 in a cortico-striatal-thalamic motor loop. Evidence for a role of GPR88 in reward processing was demonstrated in a touchscreen-based equivalent of the Iowa gambling task. Although both Gpr88 KO and wild-type mice showed a preference for an optimum contingency choice, Gpr88 KO mice selected more risky choices at the expense of more advantageous lower risk options. Together these novel data suggest that striatal GPR88 receptors influence activity in a range of procedures integrated by prefrontal, orbitofrontal and anterior cingulate cortico-striatal-thalamic loops leading to altered cognitive, motivational and reward evaluation processes.  相似文献   

13.
GPR120 (Ffar4) has been postulated to represent an important receptor mediating the improved metabolic profile seen upon ingestion of a diet enriched in polyunsaturated fatty acids (PUFAs). GPR120 is highly expressed in the digestive system, adipose tissue, lung and macrophages and also present in the endocrine pancreas. A new Gpr120 deficient mouse model on pure C57bl/6N background was developed to investigate the importance of the receptor for long-term feeding with a diet enriched with fish oil. Male Gpr120 deficient mice were fed two different high fat diets (HFDs) for 18 weeks. The diets contained lipids that were mainly saturated (SAT) or mainly n-3 polyunsaturated fatty acids (PUFA). Body composition, as well as glucose, lipid and energy metabolism, was studied. As expected, wild type mice fed the PUFA HFD gained less body weight and had lower body fat mass, hepatic lipid levels, plasma cholesterol and insulin levels and better glucose tolerance as compared to those fed the SAT HFD. Gpr120 deficient mice showed a similar improvement on the PUFA HFD as was observed for wild type mice. If anything, the Gpr120 deficient mice responded better to the PUFA HFD as compared to wild type mice with respect to liver fat content, plasma glucose levels and islet morphology. Gpr120 deficient animals were found to have similar energy, glucose and lipid metabolism when fed HFD PUFA compared to wild type mice. Therefore, GPR120 appears to be dispensable for the improved metabolic profile associated with intake of a diet enriched in n-3 PUFA fatty acids.  相似文献   

14.
15.
Recently, we reported that YghZ from Escherichia coli functions as an efficient l-glyceraldehyde 3-phosphate reductase (Gpr). Here we show that Gpr co-purifies with a b-type heme cofactor. Gpr associates with heme in a 1:1 stoichiometry to form a complex that is characterized by a Kd value of 5.8 ± 0.2 μM in the absence of NADPH and a Kd value of 11 ± 1.3 μM in the presence of saturating NADPH. The absorbance spectrum of reconstituted Gpr indicates that heme is bound in a hexacoordinate low-spin state under both oxidizing and reducing conditions. The physiological function of heme association with Gpr is unclear, as the l-glyceraldehyde 3-phosphate reductase activity of Gpr does not require the presence of the cofactor. Bioinformatics analysis reveals that Gpr clusters with a family of putative monooxygenases in several organisms, suggesting that Gpr may act as a heme-dependent monooxygenase. The discovery that Gpr associates with heme is interesting because Gpr shares 35% amino acid identity with the mammalian voltage-gated K+ channel β-subunit, an NADPH-dependent oxidoreductase that endows certain voltage-gated K+ channels with hemoprotein-like, O2-sensing properties. To date the molecular origin of O2 sensing by voltage-gated K+ channels is unknown and the results presented herein suggest a role for heme in this process.  相似文献   

16.
The G protein-coupled receptor Gpr30 (Gper) was recently claimed to bind to estradiol and to activate cytoplasmic signal transduction pathways in response to estradiol. However, there are conflicting data regarding the role of Gpr30 as an estrogen receptor (ER): several laboratories were unable to demonstrate estradiol binding to GPR30 or estradiol-activated signal transduction in Gpr30-expressing cells. To clarify the potential role of Gpr30 as an ER, we generated Gpr30-deficient mice. Although Gpr30 was expressed in all reproductive organs, histopathological analysis did not reveal any abnormalities in these organs in Gpr30-deficient mice. Mutant male and female mice were as fertile as their wild-type littermates, indicating normal function of the hypothalamic-pituitary-gonadal axis. Moreover, we analyzed estrogenic responses in two major estradiol target organs, the uterus and the mammary gland. For that purpose, we examined different readout paradigms such as morphological measures, cellular proliferation, and target gene expression. Our data demonstrate that in vivo Gpr30 is dispensable for the mediation of estradiol effects in reproductive organs. These results are in clear contrast to the phenotype of mice lacking the classic ER alpha (Esr1) or aromatase (Cyp19a1). We conclude that the perception of Gpr30 (based on homology related to peptide receptors) as an ER might be premature and has to be reconsidered.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号