首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of MHC class II (MHC-II) on the surface of antigen-presenting cells, such as dendritic cells (DCs), is tightly regulated during cellular activation. Many cells, including DCs, are activated following stimulation of innate Toll-like receptors (TLRs) by products of microorganisms. In the resting (immature) state, MHC-II is ubiquitinated in immature DCs and is rapidly degraded; however, after activation of these cells with MyD88-dependent TLR ligands, MHC-II ubiquitination is blocked, and MHC-II survival is prolonged. We now show that DC activation using MyD88-dependent TLR ligands, MyD88-independent TLR ligands, and even infection with the intracellular parasite Toxoplasma gondii leads to identical changes in MHC-II expression, ubiquitination, and surface stability, revealing a conserved role for enhanced MHC-II stability after DC activation by different stimuli.  相似文献   

2.
Optimal Ag targeting and activation of APCs, especially dendritic cells (DCs), are important in vaccine development. In this study, we report the effects of different Toll-like receptor (TLR)-binding compounds to enhance immune responses induced by human APCs, including CD123(+) plasmacytoid DCs (PDCs), CD11c(+) myeloid DCs (MDCs), monocytes, and B cells. PDCs, which express TLR7 and TLR9, responded to imidazoquinolines (imiquimod and R-848) and to CpG oligodeoxynucleotides stimulation, resulting in enhancement in expression of costimulatory molecules and induction of IFN-alpha and IL-12p70. In contrast, MDCs, which express TLR3, TLR4, and TLR7, responded to poly(I:C), LPS, and imidazoquinolines with phenotypic maturation and high production of IL-12 p70 without producing detectable IFN-alpha. Optimally TLR ligand-stimulated PDCs or MDCs exposed to CMV or HIV-1 Ags enhanced autologous CMV- and HIV-1-specific memory T cell responses as measured by effector cytokine production compared with TLR ligand-activated monocytes and B cells or unstimulated PDCs and MDCs. Together, these data show that targeting specific DC subsets using TLR ligands can enhance their ability to activate virus-specific T cells, providing information for the rational design of TLR ligands as adjuvants for vaccines or immune modulating therapy.  相似文献   

3.
Epithelial-derived thymic stromal lymphopoietin (TSLP) is an IL-7-like cytokine that triggers dendritic cell (DC)-mediated Th2-type inflammatory responses. The activated DCs can penetrate the epithelium to directly take up antigen without compromising the barrier function. Although it is reported that DCs express tight junction molecules and can establish tight junction-like structures with adjacent epithelial cells to preserve the epithelial barrier, the regulation of expression of tight junction molecules in DCs remains unknown. In the present study, to investigate the mechanical regulation of expression of tight junction molecules in DCs, XS52 DCs that was a long-term DC line established from the epidermis of a newborn BALB/c mouse, were treated with TSLP or toll-like receptor (TLR) ligands. In XS52 cells, tight junction molecules claudin-1, -3, -4, -6, -7, -8, and occludin were detected. mRNA expression of TSLP receptor and all these tight junction molecules was significantly increased in activated XS52 cells after treatment with TSLP. In addition, expression of claudin-7 protein was increased in dose- and time-dependent manner. In XS52 cells, which express TLR2, TLR3, TLR4, and TLR7, but not TLR9, expression of claudin-7 protein was also increased after treatment with ligands of TLR2, TLR4 or TLR7/8, Pam3Cys-Ser-(Lys)4, LPS, or CL097. The NF-κB inhibitor IMD-0354 prevented upregulation of claudin-7 after treatment with TSLP or TLR ligands. These findings indicate that TSLP induces expression of tight junction protein claudin-7 in DCs via NF-κB as well as via TLRs and may control tight junctions of DCs to preserve the epithelial barrier during allergic inflammation.  相似文献   

4.
Osteoclast Inhibitory Lectin-related Protein 2 (OCILRP2) is a typical type II transmembrane protein and belongs to C-type lectin-related protein family. It is preferentially expressed in dendritic cells (DC), B lymphocytes, and activated T lymphocytes. Upon binding to its ligand, OCILRP2 can promote CD28-mediated co-stimulation and enhance T cell activation. However, the role of OCILRP2 in DC development and activation is unclear. In this report, we present evidence that recombinant protein OCILRP2-Fc inhibits the generation and LPS-induced maturation of murine bone marrow-derived dendritic cells (BMDCs) by downregulating the expression of CD11c, MHC-II, and co-stimulators CD80 and CD86. OCILRP2-Fc also reduces the capacity of BMDCs to take up antigens, activates T cells, and secret inflammatory cytokines such as IL-6, IL-12, and TNF-α. Additionally, we show that OCILRP2-Fc may cause the aforementioned effects through inhibiting NF-κB activation. Therefore, OCILRP2 is a new regulator of DC maturation and differentiation following TLR4 activation.  相似文献   

5.
Efficient immune responses require regulated antigen presentation to CD4 T cells. IL-10 inhibits the ability of dendritic cells (DCs) and macrophages to stimulate antigen-specific CD4 T cells; however, the mechanisms by which IL-10 suppresses antigen presentation remain poorly understood. We now report that IL-10 stimulates expression of the E3 ubiquitin ligase March-I in activated macrophages, thereby down-regulating MHC-II, CD86, and antigen presentation to CD4 T cells. By contrast, IL-10 does not stimulate March-I expression in DCs, does not suppress MHC-II or CD86 expression on either resting or activated DCs, and does not affect antigen presentation by activated DCs. IL-10 does, however, inhibit the process of DC activation itself, thereby reducing the efficiency of antigen presentation in a March-I-independent manner. Thus, IL-10 suppression of antigen presenting cell function in macrophages is March-I-dependent, whereas in DCs, suppression is March- I-independent.  相似文献   

6.
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne disease in animals and MAP involvement in human Crohn disease has been recently emphasized. Evidence from M. tuberculosis studies suggests mycobacterial proteins activate dendritic cells (DCs) via Toll-like receptor (TLR) 4, eventually determining the fate of immune responses. Here, we investigated whether MAP CobT contributes to the development of T cell immunity through the activation of DCs. MAP CobT recognizes TLR4, and induces DC maturation and activation via the MyD88 and TRIF signaling cascades, which are followed by MAP kinases and NF-κB. We further found that MAP CobT-treated DCs activated naive T cells, effectively polarized CD4+ and CD8+ T cells to secrete IFN-γ and IL-2, but not IL-4 and IL-10, and induced T cell proliferation. These data indicate that MAP CobT contributes to T helper (Th) 1 polarization of the immune response. MAP CobT-treated DCs specifically induced the expansion of CD4+/CD8+CD44highCD62Llow memory T cells in the mesenteric lymph node of MAP-infected mice in a TLR4-dependent manner. Our results indicate that MAP CobT is a novel DC maturation-inducing antigen that drives Th1 polarized-naive/memory T cell expansion in a TLR4-dependent cascade, suggesting that MAP CobT potentially links innate and adaptive immunity against MAP.  相似文献   

7.
Plexins are a family of genes (A,B,C, and D) that are expressed in many organ systems. Plexins expressed in the immune system have been implicated in cell movement and cell-cell interaction during the course of an immune response. In this study, the expression pattern of Plexin-B2 and Plexin-D1 in dendritic cells (DCs), which are central in immune activation, was investigated. Plexin-B2 and Plexin-D1 are reciprocally expressed in myeloid and plasmacytoid DC populations. Plasmacytoid DCs have high Plexin-B2 but low Plexin-D1, while the opposite is true of myeloid DCs. Expression of Plexin-B2 and Plexin-D1 is modulated upon activation of DCs by TLR ligands, TNFα, and anti-CD40, again in a reciprocal fashion. Semaphorin3E, a ligand for Plexin-D1 and Plexin-B2, is expressed by T cells, and interestingly, is dramatically higher on Th2 cells and on DCs. The expression of Plexins and their ligands on DCs and T cells suggest functional relevance. To explore this, we utilized chimeric mice lacking Plxnb2 or Plxnd1. Absence of Plexin-B2 and Plexin-D1 on DCs did not affect the ability of these cells to upregulate costimulatory molecules or the ability of these cells to activate antigen specific T cells. Additionally, Plexin-B2 and Plexin-D1 were dispensable for chemokine-directed in-vitro migration of DCs towards key DC chemokines, CXCL12 and CCL19. However, the absence of either Plexin-B2 or Plexin-D1 on DCs leads to constitutive expression of IL-12/IL-23p40. This is the first report to show an association between Plexin-B2 and Plexin-D1 with the negative regulation of IL-12/IL-23p40 in DCs. This work also shows the presence of Plexin-B2 and Plexin-D1 on mouse DC subpopulations, and indicates that these two proteins play a role in IL-12/IL-23p40 production that is likely to impact the immune response.  相似文献   

8.
Signals from the IL-1 receptor (IL-1R)/Toll-like receptor (TLR) family and TNF receptor (TNFR) superfamily are critical for regulating the function of antigen-presenting cells such as dendritic cells (DCs). It has been revealed that TNF receptor-associated factor 6 (TRAF6), a signaling adapter molecule common to the IL-1R/TLR family and TNFR superfamily, is important not only for DC maturation, cytokine production, and T cell stimulatory capacity of DCs in response to TLR ligands (e.g. lipopolysaccharide) or CD40 ligand, but also for the homeostasis of splenic DC subsets.  相似文献   

9.
Phosphatidylinositol-specific phospholipases (PI-PLCs) are virulence factors produced by many pathogenic bacteria, including Bacillus anthracis and Listeria monocytogenes. Bacillus PI-PLC differs from Listeria PI-PLC in that it has strong activity for cleaving GPI-anchored proteins. Treatment of murine DCs with Bacillus, but not Listeria, PI-PLC inhibited dendritic cell (DC) activation by TLR ligands. Infection of mice with Listeria expressing B. anthracis PI-PLC resulted in a reduced Ag-specific CD4 T cell response. These data indicate that B. anthracis PI-PLC down-modulates DC function and T cell responses, possibly by cleaving GPI-anchored proteins important for TLR-mediated DC activation.  相似文献   

10.
11.
Higher animals establish host defense by orchestrating innate and adaptive immunity. This is mediated by professional antigen presenting cells, i.e. dendritic cells (DCs). DCs can incorporate pathogens, produce a variety of cytokines, maturate, and present pathogen-derived peptides to T cells, thereby inducing T cell activation and differentiation. These responses are triggered by microbial recognition through type I transmembrane proteins, Toll-like receptors (TLRs) on DCs. TLRs consist of ten members and each TLR is involved in recognizing a variety of microorganism-derived molecular structures. TLR ligands include cell wall components, proteins, nucleic acids, and synthetic chemical compounds, all of which can activate DCs as immune adjuvants. Each TLR can activate DCs in a similar, but distinct manner. For example, TLRs can be divided into subgroups according to their type I interferon (IFN) inducing ability. TLR2 cannot induce IFN-alpha or IFN-beta, but TLR4 can lead to IFN-beta production. Meanwhile, TLR3, TLR7, and TLR9 can induce both IFN-alpha and IFN-beta. Recent evidences suggest that cytoplamic adapters for TLRs are especially crucial for this functional heterogeneity. Clarifying how DC function is regulated by TLRs should provide us with critical information for manipulating the host defense against a variety of diseases.  相似文献   

12.
Bacterial RNA (bRNA) can induce cytokine production in macrophages and dendritic cells (DCs) through a previously unidentified receptor. Gene expression analysis of murine DCs showed that bRNA induced gene regulation similar to that induced by stimulation of TLR7 with R848. Although TLR7 was dispensable for cytokine induction by bRNA, TLR-associated proteins MyD88 and UNC93B were required. TLR13 is an endosomal murine TLR that has been described to interact with UNC93B with, so far, no characterized ligand. Small interfering RNA against TLR13 reduced cytokine induction by bRNA in DCs. Moreover, Chinese hamster ovary cells transfected with TLR13, but not with TLR7 or 8, could activate NF-κB in response to bRNA or Streptococcus pyogenes in an RNA-specific manner. TLR7 antagonist IRS661 could, in addition, inhibit TLR13 signaling and reduced recognition of whole Gram-positive bacteria by DCs, also in the absence of TLR7. The results identify TLR13 as a receptor for bRNA.  相似文献   

13.
Initial adhesive contacts between T lymphocytes and dendritic cells (DCs) facilitate recognition of peptide-MHC complexes by the TCR. In this report, we studied the dynamic behavior of adhesion and Ag receptors on DCs during initial contacts with T-cells. Adhesion molecules LFA-1- and ICAM-1,3-GFP as well as MHC class II-GFP molecules were very rapidly concentrated at the DC contact area. Binding of ICAM-3, and ICAM-1 to a lesser extent, to LFA-1 expressed by mature but not immature DC, induced MHC-II clustering into the immune synapse. Also, ICAM-3 binding to DC induced the activation of the Vav1-Rac1 axis, a regulatory pathway involved in actin cytoskeleton reorganization, which was essential for MHC-II clustering on DCs. Our results support a model in which ICAM-mediated MHC-II clustering on DC constitutes a priming mechanism to enhance antigen presentation to T-cells.  相似文献   

14.
Higher animals establish host defense by orchestrating innate and adaptive immunity. This is mediated by professional antigen presenting cells, i.e. dendritic cells (DCs). DCs can incorporate pathogens, produce a variety of cytokines, maturate, and present pathogen-derived peptides to T cells, thereby inducing T cell activation and differentiation. These responses are triggered by microbial recognition through type I transmembrane proteins, Toll-like receptors (TLRs) on DCs. TLRs consist of ten members and each TLR is involved in recognizing a variety of microorganism-derived molecular structures. TLR ligands include cell wall components, proteins, nucleic acids, and synthetic chemical compounds, all of which can activate DCs as immune adjuvants.  相似文献   

15.
TLRs initiate the host immune response to microbial pathogens by activating cells of the innate immune system. Dendritic cells (DCs) can be categorized into two major groups, conventional DCs (including CD8(+) and CD8(-) DCs) and plasmacytoid DCs. In mice, these subsets of DCs express a variety of TLRs, with conventional DCs responding in vitro to predominantly TLR3, TLR4, TLR5, and TLR9 ligands, and plasmacytoid DCs responding mainly to TLR7 and TLR9 ligands. However, the in vivo requirement of DCs to initiate immune responses to specific TLR agonists is not fully known. Using mice depleted of >90% of CD11c(+) MHC class II(+) DCs, we demonstrate that cellular recruitment, including CD4(+) T cell and CX5(+)DX5(+) NK cell recruitment to draining lymph nodes following the footpad administration of TLR4 and TLR5 agonists, is dramatically decreased upon reduction of DC numbers, but type I IFN production can partially substitute for DCs in response to TLR3 and TLR7 agonists. Interestingly, TLR ligands can activate T cells and NK cells in the draining lymph nodes, even with reduced DC numbers. The findings reveal considerable plasticity in the response to TLR agonists, with TLR4 and TLR5 agonists sharing the requirement of DCs for subsequent lymph node recruitment of NK and T cells.  相似文献   

16.
17.
Transfer of antigen between antigen-presenting cells (APCs) is potentially a physiologically relevant mechanism to spread antigen to cells with specialized stimulatory functions. Here we show that specific CD8+ T cell responses induced in response to intravenous administration of antigen-loaded bone marrow-derived dendritic cells (BM-DCs), were ablated in mice selectively depleted of endogenous lymphoid-resident langerin+ CD8α+ dendritic cells (DCs), suggesting that the antigen is transferred from the injected cells to resident APCs. In contrast, antigen-specific CD4+ T cells were primed predominantly by the injected BM-DCs, with only very weak contribution of resident APCs. Crucially, resident langerin+ CD8α+ DCs only contributed to the priming of CD8+ T cells in the presence of maturation stimuli such as intravenous injection of TLR ligands, or by loading the BM-DCs with the glycolipid α-galactosylceramide (α-GalCer) to recruit the adjuvant activity of activated invariant natural killer-like T (iNKT) cells. In fact, injection of α-GalCer-loaded CD1d-/- BM-DCs resulted in potent iNKT cell activation, suggesting that this glycolipid antigen can also be transferred to resident CD1d+ APCs. While iNKT cell activation per se was independent of langerin+ CD8α+ DCs, some iNKT cell-mediated activities were reduced, notably release of IL-12p70 and transactivation of NK cells. We conclude that both protein and glycolipid antigens can be exchanged between distinct DC species. These data suggest that the efficacy of DC-based vaccination strategies may be improved by the incorporation of a systemic maturation signal aimed to engage resident APCs in CD8+ T cell priming, and α-GalCer may be particularly well suited to this purpose.  相似文献   

18.
TLR ligands are among the key stimuli driving the optimal dendritic cell (DC) maturation critical for strong and efficacious T cell priming. In this study, we show that part of this effect occurs via increased TCR triggering. Pretreatment of DCs with TLR ligands resulted in the triggering of many more TCRs in responding CD8(+) T cells. Importantly, even when DCs expressed the same amount of cognate peptide-MHC (pMHC) molecules, TLR ligand treatment resulted in down-regulation of larger numbers of TCR molecules. This was independent of the up-regulation of costimulatory, adhesion or cytokine molecules or the amount of noncognate pMHCs. Rather, DCs pretreated with TLR ligands exhibited increased stability of cognate pMHCs, enabling extended TCR triggering. These findings are of potential importance to T cell vaccination.  相似文献   

19.
20.
The most effective immunological adjuvants contain microbial products, such as TLR agonists, which bind to conserved pathogen recognition receptors. These activate dendritic cells (DCs) to become highly effective APCs. We assessed whether TLR ligand-treated DCs can enhance the otherwise defective response of aged naive CD4 T cells. In vivo administration of CpG, polyinosinic-polycytidylic acid, and Pam(3)CSK(4) in combination with Ag resulted in the increased expression of costimulatory molecules and MHC class II by DCs, increased serum levels of the inflammatory cytokines IL-6 and RANTES, and increased cognate CD4 T cell responses in young and aged mice. We show that, in vitro, preactivation of DCs by TLR ligands makes them more efficient APCs for aged naive CD4 T cells. After T-DC interaction, there are enhanced production of inflammatory cytokines, particularly IL-6, and greater expansion of the aged T cells, resulting from increased proliferation and greater effector survival with increased levels of Bcl-2. TLR preactivation of both bone marrow-derived and ex vivo DCs improved responses. IL-6 produced by the activated DCs during cognate T cell interaction was necessary for enhanced aged CD4 T cell expansion and survival. These studies suggest that some age-associated immune defects may be overcome by targeted activation of APCs by TLR ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号