首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

Typical toxic symptom only occurred in B-toxic C. grandis leaves. B-toxicity induced PCD of C. grandis leaf phloem tissue. The lower leaf free B might contribute to the higher B-tolerance of C. sinensis.

Abstract

Seedlings of ‘Xuegan’ (Citrus sinensis) and ‘Sour pummelo’ (Citrus grandis) differing in boron (B)-tolerance were irrigated with nutrient solution containing 10 (control) or 400 (B-toxic) μM H3BO3 for 15 weeks. Thereafter, the effects of B-toxicity on leaf photosynthesis, chlorophyll, plant B absorption and distribution, root and leaf anatomy were investigated to elucidate the possible B-tolerant mechanisms of Citrus plants. Typical toxic symptom only occurred in B-toxic C. grandis leaves. Similarly, B-toxicity only affected C. grandis photosynthesis and chlorophyll. Although total B concentration in B-toxic roots and leaves was similar between the two species, leaves from B-toxic C. grandis plant middle had higher free B and lower bound B as compared with those from C. sinensis. Effects of B-toxicity on leaf structure were mainly limited to the mesophyll cells and the phloem of leaf veins. Although irregular cell wall thickening was observed in leaf cortex cells and phloem tissue of B-toxic C. grandis and C. sinensis leaves, exocytosis only occurred in the companion cells and the parenchyma cells of B-toxic C. sinensis leaf phloem. Also, B-toxicity induced cell death of phloem tissue through autophagy in C. grandis leaf veins. B-toxicity caused death of root epidermal cells of the two Citrus species. B-toxicity restrained degradation of middle lamella, but did not alter ultrastructure of Golgi apparatus and mitochondria in root elongating zone cells. In conclusion, C. sinensis was more tolerant to B-toxicity than C. grandis. The lower leaf free B and higher bound B might contribute to the higher B-tolerance of C. sinensis.  相似文献   

2.
The ultrastructure of tomato leaf disks treated with a biostimulator (0.01 mg dm–3 BB6, brassinosteroid analogue from Cuba), and subjected to high temperature (40 °C for 1.5 h) was studied. High temperature stress caused the appearance of granules in the nucleus, nucleolus and cytoplasm. In chloroplasts and in mitochondria the internal membrane system was disorganised and in chloroplasts some starch granules were detected. These symptoms were more marked in the cells treated with BB6. The influence of BB6 on the ultrastructure of leaf cells was apparent also before being subjected to heat stress.  相似文献   

3.
青海湖盐碱湿地灰绿藜叶的形态解剖学研究   总被引:13,自引:2,他引:11  
利用光学显微镜和透射电镜对生长于青海湖湖滨盐碱湿地的先锋植物灰绿藜(Chenopodium glaucum Linn.)及生长于甘肃兰州大学校园内中生环境对照灰绿藜叶片的显微、超微结构进行了比较观察研究。结果发现中生环境灰绿藜叶片较薄,有明显的栅栏与海绵组织分化;叶绿体呈椭圆形,基粒片层较发达且普遍含有淀粉粒。与对照相比,生长于高海拔湖滨盐碱湿地灰绿藜叶为等面叶,叶片厚,角质层厚,栅栏组织发达,气室明显,具表皮毛;线粒体较多,但嵴不发达,叶绿体呈扁船型沿着壁的边缘排列,叶绿体的基粒片层不发达且普遍含有脂质球,一些细胞中常出现大量的多层膜结构。研究结果表明2种生态型灰绿藜的形态结构已发生了深刻的变异,湖滨灰绿藜表现出适应区域的寒旱化的明显特征。  相似文献   

4.
Polyploidy is common in many plant species. Up to date, few studies were reported on photosynthesis and leaf anatomy of tetraploid black locust (Robinia pseudoacacia L.), which has considerable value for agriculture and forest. This study compared photosynthesis and leaf ultrastructure on two black locusts. The values of Pn and Ci in tetraploid were significantly higher than those in the corresponding diploids. Significantly lower stomata dimensions (6.0 μm in length and 2.4 μm in width) and tomatal density were observed in 4×. Leaf trichome density was statistically different between 2× and 4×. However, no substantial difference in the ultrastructure of chloroplasts and mitochondria between diploid and tetraploid was observed under any stress. These ultrastructural characteristics may contribute to tetraploid a better protection mechanism than diploid.  相似文献   

5.
Hydroponic experiments were conducted to study the effect of Pb on growth, leaf antioxidant enzyme activities, and ultrastructure of the accumulating ecotype (AE) and non-accumulating ecotype (NAE) of Sedum alfredii Hance. AE was found to be more tolerant to excessive Pb levels in growth medium. Concentrations of Pb in the shoots of the AE were 1.98 times higher than those in the NAE when 0.2 mM Pb was supplied. Both chlorophyll a and b did not decrease significantly in AE plants after Pb treatment, while a significant decrease was noted in chlorophyll a and b of NAE plants treated with Pb concentrations greater than 0.05 mM. The results showed that activities of superoxide dismutase (SOD) and catalase (CAT) were elevated in the leaves of AE under Pb stress. However in NAE, Pb-caused enhancement was noticed only in the activity of SOD while activity of CAT was declined as compared to the control plants. With increased Pb level, malondialdehyde (MDA) content increased significantly in both ecotypes of S. alfredii, indicating that Pb toxicity led to lipid peroxidation and membrane damage, but MDA content in the leaves of NAE was always higher than in AE plants. The ultrastructural analysis of the spongy mesophyll cells revealed that excessive Pb concentrations obviously damaged the cell membrane, chloroplasts, and mitochondria of both the ecotypes but damage was more severe in NAE. Although growth, leaf physiology, and ultrastructure of both the ecotypes were affected by Pb treatment, deleterious effects were more pronounced in NAE. This text was submitted by the authors in English.  相似文献   

6.
NaCl和Na2SO4胁迫下两种刺槐叶肉细胞叶绿体超微结构   总被引:3,自引:0,他引:3  
二倍体刺槐(diploid Robinia pseudoacacia)是我国水土保持林的先锋树种,具有较强的适应性和抗逆性,对改善生态环境、防治水土流失、调节水文状况有重要作用。四倍体刺槐(tetraploid Robinia pseudoacacia)是二倍体刺槐的加倍品种,也称多倍体刺槐,由韩国引进,具有速生、耐盐碱、耐干旱和耐烟尘等特点。目前,关于四倍体刺槐的研究,主要集中于栽培技术和繁殖技术方面,而关于四倍体刺槐叶片超微结构与其耐盐性的关系尚缺乏报道。比较了二倍体刺槐和四倍体刺槐在NaCl和Na2SO4胁迫下,叶片叶绿体超微结构的变化特点,一方面可以对二者的耐盐性进行鉴定,同时也可以探讨不同盐分胁迫条件下的作用机制。利用NaCl和Na2SO4进行20d的盐胁迫处理,观察叶绿体超微结构的变化特点,发现:NaCl处理前,二者叶肉细胞叶绿体为梭形、形态饱满、结构完整,NaCl处理后10d时,二倍体刺槐的叶绿体出现变形、膜模糊、基粒片层松散、类囊体解体、脂质球增多等现象,NaCl处理后20d时,叶绿体肿胀、变形,基粒片层断裂,膜系统解体。Na2SO4处理后10d时,二倍体刺槐的叶绿体肿胀,膜模糊,基粒片层松散、类囊体解体,Na2SO4盐胁迫处理后20d时,膜系统全部解体,结构破坏更为严重。总体来说,四倍体刺槐在盐胁迫后叶绿体结构变化不明显,只是在Na2SO4处理20d时,四倍体刺槐的叶绿体出现中空、基粒片层松散、膜边缘模糊现象。在处理前,两种刺槐的叶绿体均紧贴细胞壁,分布于细胞壁边缘。在NaCl处理后10d时,二倍体刺槐的叶绿体仍呈有序排列,紧贴细胞壁,但在处理后20d时,大部分叶绿体脱离细胞壁,呈随机分布。在Na2SO4处理后10d时,二倍体刺槐部分叶绿体脱离细胞壁,位于细胞中央。在Na2SO4处理后20d时,二倍体刺槐叶绿体大部分与细胞壁脱离。四倍体刺槐在两种盐胁迫处理前后叶绿体的排列变化不明显,均分布于细胞壁边缘,紧贴细胞壁。所以在盐胁迫下,耐盐植物叶片的叶绿体表现为结构完整,基粒片层清晰,类囊体结构完整,而不耐盐植物则表现为叶绿体超微结构松散、变形,基粒片层模糊,破坏严重时基粒片层扭曲,叶绿体解体,失去完整结构。  相似文献   

7.
通过半薄及超薄切片,比较了正常和受白粉菌感染的小麦叶片细胞的显微及超微结构的差异。观察结果发现(1)受感染小麦叶肉细胞的细胞壁上局部沉积大量团状电子致密颗粒;(2)叶绿体形状由原来的椭圆形转变成圆形,叶绿体膜破裂,类囊体膨大,基粒片层排列疏松,同时,叶绿体内嗜锇性颗粒数量增加;(3)线粒体膜解体,内含物分散到了细胞质中  相似文献   

8.
Cd2+胁迫对石龙尾超微结构的影响   总被引:1,自引:1,他引:0  
赵春 《广西植物》2008,28(5):592-595
以在不同浓度梯度Cd2+溶液中培养48h的石龙尾为实验材料,用透射电镜观察叶细胞超微结构的损伤,结果表明:Cd2+浓度越高,超微结构的损伤越严重。表现为核糖体数目减少;高尔基体膨胀或消失;线粒体出芽或破裂;质膜收缩产生质壁分离,胞间连丝断裂;叶绿体膨胀,类囊体解体,进而影响了细胞的整体功能,造成细胞损伤乃至死亡。  相似文献   

9.
In order to study the mechanisms behind the infection process of the necrotrophic fungus Botrytis cinerea, the subcellular distribution of hydrogen peroxide (H2O2) was monitored over a time frame of 96 h post inoculation (hpi) in Arabidopsis thaliana Col-0 leaves at the inoculation site (IS) and the area around the IS which was defined as area adjacent to the inoculation site (AIS). H2O2 accumulation was correlated with changes in the compartment-specific distribution of ascorbate and glutathione and chloroplast fine structure. This study revealed that the severe breakdown of the antioxidative system, indicated by a drop in ascorbate and glutathione contents at the IS at later stages of infection correlated with an accumulation of H2O2 in chloroplasts, mitochondria, cell walls, nuclei and the cytosol which resulted in the development of chlorosis and cell death, eventually visible as tissue necrosis. A steady increase of glutathione contents in most cell compartments within infected tissues (up to 600% in chloroplasts at 96 hpi) correlated with an accumulation of H2O2 in chloroplasts, mitochondria and cell walls at the AIS indicating that high glutathione levels could not prevent the accumulation of reactive oxygen species (ROS) which resulted in chlorosis. Summing up, this study reveals the intracellular sequence of events during Botrytis cinerea infection and shows that the breakdown of the antioxidative system correlated with the accumulation of H2O2 in the host cells. This resulted in the degeneration of the leaf indicated by severe changes in the number and ultrastructure of chloroplasts (e.g. decrease of chloroplast number, decrease of starch and thylakoid contents, increase of plastoglobuli size), chlorosis and necrosis of the leaves.  相似文献   

10.
以宁夏枸杞为材料,采用超薄切片技术制备样品,应用光学显微镜和透射电镜分析了不同浓度NaCl胁迫条件下宁夏枸杞叶和幼根显微及超微结构的变化。结果表明:随着NaCl胁迫的加重,(1)叶片上表皮细胞增厚,栅栏组织细胞出现缩短现象,排列疏松且紊乱;幼根的初生结构无明显变化。(2)叶片栅栏组织中叶绿体不再紧靠在细胞膜上,叶绿体双层膜破坏,基粒片层松散排列,杂乱无章,出现膨胀和空泡现象,淀粉粒和嗜锇颗粒增多,叶肉细胞中线粒体发生轻微变化;幼根中皮层薄壁细胞线粒体形状发生改变,结构破坏,内膜和外膜模糊甚至破裂,大多数嵴模糊,出现空泡现象;细胞核解体,基质外溢。研究表明, 不同浓度的NaCl胁迫对宁夏枸杞叶片和幼根细胞的显微及超微结构影响不同,NaCl浓度大于200 mmol/L时,宁夏枸杞叶片和幼根细胞的显微及超微结构发生了明显变化,且叶肉细胞中线粒体的变化没有叶绿体的变化显著,推测叶肉细胞中线粒体的耐盐性比叶绿体强。  相似文献   

11.
The effects of water stress on leaf surface morphology (stomatal density, size, and trichome density of both adaxial and abaxial surfaces) and leaf ultrastructure (chloroplasts, mitochondria, and cell nuclei) of eggplant (Solanum melongena L.) were investigated in this study. Higher stomata and trichome densities were observed on abaxial surface compared with the adaxial surface. Compared with well watered (WW) plants, the stomata and trichome density of the abaxial surface increased by 20.39% and 26.23% under water-stress condition, respectively. The number of chloroplasts per cell profile was lesser, the chloroplasts became round in a shape with more damaged structure of membranes, the number of osmiophilic granules increased, and the number of starch grains decreased. The cristae in mitochondria were disintegrated. The cell nuclei were smaller and the agglomerated nucleoli were bigger than those of WW plants. Our results indicated that the morphological and anatomical responses enhanced the capability of plants to survive and grow during stress periods.  相似文献   

12.
盐胁迫下芦苇叶肉细胞超微结构的研究   总被引:18,自引:0,他引:18  
对青藏高原柴达木盆地柯柯盐湖边盐碱地上生长的芦苇叶肉细胞的超微结构进行了研究,并以西宁地区非盐碱地上生长的芦苇作对照。结果表明:西宁地区的芦苇叶肉细胞的叶绿体呈椭圆形,其膜系统完整,基粒片层和基质片层发育良好。在盐碱地上生长的芦苇叶肉细胞的叶绿体呈圆形,叶绿体内出现较大的淀粉粒,并发现有线粒体嵌入叶绿体的现象。叶绿体的类囊体膨大,线粒体的嵴也有膨大的现象。在盐湖水中生长的芦苇叶肉细胞,叶绿体的类囊体排列紊乱、扭曲、松散。类囊体膜局部被破坏,部分类囊体膜解体,空泡化,甚至消失,一些溶解了的类囊体流进细胞质中。综上所述,芦苇叶肉细胞超微结构的变化是该植物适应柯柯盐湖地区盐渍、低温、低气压、强辐射等环境因子的结果。  相似文献   

13.
The leaf ultrastructure of NADP-malic enzyme type C4 species possessing different anatomical features in the Cyperaceae was examined: types were the Rhynchosporoid type, a normal Kranz type in which mesophyll cells are adjacent to Kranz cells, and Fimbristyloid and Chlorocyperoid types, unusual Kranz types in which nonchlorophyllous mestome sheath intervenes between the two types of green cells. They show structural characteristics basically similar to the NADP-malic enzyme group of C4 grasses, that is, centrifugally located chloroplasts with reduced grana and no increase of mitochondrial frequency in the Kranz cells. However, the Kranz cell chloroplasts of the Fimbristyloid and Chlorocyperoid types exhibit convoluted thylakoid systems and a trend of extensive development of peripheral reticulum, although those of the Rhynchosporoid type do not possess such particular membrane systems. The suberized lamella, probably a barrier for CO2 diffusion, is present in the Kranz cell walls of the Rhynchosporoid type and in the mestome sheath cell walls of the other two types, and tightly surrounds the Kranz cells (sheaths) that are the sites of the decarboxylation of C4 acids. These ultrastructural features are discussed in relation to C4 photosynthetic function.  相似文献   

14.
Linolenic acid-[1-14C] was converted to 12-oxo-trans-10-dodecenoic acid, via 12-oxo-cis-9-dodecenoic acid by incubation with chloroplasts of Thea sinensis leaves. Thus, it was confirmed that linolenic acid is split into a C12-oxo-acid, 12-oxo-trans-10-dodecenoic acid, and a C6-aldehyde, trans-2-hexenal, leaf aldehyde, by an enzyme system in chloroplasts of tea leaves.  相似文献   

15.
Paspalum L. is a large and complex genus, enclosing more than 300 species, whose boundaries and infrageneric classification are still being studied. Recent phylogenetic analyses suggest that Paspalum inaequivalve Raddi and Paspalum microstachyum J. Presl, from the Inaequivalvia informal group, should be excluded from Paspalum. Focused on the unclear taxonomic position of P. inaequivalve and P. microstachyum, their leaf anatomy was studied, and some atypical features related to C4 photosynthesis were found. This atypical Kranz syndrome is the aim of this research. Transverse leaf blade sections from fresh and herbarium material of P. inaequivalve were studied by light, fluorescence, and transmission microscopy. Additionally, sheaths and culms of P. inaequivalve and leaf blades of P. microstachyum were observed by light microscopy. δ13C isotope discrimination was determinated for P. inaequivalve. We compared our results with available anatomical data from related taxa. As well as typical mesophyll cells (PCA) and mestome sheath cells (PCR), a third type of cells, here called ‘globose parenchymatous cells’, was observed in leaf blades of P. inaequivalve and P. microstachyum. These cells are placed externally to the mestome sheaths of the first and second vascular bundles, they have thin walls, with no developed suberine lamella, few chloroplasts with 1–2 starch grains, thylakoids not organized in grana, and a large central vacuole. The globose parenchymatous cells represent a novel trait in P. inaequivalve and P. microstachyum, further supporting the close relation between both species and their exclusion from the genus Paspalum. This atypical Kranz syndrome has not been described in Paspalum before, but the globose parenchymatous cells here described resemble the distinct cells considered as remnants of the outer parenchymatous sheath described for Anthaenantiopsis, some sections of Panicum L., and Chaetium Nees, providing possible taxonomic significance.  相似文献   

16.
Strobel GA 《Plant physiology》1968,43(10):1673-1688
A purified toxic glycopeptide from Corynebacterium sepedonicum (Speick.) Dows., possesses the capacity to wilt plant cuttings. The toxin induces a rapid general flaccidity in stem tissues followed by a leaf wilt making its effects significantly different from that induced by high molecular weight substances (dextrans). In the latter case, the initial effect of a dextran induced wilt is a leaf wilt presumably caused by the plugging of xylem elements. However, physiological experiments including dye transport studies, plasmolytic studies, measurements on electrolytes, studies on the movement of 3H2O through tomato cuttings, and toxin binding studies all strongly suggest that the primary effect of the toxin is to destroy the integrity of cellular membranes resulting in the net loss of water from the cell. Membrane damage in toxin treated plants was confirmed by electron microscopic observations. Evidence of damage were seen in chloroplasts, mitochondria, the plasma membrane, and the structural integrity of the cell wall. These effects appeared to be a direct cause and not a secondary result of the toxin as shown by autoradiographic studies using 3H-toxin.  相似文献   

17.
A role of non‐glandular emergences in avoiding ozone (O3) damages by preventing its entrance into leaf tissues has been suggested in the O3‐tolerant species Croton floribundus (Euphorbiaceae). However, this function against O3 damage has been underestimated due to the covering wax layer, mostly composed of saturated hydrocarbon, which has low O3 reactivity. To evaluate the role of these emergences in conferring tolerance to O3, we mechanically removed the non‐glandular emergences from leaf blades of C. floribundus, submitted the plants to acute O3 fumigation, and assessed morphological and microscopic alterations. Plants with intact leaves treated with O3 showed the same phenotype as control samples but showed microscopic indicators of accelerated senescence. These alterations indicated a whole‐plant response to O3. In contrast, plants whose leaves had got their emergences removed exhibited specific morphological symptoms as well as microscopic O3 damage. We thus conclude that the leaf emergences constitute a barrier for volatile contention, preventing O3 damage to leaf tissues in C. floribundus. When these structures have been removed, defense volatiles are possibly quickly dispersed, makes this species vulnerable to O3. This study highlights the relevance of surface structures for plant resistance to O3 damages, complementing biochemical defenses.  相似文献   

18.
The precursors of the F1-ATPase -subunits fromNicotiana plumbaginifolia andNeurospora crassa were imported into isolated spinach (Spinacia oleracea L.) leaf mitochondria. Both F1 precursors were imported and processed to mature size products. No import of the mitochondrial precursor proteins into isolated intact spinach chloroplasts was seen. Moreover, the precursor of the 33 kDa protein of photosynthetic water-splitting enzyme was not imported into the leaf mitochondria. This study provides the first experimental report ofin vitro import of precursor proteins into plant mitochondria isolated from photosynthetic tissue and enables studies of protein sorting between mitochondria and chloroplasts in a system which is homologous with respect to organelles. The results suggest a high organellar specificity in the plant cell for the cytoplasmically synthesized precursor proteins.  相似文献   

19.
Enclosure of mitochondria by chloroplasts   总被引:5,自引:1,他引:4       下载免费PDF全文
In Panicum species of the Laxa group, some of which have characteristics intermediate to C3 and C4 photosynthesis species, some mitochondria in leaf bundle sheath cells are surrounded by chloroplasts when viewed in profile. Serial sectioning of leaves of one Laxa species, Panicum schenckii Hack, shows that these mitochondria are enclosed by chloroplasts. Complete enclosure rather than invagination also is indicated by absence of two concentric chloroplast membranes surrounding the mitochondrial profiles.  相似文献   

20.
Lord CE  Gunawardena AH 《Planta》2011,233(2):407-421
Within plant systems, two main forms of programmed cell death (PCD) exist: developmentally regulated and environmentally induced. The lace plant (Aponogeton madagascariensis) naturally undergoes developmentally regulated PCD to form perforations between longitudinal and transverse veins over its leaf surface. Developmental PCD in the lace plant has been well characterized; however, environmental PCD has never before been studied in this plant species. The results presented here portray heat shock (HS) treatment at 55°C for 20 min as a promising inducer of environmental PCD within lace plant protoplasts originally isolated from non-PCD areas of the plant. HS treatment produces cells displaying many characteristics of developmental PCD, including blebbing of the plasma membrane, increased number of hydrolytic vesicles and transvacuolar strands, nuclear condensation, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling positive nuclei, as well as increased Brownian motion within the vacuole. Results presented here for the first time provide evidence of chloroplasts in the vacuole of living protoplasts undergoing environmentally induced PCD. Findings suggest that the mitochondria play a critical role in the cell death process. Changes in mitochondrial dynamics were visualized in HS-treated cells, including loss of mitochondrial mobility, reduction in ΔΨm, as well as the proximal association with chloroplasts. The role of the mitochondrial permeability transition pore (PTP) was examined by pre-treatment with the PTP agonist cyclosporine A. Overall, HS is depicted as a reliable method to induce PCD within lace plant protoplasts, and proves to be a reliable technique to enable comparisons between environmentally induced and developmentally regulated PCD within one species of plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号