首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pav-KLP is the Drosophila member of the MKLP1 family essential for cytokinesis. In the syncytial blastoderm embryo, GFP-Pav-KLP cyclically associates with astral, spindle, and midzone microtubules and also to actomyosin pseudocleavage furrows. As the embryo cellularizes, GFP-Pav-KLP also localizes to the leading edge of the furrows that form cells. In mononucleate cells, nuclear localization of GFP-Pav-KLP is mediated through NLS elements in its C-terminal domain. Mutants in these elements that delocalize Pav-KLP to the cytoplasm in interphase do not affect cell division. In mitotic cells, one population of wild-type GFP-Pav-KLP associates with the spindle and concentrates in the midzone at anaphase B. A second is at the cell cortex on mitotic entry and later concentrates in the region of the cleavage furrow. An ATP binding mutant does not localize to the cortex and spindle midzone but accumulates on spindle pole microtubules to which actin is recruited. This leads either to failure of the cleavage furrow to form or later defects in which daughter cells remain connected by a microtubule bridge. Together, this suggests Pav-KLP transports elements of the actomyosin cytoskeleton to plus ends of astral microtubules in the equatorial region of the cell to permit cleavage ring formation.  相似文献   

2.
At the end of the cell cycle a cell physically divides into two daughter cells in a process called cytokinesis. Cytokinesis consists of at least four steps: 1. The position of the presumptive cytokinesis furrow is specified. 2. A contractile ring is formed. 3. The contractile ring contracts, resulting in furrow ingression. 4. Cytokinesis completes with sealing of the membranes. The mitotic spindle positions the cytokinesis furrow at the cell cortex midway along the longitudinal axis of the spindle, which is both the mid-point between the two asters and the location of the spindle midzone. The mitotic spindle emits two consecutive signals that position the furrow: Microtubule asters provide a first signal; the spindle midzone provides a second signal. Our results support the view that the spindle midzone is dispensable for completion of cytokinesis. However, the spindle midzone can negatively affect aster-positioned cytokinesis, possibly because the aster- and midzone-positioned furrows compete for contractile elements.  相似文献   

3.
Microtubules, membranes and cytokinesis   总被引:10,自引:0,他引:10  
Proper division of the cell requires coordination between chromosome segregation by the mitotic spindle and cleavage of the cell by the cytokinetic apparatus. Interactions between the mitotic spindle, the contractile ring and the plasma membrane ensure that the cleavage furrow is properly placed between the segregating chromosomes and that new membrane compartments are formed to produce two daughter cells. The microtubule midzone is able to stimulate the cortex of the cell to ensure proper ingression and completion of the cleavage furrow. Specialized microtubule structures are responsible for directing membrane vesicles to the site of cell cleavage, and vesicle fusion is required for the proper completion of cytokinesis.  相似文献   

4.
At anaphase, the mitotic spindle positions the cytokinesis furrow [1]. Two populations of spindle microtubules are implicated in cytokinesis: radial microtubule arrays called asters and bundled nonkinetochore microtubules called the spindle midzone [2-4]. In C. elegans embryos, these two populations of microtubules provide two consecutive signals that position the cytokinesis furrow: The first signal is positioned midway between the microtubule asters; the second signal is positioned over the spindle midzone [5]. Evidence for two cytokinesis signals came from the identification of molecules that block midzone-positioned cytokinesis [5-7]. However, no molecules that are only required for, and thus define, the molecular pathway of aster-positioned cytokinesis have been identified. With RNAi screening, we identify LET-99 and the heterotrimeric G proteins GOA-1/GPA-16 and their regulator GPR-1/2 [10-12] in aster-positioned cytokinesis. By using mechanical spindle displacement, we show that the anaphase spindle positions cortical LET-99, at the site of the presumptive cytokinesis furrow. LET-99 enrichment at the furrow depends on the G proteins. GPR-1 is locally reduced at the site of cytokinesis-furrow formation by LET-99, which prevents accumulation of GPR-1 at this site. We conclude that LET-99 and the G proteins define a molecular pathway required for aster-positioned cytokinesis.  相似文献   

5.
Siegrist SE  Doe CQ 《Cell》2005,123(7):1323-1335
Cortical polarity regulates cell division, migration, and differentiation. Microtubules induce cortical polarity in yeast, but few examples are known in metazoans. We show that astral microtubules, kinesin Khc-73, and Discs large (Dlg) induce cortical polarization of Pins/Galphai in Drosophila neuroblasts; this cortical domain is functional for generating spindle asymmetry, daughter-cell-size asymmetry, and distinct sibling fates. Khc-73 localizes to astral microtubule plus ends, and Dlg/Khc-73 and Dlg/Pins coimmunoprecipitate, suggesting that microtubules induce Pins/Galphai cortical polarity through Dlg/Khc-73 interactions. The microtubule/Khc-73/Dlg pathway acts in parallel to the well-characterized Inscuteable/Par pathway, but each provides unique spatial and temporal information: The Inscuteable/Par pathway initiates at prophase to coordinate neuroblast cortical polarity with CNS tissue polarity, whereas the microtubule/Khc-73/Dlg pathway functions at metaphase to coordinate neuroblast cortical polarity with the mitotic spindle axis. These results identify a role for microtubules in polarizing the neuroblast cortex, a fundamental step for generating cell diversity through asymmetric cell division.  相似文献   

6.
Hill E  Clarke M  Barr FA 《The EMBO journal》2000,19(21):5711-5719
The Rab6-binding kinesin, Rab6-KIFL, was identified in a two-hybrid screen for proteins that interact with Rab6, a small GTPase involved in membrane traffic through the Golgi apparatus. We find that Rab6-KIFL accumulates in mitotic cells where it localizes to the midzone of the spindle during anaphase, and to the cleavage furrow and midbody during telophase. Overexpression of Rab6-KIFL causes a cell division defect resulting in cell death. Microinjection of antibodies to Rab6-KIFL results in the cells becoming binucleate after one cell cycle, and time-lapse microscopy reveals that this is due to a defect in cleavage furrow formation and thus cytokinesis. These data show that endogenous Rab6-KIFL functions in cell division during cleavage furrow formation and cytokinesis, in addition to its previously described role in membrane traffic.  相似文献   

7.
BACKGROUND: Myosin II, a conventional myosin, is dispensable for mitotic division in Dictyostelium if the cells are attached to a substrate, but is required when the cells are growing in suspension. Only a small fraction of myosin II-null cells fail to divide when attached to a substrate. Cortexillins are actin-bundling proteins that translocate to the midzone of mitotic cells and are important for the formation of a cleavage furrow, even in attached cells. Here, we investigated how myosin II and cortexillin I cooperate to determine the position of a cleavage furrow. RESULTS: Using a green fluorescent protein (GFP)-cortexillin I fusion protein as a marker for priming of a cleavage furrow, we found that positioning of a cleavage furrow occurred in two steps. In the first step, which was independent of myosin II and substrate, cortexillin I delineated a zone around the equatorial region of the cell. Myosin II then focused the cleavage furrow to the middle of this cortexillin I zone. If asymmetric cleavage in the absence of myosin II partitioned a cell into a binucleate and an anucleate portion, cell-surface ruffles were induced along the cleavage furrow, which led to movement of the anucleate portion along the connecting strand towards the binucleate one. CONCLUSIONS: In myosin II-null cells, cleavage furrow positioning occurs in two steps: priming of the furrow region and actual cleavage, which may proceed in the middle or at one border of the cortexillin ring. A control mechanism acting at late cytokinesis prevents cell division into an anucleate and a binucleate portion, causing a displaced furrow to regress if it becomes aberrantly located on top of polar microtubule asters.  相似文献   

8.
Recent studies have provided evidence that, during cytokinesis, activation of the Pbl-Rho1 pathway by a protein complex located at the spindle midzone, and inhibition of this pathway by two mitotic cyclins, may be major contributing factors controlling the place and timing of the cleavage furrow.  相似文献   

9.
The process of cytokinesis can be divided into two stages: the assembly and constriction of an actomyosin ring giving rise to a narrow intracellular canal and the final breaking and resealing of this canal. Mutations in several genes of Caenorhabditis elegans disrupt the spindle midzone (anti-parallel microtubules and associated proteins that form between the spindle poles) and give rise to failures in the completion of cytokinesis. We show that loss of function of spd-1 causes midzone disruptions, although cytokinesis generally completes. SPD-1 is a conserved microtubule-bundling protein that localizes to the midzone and also to microtubule bundles in the cytoplasm. The midzone localization of SPD-1 is perturbed in embryos depleted of other midzone components, yet the cytoplasmic bundles are not affected. We found that two other midzone components also localize to the ingressing furrow in wild-type embryos; when SPD-1 is depleted, there is no visible midzone, and only this furrow localization remains. SPD-1 differs from other midzone components in that it is essential for the integrity of the midzone, yet not for cytokinesis. Also, it can localize to the midzone when other midzone components are depleted, suggesting that SPD-1 may play an early role in the pathway of midzone assembly.  相似文献   

10.
Dictyostelium DdINCENP is a chromosomal passenger protein associated with centromeres, the spindle midzone, and poles during mitosis and the cleavage furrow during cytokinesis. Disruption of the single DdINCENP gene revealed important roles for this protein in mitosis and cytokinesis. DdINCENP null cells lack a robust spindle midzone and are hypersensitive to microtubule-depolymerizing drugs, suggesting that their spindles may not be stable. Furthermore DdCP224, a protein homologous to the microtubule-stabilizing protein TOGp/XMAP215, was absent from the spindle midzone of DdINCENP null cells. Overexpression of DdCP224 rescued the weak spindle midzone defect of DdINCENP null cells. Although not required for the localization of the myosin II contractile ring and subsequent formation of a cleavage furrow, DdINCENP is important for the abscission of daughter cells at the end of cytokinesis. Finally, we show that the localization of DdINCENP at the cleavage furrow is modulated by myosin II but it occurs by a mechanism different from that controlling the formation of the contractile ring.  相似文献   

11.
LIM kinases (LIMK1 and LIMK2) regulate actin cytoskeletal reorganization through phosphorylating and inactivating cofilin, an actin-depolymerizing factor of actin filaments. Here, we describe a detailed analysis of the cell-cycle-dependent activity of LIMK2, and a subcellular localization of LIMK1 and LIMK2. The activity of LIMK2, distinct from LIMK1, toward cofilin phosphorylation did not change in the normal cell division cycle. In contrast, LIMK2 was hyperphosphorylated and its activity was markedly increased when HeLa cells were synchronized at mitosis with nocodazole treatment. Immunofluorescence analysis showed that LIMK1 was localized at cell-cell adhesion sites in interphase and prophase, redistributed to the spindle poles during prometaphase to anaphase, and accumulated at the cleavage furrow in telophase. In contrast, LIMK2 was diffusely localized in the cytoplasm during interphase, redistributed to the mitotic spindle, and finally to the spindle midzone during anaphase to telophase. These findings suggest that LIMK2 is activated in response to microtubule disruption, and that LIMK1 and LIMK2 may play different roles in regulating for the mitotic spindle organization, chromosome segregation, and cytokinesis during the cell division cycle.  相似文献   

12.

Background

An oocyte undergoes two rounds of asymmetric division to generate a haploid gamete and two small polar bodies designed for apoptosis. Chromosomes play important roles in specifying the asymmetric meiotic divisions in the oocytes but the underlying mechanism is poorly understood.

Results

Chromosomes independently induce spindle formation and cortical actomyosin assembly into special cap and ring structures in the cortex of the oocyte. The spindle and the cortical cap/ring interact to generate mechanical forces, leading to polar body extrusion. Two distinct force-driven membrane changes were observed during 2nd polar body extrusion: a protrusion of the cortical cap and a membrane invagination induced by an anaphase spindle midzone. The cortical cap protrusion and invagination help rotate the spindle perpendicularly so that the spindle midzone can induce bilateral furrows at the shoulder of the protruding cap, leading to an abscission of the polar body. It is interesting to note that while the mitotic spindle midzone induces bilateral furrowing, leading to efficient symmetric division in the zygote, the meiotic spindle midzone induced cytokinetic furrowing only locally.

Conclusions

Distinct forces driving cortical cap protrusion and membrane invagination are involved in spindle rotation and polar body extrusion during meiosis II in mouse oocytes.  相似文献   

13.
In the nematode Caenorhabditis elegans, neurons are generated from asymmetric divisions in which a mother cell divides to produce daughters that differ in fate. Here, we demonstrate that the gene pig-1 regulates the asymmetric divisions of neuroblasts that divide to produce an apoptotic cell and either a neural precursor or a neuron. In pig-1 mutants, these neuroblasts divide to produce daughters that are more equal in size, and their apoptotic daughters are transformed into their sisters, leading to the production of extra neurons. PIG-1 is orthologous to MELK, a conserved member of the polarity-regulating PAR-1/Kin1/SAD-1 family of serine/threonine kinases. Although MELK has been implicated in regulating the cell cycle, our data suggest that PIG-1, like other PAR-1 family members, regulates cell polarity.  相似文献   

14.
The mitotic spindle is generally considered the initiator of furrow ingression. However, recent studies suggest that furrows can form without spindles, particularly during asymmetric cell division. In Dictyostelium, the mechanoenzyme myosin II and the actin cross-linker cortexillin I form a mechanosensor that responds to mechanical stress, which could account for spindle-independent contractile protein recruitment. Here we show that the regulatory and contractility network composed of myosin II, cortexillin I, IQGAP2, kinesin-6 (kif12), and inner centromeric protein (INCENP) is a mechanical stress-responsive system. Myosin II and cortexillin I form the core mechanosensor, and mechanotransduction is mediated by IQGAP2 to kif12 and INCENP. In addition, IQGAP2 is antagonized by IQGAP1 to modulate the mechanoresponsiveness of the system, suggesting a possible mechanism for discriminating between mechanical and biochemical inputs. Furthermore, IQGAP2 is important for maintaining spindle morphology and kif12 and myosin II cleavage furrow recruitment. Cortexillin II is not directly involved in myosin II mechanosensitive accumulation, but without cortexillin I, cortexillin II's role in membrane-cortex attachment is revealed. Finally, the mitotic spindle is dispensable for the system. Overall, this mechanosensory system is structured like a control system characterized by mechanochemical feedback loops that regulate myosin II localization at sites of mechanical stress and the cleavage furrow.  相似文献   

15.
The proper orientation of the mitotic spindle is essential for mitosis; however, how these events unfold at the molecular level is not well understood. AMP-activated protein kinase (AMPK) regulates energy homeostasis in eukaryotes, and AMPK-null Drosophila mutants have spindle defects. We show that threonine(172) phosphorylated AMPK localizes to the mitotic spindle poles and increases when cells enter mitosis. AMPK depletion causes a mitotic delay with misoriented spindles relative to the normal division plane and a reduced number and length of astral microtubules. AMPK-depleted cells contain mitotic actin bundles, which prevent astral microtubule-actin cortex attachments. Since myosin regulatory light chain (MRLC) is an AMPK downstream target and mediates actin function, we investigated whether AMPK signals through MRLC to control spindle orientation. Mitotic levels of serine(19) phosphorylated MRLC (pMRLC(ser19)) and spindle pole-associated pMRLC(ser19) are abolished when AMPK function is compromised, indicating that AMPK is essential for pMRLC(ser19) spindle pole activity. Phosphorylation of AMPK and MRLC in the mitotic spindle is dependent upon calcium/calmodulin-dependent protein kinase kinase (CamKK) activity in LKB1-deficient cells, suggesting that CamKK regulates this pathway when LKB1 function is compromised. Taken together, these data indicate that AMPK mediates spindle pole-associated pMRLC(ser19) to control spindle orientation via regulation of actin cortex-astral microtubule attachments.  相似文献   

16.
Li Z  Lee JH  Chu F  Burlingame AL  Günzl A  Wang CC 《PloS one》2008,3(6):e2354
Aurora B kinase is a key component of the chromosomal passenger complex (CPC), which regulates chromosome segregation and cytokinesis. An ortholog of Aurora B was characterized in Trypanosoma brucei (TbAUK1), but other conserved components of the complex have not been found. Here we identified four novel TbAUK1 associated proteins by tandem affinity purification and mass spectrometry. Among these four proteins, TbKIN-A and TbKIN-B are novel kinesin homologs, whereas TbCPC1 and TbCPC2 are hypothetical proteins without any sequence similarity to those known CPC components from yeasts and metazoans. RNAi-mediated silencing of each of the four genes led to loss of spindle assembly, chromosome segregation and cytokinesis. TbKIN-A localizes to the mitotic spindle and TbKIN-B to the spindle midzone during mitosis, whereas TbCPC1, TbCPC2 and TbAUK1 display the dynamic localization pattern of a CPC. After mitosis, the CPC disappears from the central spindle and re-localizes at a dorsal mid-point of the mother cell, where the anterior tip of the daughter cell is tethered, to start cell division toward the posterior end, indicating a most unusual CPC-initiated cytokinesis in a eukaryote.  相似文献   

17.
Signaling by the centrosomal asters and spindle midzone coordinately directs formation of the cytokinetic furrow. Here, we explore the contribution of the asters by analyzing the consequences of altering interaster distance during the first cytokinesis of the Caenorhabditis elegans embryo. Delaying aster separation, by using TPXL-1 depletion to shorten the metaphase spindle, leads to a corresponding delay in furrow formation, but results in a single furrow that ingresses at a normal rate. Preventing aster separation, by simultaneously inhibiting TPXL-1 and Gα signaling-based cortical forces pulling on the asters, delays furrow formation and leads to the formation of multiple furrows that ingress toward the midzone. Disrupting midzone-based signaling, by depleting conserved midzone complexes, results in a converse phenotype: neither the timing nor the number of furrows is affected, but the rate of furrow ingression is decreased threefold. Simultaneously delaying aster separation and disrupting midzone-based signaling leads to complete failure of furrow formation. Based on these results, we propose that signaling by the separated asters executes two critical functions: 1) it couples furrow formation to anaphase onset by concentrating contractile ring proteins on the equatorial cortex in a midzone-independent manner and 2) it subsequently refines spindle midzone-based signaling to restrict furrowing to a single site.  相似文献   

18.
Members of the MKLP1 subfamily of kinesin motor proteins localize to the equatorial region of the spindle midzone and are capable of bundling antiparallel microtubules in vitro. Despite these intriguing characteristics, it is unclear what role these kinesins play in dividing cells, particularly within the context of a developing embryo. Here, we report the identification of a null allele of zen-4, an MKLP1 homologue in the nematode Caenorhabditis elegans, and demonstrate that ZEN-4 is essential for cytokinesis. Embryos deprived of ZEN-4 form multinucleate single-celled embryos as they continue to cycle through mitosis but fail to complete cell division. Initiation of the cytokinetic furrow occurs at the normal time and place, but furrow propagation halts prematurely. Time-lapse recordings and microtubule staining reveal that the cytokinesis defect is preceded by the dissociation of the midzone microtubules. We show that ZEN-4 protein localizes to the spindle midzone during anaphase and persists at the midbody region throughout cytokinesis. We propose that ZEN-4 directly cross-links the midzone microtubules and suggest that these microtubules are required for the completion of cytokinesis.  相似文献   

19.
After the separation of sister chromatids in anaphase, it is essential that the cell position a cleavage furrow so that it partitions the chromatids into two daughter cells of roughly equal size. The mechanism by which cells position this cleavage furrow remains unknown, although the best current model is that furrows always assemble midway between asters. We used micromanipulation of human cultured cells to produce mitotic heterokaryons with two spindles fused in a V conformation. The majority (15/19) of these cells cleaved along a single plane that transected the two arms of the V at the position where the metaphase plate had been, a result at odds with current views of furrow positioning. However, four cells did form an additional ectopic furrow between the spindle poles at the open end of the V, consistent with the established view. To begin to address the mechanism of furrow assembly, we have begun a detailed study of the properties of the chromosome passenger inner centromere protein (INCENP) in anaphase and telophase cells. We found that INCENP is a very early component of the cleavage furrow, accumulating at the equatorial cortex before any noticeable cortical shape change and before any local accumulation of myosin heavy chain. In mitotic heterokaryons, INCENP was detected in association with spindle midzone microtubules beneath sites of furrowing and was not detected when furrows were absent. A functional role for INCENP in cytokinesis was suggested in experiments where a nearly full-length INCENP was tethered to the centromere. Many cells expressing the chimeric INCENP failed to complete cytokinesis and entered the next cell cycle with daughter cells connected by a large intercellular bridge with a prominent midbody. Together, these results suggest that INCENP has a role in either the assembly or function of the cleavage furrow.  相似文献   

20.
BACKGROUND: After anaphase, the segregated chromosomes are sequestered by cytokinesis into two separate daughter cells by a cleavage furrow formed by the actomyosin-based contractile ring. The failure to properly position the contractile ring between the segregated chromosomes can result in aneuploidy. In both C. elegans embryos and human cells, the central spindle regulates division-plane positioning in parallel with a second pathway that involves astral microtubules. RESULTS: We combined genetic and pharmacological manipulations with live cell imaging to spatially separate the two division cues in a single cell. We demonstrate that the two pathways for furrow formation are mechanistically and genetically distinct. By following the distribution of green fluorescent protein (GFP)-tagged nonmuscle myosin, we have found that the astral pathway for furrow formation involves the negative regulation of cortical myosin recruitment. An asymmetrically positioned spindle induces the asymmetric cortical accumulation of myosin. This cortical myosin behaves as a coherent contractile network. If the cortical network is nonuniform over the cell, the cortical contractile elements coalesce into a single furrow. This coalescence requires interconnections among contractile elements. CONCLUSIONS: We conclude that the two pathways of cleavage-furrow formation are mechanistically distinct. In particular, we conclude that the astral pathway for cleavage-furrow formation involves the negative regulation of myosin distribution by astral cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号