首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ipl1p is the budding yeast member of the Aurora family of protein kinases, critical regulators of genomic stability that are required for chromosome segregation, the spindle checkpoint, and cytokinesis. Using time-lapse microscopy, we found that Ipl1p also has a function in mitotic spindle disassembly that is separable from its previously identified roles. Ipl1-GFP localizes to kinetochores from G1 to metaphase, transfers to the spindle after metaphase, and accumulates at the spindle midzone late in anaphase. Ipl1p kinase activity increases at anaphase, and ipl1 mutants can stabilize fragile spindles. As the spindle disassembles, Ipl1p follows the plus ends of the depolymerizing spindle microtubules. Many Ipl1p substrates colocalize with Ipl1p to the spindle midzone, identifying additional proteins that may regulate spindle disassembly. We propose that Ipl1p regulates both the kinetochore and interpolar microtubule plus ends to regulate its various mitotic functions.  相似文献   

2.
Centrosomes are composed of a centriolar core surrounded by pericentriolar material that nucleates microtubules. The ubiquitin ligase TRIM37 localizes to centrosomes, but its centrosomal roles are not yet defined. We show that TRIM37 does not control centriole duplication, structure, or the ability of centrioles to form cilia but instead prevents assembly of an ectopic centrobin-scaffolded structured condensate that forms by budding off of centrosomes. In ∼25% of TRIM37-deficient cells, the condensate organizes an ectopic spindle pole, recruiting other centrosomal proteins and acquiring microtubule nucleation capacity during mitotic entry. Ectopic spindle pole–associated transient multipolarity and multipolar segregation in TRIM37-deficient cells are suppressed by removing centrobin, which interacts with and is ubiquitinated by TRIM37. Thus, TRIM37 ensures accurate chromosome segregation by preventing the formation of centrobin-scaffolded condensates that organize ectopic spindle poles. Mutations in TRIM37 cause the disorder mulibrey nanism, and patient-derived cells harbor centrobin condensate-organized ectopic poles, leading us to propose that chromosome missegregation is a pathological mechanism in this disorder.  相似文献   

3.
Many protein kinases are activated by a conserved regulatory step involving T-loop phosphorylation. Although there is considerable focus on kinase activator proteins, the importance of specific T-loop phosphatases reversing kinase activation has been underappreciated. We find that the protein phosphatase 6 (PP6) holoenzyme is the major T-loop phosphatase for Aurora A, an essential mitotic kinase. Loss of PP6 function by depletion of catalytic or regulatory subunits interferes with spindle formation and chromosome alignment because of increased Aurora A activity. Aurora A T-loop phosphorylation and the stability of the Aurora A-TPX2 complex are increased in cells depleted of PP6 but not other phosphatases. Furthermore, purified PP6 acts as a T-loop phosphatase for Aurora A-TPX2 complexes in vitro, whereas catalytically inactive mutants cannot dephosphorylate Aurora A or rescue the PPP6C depletion phenotype. These results demonstrate a hitherto unappreciated role for PP6 as the T-loop phosphatase regulating Aurora A activity during spindle formation and suggest the general importance of this form of regulation.  相似文献   

4.
Formation of a bipolar spindle is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, defects in centrosome number and structural organization can lead to a loss of bipolarity. In addition, microtubule-mediated pulling and pushing forces acting on centrosomes and chromosomes are also important for bipolar spindle formation. Polo-like kinase 1 (Plk1) is a highly conserved Ser/Thr kinase that has essential roles in the formation of a bipolar spindle with focused poles. However, the mechanism by which Plk1 regulates spindle-pole formation is poorly understood. Here, we identify a novel centrosomal substrate of Plk1, Kizuna (Kiz), depletion of which causes fragmentation and dissociation of the pericentriolar material from centrioles at prometaphase, resulting in multipolar spindles. We demonstrate that Kiz is critical for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation, and suggest that Plk1 maintains the integrity of the spindle poles by phosphorylating Kiz.  相似文献   

5.
The ran GTPase regulates mitotic spindle assembly.   总被引:28,自引:0,他引:28  
Ran is an abundant nuclear GTPase with a clear role in nuclear transport during interphase but with roles in mitotic regulation that are less well understood. The nucleotide-binding state of Ran is regulated by a GTPase activating protein, RanGAP1, and by a guanine nucleotide exchange factor, RCC1. Ran also interacts with a guanine nucleotide dissociation inhibitor, RanBP1. RanBP1 has a high affinity for GTP-bound Ran, and it acts as a cofactor for RanGAP1, increasing the rate of GAP-mediated GTP hydrolysis on Ran approximately tenfold. RanBP1 levels oscillate during the cell cycle [4], and increased concentrations of RanBP1 prolong mitosis in mammalian cells and in Xenopus egg extracts (our unpublished observations). We investigated how increased concentrations of RanBP1 disturb mitosis. We found that spindle assembly is dramatically disrupted when exogenous RanBP1 is added to M phase Xenopus egg extracts. We present evidence that the role of Ran in spindle assembly is independent of nuclear transport and is probably mediated through changes in microtubule dynamics.  相似文献   

6.
Microtubule-associated proteins (MAPs) ensure the fidelity of chromosome segregation by controlling microtubule (MT) dynamics and mitotic spindle stability. However, many aspects of MAP function and regulation are poorly understood in a developmental context. We show that mars, which encodes a Drosophila melanogaster member of the hepatoma up-regulated protein family of MAPs, is essential for MT stabilization during early embryogenesis. As well as associating with spindle MTs in vivo, Mars binds directly to protein phosphatase 1 (PP1) and coimmunoprecipitates from embryo extracts with minispindles and Drosophila transforming acidic coiled-coil (dTACC), two MAPs that function as spindle assembly factors. Disruption of binding to PP1 or loss of mars function results in elevated levels of phosphorylated dTACC on spindles. A nonphosphorylatable form of dTACC is capable of rescuing the lethality of mars mutants. We propose that Mars mediates spatially controlled dephosphorylation of dTACC, which is critical for spindle stabilization.  相似文献   

7.
Microtubule-based motor proteins provide essential forces for bipolar organization of spindle microtubules and chromosome movement, prerequisites of chromosome segregation during the cell cycle. Here, we describe the functional characterization of a novel spindle protein, termed "CHICA," that was originally identified in a proteomic survey of the human spindle apparatus [1]. We show that CHICA localizes to the mitotic spindle and is both upregulated and phosphorylated during mitosis. CHICA-depleted cells form shorter spindles and fail to organize a proper metaphase plate, highly reminiscent of the phenotype observed upon depletion of the chromokinesin Kid, a key mediator of polar ejection forces [2-6]. We further show that CHICA coimmunoprecipitates with Kid and is required for the spindle localization of Kid without affecting its chromosome association. Moreover, upon depletion of either CHICA or Kid (or both proteins simultaneously), chromosomes collapse onto the poles of monastrol-induced monopolar spindles. We conclude that CHICA represents a novel interaction partner of the chromokinesin Kid that is required for the generation of polar ejection forces and chromosome congression.  相似文献   

8.
Chromosome orientation and alignment within the mitotic spindle requires the Aurora B protein kinase and the mitotic centromere-associated kinesin (MCAK). Here, we report the regulation of MCAK by Aurora B. Aurora B inhibited MCAK's microtubule depolymerizing activity in vitro, and phospho-mimic (S/E) mutants of MCAK inhibited depolymerization in vivo. Expression of either MCAK (S/E) or MCAK (S/A) mutants increased the frequency of syntelic microtubule-kinetochore attachments and mono-oriented chromosomes. MCAK phosphorylation also regulates MCAK localization: the MCAK (S/E) mutant frequently localized to the inner centromere while the (S/A) mutant concentrated at kinetochores. We also detected two different binding sites for MCAK using FRAP analysis of the different MCAK mutants. Moreover, disruption of Aurora B function by expression of a kinase-dead mutant or RNAi prevented centromeric targeting of MCAK. These results link Aurora B activity to MCAK function, with Aurora B regulating MCAK's activity and its localization at the centromere and kinetochore.  相似文献   

9.
The activated form of Ran (Ran-GTP) stimulates spindle assembly in Xenopus laevis egg extracts, presumably by releasing spindle assembly factors, such as TPX2 (target protein for Xenopus kinesin-like protein 2) and NuMA (nuclear-mitotic apparatus protein) from the inhibitory binding of importin-alpha and -beta. We report here that Ran-GTP stimulates the interaction between TPX2 and the Xenopus Aurora A kinase, Eg2. This interaction causes TPX2 to stimulate both the phosphorylation and the kinase activity of Eg2 in a microtubule-dependent manner. We show that TPX2 and microtubules promote phosphorylation of Eg2 by preventing phosphatase I (PPI)-induced dephosphorylation. Activation of Eg2 by TPX2 and microtubules is inhibited by importin-alpha and -beta, although this inhibition is overcome by Ran-GTP both in the egg extracts and in vitro with purified proteins. As the phosphorylation of Eg2 stimulated by the Ran-GTP-TPX2 pathway is essential for spindle assembly, we hypothesize that the Ran-GTP gradient established by the condensed chromosomes is translated into the Aurora A kinase gradient on the microtubules to regulate spindle assembly and dynamics.  相似文献   

10.
Mitotic spindle organization is regulated by centrosomal kinases that potentiate recruitment of spindle-associated proteins required for normal mitotic progress including the microcephaly protein WD40-repeat protein 62 (WDR62). WDR62 functions underlie normal brain development as autosomal recessive mutations and wdr62 loss cause microcephaly. Here we investigate the signaling interactions between WDR62 and the mitotic kinase Aurora A (AURKA) that has been recently shown to cooperate to control brain size in mice. The spindle recruitment of WDR62 is closely correlated with increased levels of AURKA following mitotic entry. We showed that depletion of TPX2 attenuated WDR62 localization at spindle poles indicating that TPX2 co-activation of AURKA is required to recruit WDR62 to the spindle. We demonstrated that AURKA activity contributed to the mitotic phosphorylation of WDR62 residues Ser49 and Thr50 and phosphorylation of WDR62 N-terminal residues was required for spindle organization and metaphase chromosome alignment. Our analysis of several MCPH-associated WDR62 mutants (V65M, R438H and V1314RfsX18) that are mislocalized in mitosis revealed that their interactions and phosphorylation by AURKA was substantially reduced consistent with the notion that AURKA is a key determinant of WDR62 spindle recruitment. Thus, our study highlights the role of AURKA signaling in the spatiotemporal control of WDR62 at spindle poles where it maintains spindle organization.  相似文献   

11.
Cell-fate diversity is generated in part by the unequal segregation of cell-fate determinants during asymmetric cell divisions. In the Drosophila pupa, the pI sense organ precursor cell is polarized along the anterior-posterior axis of the fly and divides asymmetrically to generate a posterior pIIa cell and an anterior pIIb cell. The anterior pIIb cell specifically inherits the determinant Numb and the adaptor protein Partner of Numb (Pon). By labelling both the Pon crescent and the microtubules in living pupae, we show that determinants localize at the anterior cortex before mitotic-spindle formation, and that the spindle forms with random orientation and rotates to line up with the Pon crescent. By imaging living frizzled (fz) mutant pupae we show that Fz regulates the orientation of the polarity axis of pI, the initiation of spindle rotation and the unequal partitioning of determinants. We conclude that Fz participates in establishing the polarity of pI.  相似文献   

12.
Centrosome-independent mitotic spindle formation in vertebrates   总被引:1,自引:0,他引:1  
BACKGROUND: In cells lacking centrosomes, the microtubule-organizing activity of the centrosome is substituted for by the combined action of chromatin and molecular motors. The question of whether a centrosome-independent pathway for spindle formation exists in vertebrate somatic cells, which always contain centrosomes, remains unanswered, however. By a combination of labeling with green fluorescent protein (GFP) and laser microsurgery we have been able to selectively destroy centrosomes in living mammalian cells as they enter mitosis. RESULTS: We have established a mammalian cell line in which the boundaries of the centrosome are defined by the constitutive expression of gamma-tubulin-GFP. This feature allows us to use laser microsurgery to selectively destroy the centrosomes in living cells. Here we show that this method can be used to reproducibly ablate the centrosome as a functional entity, and that after destruction the microtubules associated with the ablated centrosome disassemble. Depolymerization-repolymerization experiments reveal that microtubules form in acentrosomal cells randomly within the cytoplasm. When both centrosomes are destroyed during prophase these cells form a functional bipolar spindle. Surprisingly, when just one centrosome is destroyed, bipolar spindles are also formed that contain one centrosomal and one acentrosomal pole. Both the polar regions in these spindles are well focused and contain the nuclear structural protein NuMA. The acentrosomal pole lacks pericentrin, gamma-tubulin, and centrioles, however. CONCLUSIONS: These results reveal, for the first time, that somatic cells can use a centrosome-independent pathway for spindle formation that is normally masked by the presence of the centrosome. Furthermore, this mechanism is strong enough to drive bipolar spindle assembly even in the presence of a single functional centrosome.  相似文献   

13.
Mitotic spindle assembly requires the regulated activity of numerous spindle-associated proteins. In mammalian cells, the Kinesin-5 motor Eg5 interacts with the spindle assembly factor TPX2, but how this interaction contributes to spindle formation and function is not established. Using bacterial artificial chromosome technology, we generated cells expressing TPX2 lacking the Eg5 interaction domain. Spindles in these cells were highly disorganized with multiple spindle poles. The TPX2-Eg5 interaction was required for kinetochore fiber formation and contributed to Eg5 localization to spindle microtubules but not spindle poles. Microinjection of the Eg5-binding domain of TPX2 resulted in spindle elongation, indicating that the interaction of Eg5 with TPX2 reduces motor activity. Consistent with this possibility, we found that TPX2 reduced the velocity of Eg5-dependent microtubule gliding, inhibited microtubule sliding, and resulted in the accumulation of motor on microtubules. These results establish a novel function of TPX2 in regulating the location and activity of the mitotic motor Eg5.  相似文献   

14.
The correct assembly and timely disassembly of the mitotic spindle is crucial for the propagation of the genome during cell division. Aurora kinases play a central role in orchestrating bipolar spindle establishment, chromosome alignment and segregation. In most eukaryotes, ranging from amoebas to humans, Aurora activity appears to be required both at the spindle pole and the kinetochore, and these activities are often split between two different Aurora paralogues, termed Aurora A and B. Polar and equatorial functions of Aurora kinases have generally been considered separately, with Aurora A being mostly involved in centrosome dynamics, whereas Aurora B coordinates kinetochore attachment and cytokinesis. However, double inactivation of both Aurora A and B results in a dramatic synergy that abolishes chromosome segregation. This suggests that these two activities jointly coordinate mitotic progression. Accordingly, recent evidence suggests that Aurora A and B work together in both spindle assembly in metaphase and disassembly in anaphase. Here, we provide an outlook on these shared functions of the Auroras, discuss the evolution of this family of mitotic kinases and speculate why Aurora kinase activity may be required at both ends of the spindle microtubules.  相似文献   

15.
Construction of a mitotic spindle requires biochemical pathways to assemble spindle microtubules and structural proteins to organize these microtubules into a bipolar array. Through a complex with dynein, the receptor for hyaluronan-mediated motility (RHAMM) cross-links mitotic microtubules to provide structural support, maintain spindle integrity, and correctly orient the mitotic spindle. Here, we locate RHAMM to sites of microtubule assembly at centrosomes and non-centrosome sites near kinetochores and demonstrate that RHAMM is required for the activation of Aurora kinase A. Silencing of RHAMM delays the kinetics of spindle assembly, mislocalizes targeting protein for XKlp2 (TPX2), and attenuates the localized activation of Aurora kinase A with a consequent reduction in mitotic spindle length. The RHAMM–TPX2 complex requires a C-terminal basic leucine zipper in RHAMM and a domain that includes the nuclear localization signal in TPX2. Together, our findings identify RHAMM as a critical regulator for Aurora kinase A signaling and suggest that RHAMM ensures bipolar spindle assembly and mitotic progression through the integration of biochemical and structural pathways.  相似文献   

16.
Aurora A and mitotic commitment   总被引:1,自引:0,他引:1  
Prigent C  Giet R 《Cell》2003,114(5):531-532
A remarkable study published in this issue of Cell reveals a key role of Aurora A protein kinase in G2/M progression. To achieve this role, Aurora A acts in conjunction with the LIM protein Ajuba, which functions as an activating factor.  相似文献   

17.
Aurora B (Aur-B) plays multiple roles in mitosis, of which the best known are to ensure bi-orientation of sister chromatids by destabilizing incorrectly attached kinetochore microtubules and to participate in cytokinesis. Studies in Xenopus egg extracts, however, have indicated that Aur-B and the chromosome passenger complex play an important role in stabilizing chromosome-associated spindle microtubules. Aur-B stabilizes spindle microtubules in the egg extracts by inhibiting the catastrophe kinesin MCAK. Whether or not Aur-B plays a similar role in intact oocytes remains unknown. Here we have employed a dominant-negative Aur-B mutant (Aur-B122R, in which the ATP-binding lysine122 is replaced with arginine) to investigate the function of Aur-B in spindle assembly in Xenopus oocytes undergoing meiosis. Overexpression of Aur-B122R results in short bipolar spindles or monopolar spindles, with higher concentrations of Aur-B122R producing mostly the latter. Simultaneous inhibition of MCAK translation in oocytes overexpressing Aur-B122R results in suppression of monopolar phenotype, suggesting that Aur-B regulates spindle bipolarity by inhibiting MCAK. Furthermore, recombinant MCAK-4A protein, which lacks all four Aur-B phosphoryaltion sites and is therefore insensitive to Aur-B inhibition but not wild-type MCAK, recapitulated the monopolar phenotype in the oocytes. These results suggest that in vertebrate oocytes that lack centrosomes, one major function of Aur-B is to stabilize chromosome-associated spindle microtubules to ensure spindle bipolarity.  相似文献   

18.
Integrin-linked kinase (ILK) is a serine-threonine kinase and scaffold protein with well defined roles in focal adhesions in integrin-mediated cell adhesion, spreading, migration, and signaling. Using mass spectrometry-based proteomic approaches, we identify centrosomal and mitotic spindle proteins as interactors of ILK. alpha- and beta-tubulin, ch-TOG (XMAP215), and RUVBL1 associate with ILK and colocalize with it to mitotic centrosomes. Inhibition of ILK activity or expression induces profound apoptosis-independent defects in the organization of the mitotic spindle and DNA segregation. ILK fails to localize to the centrosomes of abnormal spindles in RUVBL1-depleted cells. Additionally, depletion of ILK expression or inhibition of its activity inhibits Aurora A-TACC3/ch-TOG interactions, which are essential for spindle pole organization and mitosis. These data demonstrate a critical and unexpected function for ILK in the organization of centrosomal protein complexes during mitotic spindle assembly and DNA segregation.  相似文献   

19.
Aurora B (Aur-B) plays multiple roles in mitosis, of which the best known are to ensure bi-orientation of sister chromatids by destabilizing incorrectly attached kinetochore microtubules and to participate in cytokinesis. Studies in Xenopus egg extracts, however, have indicated that Aur-B and the chromosome passenger complex play an important role in stabilizing chromosome-associated spindle microtubules. Aur-B stabilizes spindle microtubules in the egg extracts by inhibiting the catastrophe kinesin MCAK. Whether or not Aur-B plays a similar role in intact oocytes remains unknown. Here we have employed a dominant-negative Aur-B mutant (Aur-B122R, in which the ATP-binding lysine122 is replaced with arginine) to investigate the function of Aur-B in spindle assembly in Xenopus oocytes undergoing meiosis. Overexpression of Aur-B122R results in short bipolar spindles or monopolar spindles, with higher concentrations of Aur-B122R producing mostly the latter. Simultaneous inhibition of MCAK translation in oocytes overexpressing Aur-B122R results in suppression of monopolar phenotype, suggesting that Aur-B regulates spindle bipolarity by inhibiting MCAK. Furthermore, recombinant MCAK-4A protein, which lacks all four Aur-B phosphoryaltion sites and is therefore insensitive to Aur-B inhibition but not wild-type MCAK, recapitulated the monopolar phenotype in the oocytes. These results suggest that in vertebrate oocytes that lack centrosomes, one major function of Aur-B is to stabilize chromosome-associated spindle microtubules to ensure spindle bipolarity.  相似文献   

20.
Glover DM 《Molecular cell》2003,12(4):797-799
An exciting study in this issue reveals how binding of the microtubule associated protein TPX2 to the mitotic kinase Aurora A induces a conformational change. This moves the phosphorylated activation domain into a more compact position within the kinase core, providing a better substrate binding platform and hiding the activating phosphoryl group from attack by PP1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号