首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungal diversity and community composition are mainly related to soil and vegetation factors. However, the relative contribution of the different drivers remains largely unexplored, especially in subtropical forest ecosystems. We studied the fungal diversity and community composition of soils sampled from 12 comparative study plots representing three forest age classes (Young: 10–40 yrs; Medium: 40–80 yrs; Old: ≥80 yrs) in Gutianshan National Nature Reserve in South-eastern China. Soil fungal communities were assessed employing ITS rDNA pyrotag sequencing. Members of Basidiomycota and Ascomycota dominated the fungal community, with 22 putative ectomycorrhizal fungal families, where Russulaceae and Thelephoraceae were the most abundant taxa. Analysis of similarity showed that the fungal community composition significantly differed among the three forest age classes. Forest age class, elevation of the study plots, and soil organic carbon (SOC) were the most important factors shaping the fungal community composition. We found a significant correlation between plant and fungal communities at different taxonomic and functional group levels, including a strong relationship between ectomycorrhizal fungal and non-ectomycorrhizal plant communities. Our results suggest that in subtropical forests, plant species community composition is the main driver of the soil fungal diversity and community composition.  相似文献   

2.
Relationships among aboveground net primary production (ANPP) and forest canopy properties were investigated in secondary successional forests of similar age and disturbance history in northern Lower Michigan, USA. Aboveground biomass, ANPP, canopy leaf area index (LAI), and several canopy nitrogen (N) measures were estimated from 12 stands representing major landform-level ecosystems and vegetation associations. Stand single-date and growing season average normalized difference vegetation indices (NDVI) were derived from Landsat TM. ANPP correlated most strongly with total canopy N content (r 2 = 0.81, P < 0.001), followed by LAI (r 2 = 0.73, P < 0.001) and area-based canopy-average leaf N concentration (r 2 = 0.37, P < 0.05). No significant relationship was detected between ANPP and mass-based canopy-average leaf N concentration. Stand ANPP correlated positively with both total canopy N content (r 2 = 0.62, P < 0.05) and mass-based leaf N concentration (r 2 = 0.53, P < 0.05) of commonly dominant Populus spp. Relatively higher ANPP, total canopy N content and LAI corresponded to simultaneous presence of shade-intolerant P. grandidentata with shade-tolerant species. Both forms of NDVI were significantly related to ANPP, and more strongly to total canopy N content and LAI; relationships were stronger for seasonally averaged (r 2 ≥ 0.75, P < 0.001) than for single-date NDVI (r 2 ≥ 0.52, P < 0.01). Results indicate that on the transitioning study landscapes, ANPP was more closely related to canopy N content than to LAI, seasonally averaged NDVI was a more reliable predictor of ANPP and canopy properties than the single-date index, whereas measured canopy characteristics varied significantly between major landform-level ecosystems. The ongoing decline of P. grandidentata is likely to alter aboveground carbon and pools and fluxes in the course of succession.  相似文献   

3.
Tropical forests are being rapidly altered by logging and cleared for agriculture. Understanding the effects of these land use changes on soil bacteria, which constitute a large proportion of total biodiversity and perform important ecosystem functions, is a major conservation frontier. Here we studied the effects of logging history and forest conversion to oil palm plantations in Sabah, Borneo, on the soil bacterial community. We used paired-end Illumina sequencing of the 16S rRNA gene, V3 region, to compare the bacterial communities in primary, once-logged, and twice-logged forest and land converted to oil palm plantations. Bacteria were grouped into operational taxonomic units (OTUs) at the 97% similarity level, and OTU richness and local-scale α-diversity showed no difference between the various forest types and oil palm plantations. Focusing on the turnover of bacteria across space, true β-diversity was higher in oil palm plantation soil than in forest soil, whereas community dissimilarity-based metrics of β-diversity were only marginally different between habitats, suggesting that at large scales, oil palm plantation soil could have higher overall γ-diversity than forest soil, driven by a slightly more heterogeneous community across space. Clearance of primary and logged forest for oil palm plantations did, however, significantly impact the composition of soil bacterial communities, reflecting in part the loss of some forest bacteria, whereas primary and logged forests did not differ in composition. Overall, our results suggest that the soil bacteria of tropical forest are to some extent resilient or resistant to logging but that the impacts of forest conversion to oil palm plantations are more severe.  相似文献   

4.
We compared the size, culturability, diversity, and dominant species similarity of the bacterial communities of Leucanthemopsis alpina (L.) Heywood rhizosphere and adjacent bare soil (interspace) along a chronosequence of soil development time (5, 50, and 70 years) in the forefield of the Dammaglacier (Switzerland). We found no evidence that the size of the bacterial community was significantly affected by either soil age or the presence of L. alpina. In contrast, the proportion of the bacterial community that could be cultured on nonselective agars, and which was taken as an indication of the proportion of r-selected populations, was significantly higher in the 50- and 70-year-old soils than in the 5-year-old soil, and was also significantly higher in the rhizosphere of L. alpina at all time points. RDA indicated significant correlations between the increased culturability of the bacterial community over time and increasing concentrations of labile N, and between the increased culturability in the rhizosphere and increased concentrations of labile C and N. HaeIII-amplified ribosomal DNA (rDNA) restriction analysis of a library of 120 clones of 16S rDNA revealed 85 distinct phylotypes. Hurlbert's probability of interspecific encounter (PIE) values derived from this library ranged from 0.95 to 1.0, indicating a very high genetic diversity. There was no significant difference in the PIE values of rhizosphere and interspace communities. Detrended correspondence analysis (DCA) of 16S ribosomal RNA (rRNA) denaturing gradient gel electrophoresis (DGGE) community profiles clearly distinguished the rhizosphere from the interspace community in the 5-year-old soils and also clearly distinguished between these communities and the rhizosphere and interspace communities of the 50- and 70-year-old soils. However, 16S rRNA DGGE revealed little difference between rhizosphere and interspace communities in the 50- and 70-year-old soils. The relative similarity of the 16S rRNA profiles strongly reflected labile carbon and nitrogen availability. Overall, our results suggest that improved C and N availability in the rhizosphere of L. alpina increases the size of r-selected bacterial species populations, but that the influence of L. alpina depends on soil age, being maximal in the youngest soils and minimal in the oldest. The reduced influence of L. alpina in the older soils may reflect a feedback between improved nutrient availability and reduced rhizodeposition.  相似文献   

5.
The great increase in the abundance and phylogenetic diversity of Flavobacterium spp. within a few hundred meters downstream of the discharge site of the Westerhöfer Bach, a hardwater rivulet, raised the question whether adjacent soil may serve as a reservoir of bacteria not detected in discharge water. To address this question, denaturing gradient gel electrophoresis (DGGE) analyses of the V3 region of Flavobacterium 16S rRNA genes were performed on DNA from nine soil samples and five rivulet sites. The resulting patterns were tested for the significance of differences between the sampling habitats using the nonparametric analysis of similarities and multidimensional scaling procedures. Even though both habitats were sampled in two consecutive years DGGE patterns of soil and downstream water samples showed significant overlap (R = 0.614). Sequencing of 57 DGGE bands resulted in 30 different sequences, which, on the basis of BLAST analyses, were between 96% and 100% similar to published clone, DGGE, and strain sequences from a wide range of different habitats. Forty-five percent of the highly similar sequences included those of isolates from the Westerhöfer Bach, while the other sequences were more closely related to clones and cultures from other habitats, especially agricultural soil. Based on these results we suggest that the increase in flavobacterial strain diversity and abundance in the rivulet may originate from soil microflora.  相似文献   

6.
We exploited the natural climate gradient in the northern hardwood forest at the Hubbard Brook Experimental Forest (HBEF) to evaluate the effects of climate variation similar to what is predicted to occur with global warming over the next 50–100 years for northeastern North America on soil carbon (C) and nitrogen (N) cycle processes. Our objectives were to (1) characterize differences in soil temperature, moisture and frost associated with elevation at the HBEF and (2) evaluate variation in total soil (TSR) and microbial respiration, N mineralization, nitrification, denitrification, nitrous oxide (N2O) flux, and methane (CH4) uptake along this gradient. Low elevation sites were consistently warmer (1.5–2.5°C) and drier than high elevation sites. Despite higher temperatures, low elevation plots had less snow and more soil frost than high elevation plots. Net N mineralization and nitrification were slower in warmer, low elevation plots, in both summer and winter. In summer, this pattern was driven by lower soil moisture in warmer soils and in winter the pattern was linked to less snow and more soil freezing in warmer soils. These data suggest that N cycling and supply to plants in northern hardwood ecosystems will be reduced in a warmer climate due to changes in both winter and summer conditions. TSR was consistently faster in the warmer, low elevation plots. N cycling processes appeared to be more sensitive to variation in soil moisture induced by climate variation, whereas C cycling processes appeared to be more strongly influenced by temperature.  相似文献   

7.
中国农田土壤呼吸速率及驱动因子   总被引:8,自引:0,他引:8  
土壤呼吸在全球碳收支中具有重要地位.研究中国典型农业区土壤呼吸的时空格局及影响因素,有助于构建区域尺度土壤呼吸定量评价模型,能够为评估中国乃至全球农业生态系统碳/源汇特征提供依据.本研究整合了2000~2012年中国农田生态系统土壤呼吸的主要研究成果,分析了华南、西南、华北、西北和东北5个典型农业区土壤呼吸的季节变化和区域差异,以及影响土壤呼吸的主要驱动因子.结果表明,5个典型农业区的土壤呼吸均存在明显的季节变化特征;中国农田生态系统年均土壤呼吸速率为(682.8±18.3)g C m?2.5个典型农业区年均土壤呼吸速率大小表现为华南区西南区华北区东北区西北区.全国农业土壤的年呼吸通量为(0.90±0.02)Pg C;水作和旱作两种土地利用类型间土壤呼吸速率差异显著(P0.05),旱作土壤呼吸速率约为水作的1.3倍;不同作物类型间土壤呼吸速率差异显著(P0.05),其排序为棉花玉米大豆水稻小麦;农田土壤呼吸与年均气温、土壤温度、土壤含水量和净初级生产力等影响因素呈显著正相关(P0.01),而与年均降水量的相关性不显著.  相似文献   

8.
We observed a unimale group (BE-Group) of proboscis monkeys (Nasalis larvatus) comprising an α-male, 6 adult females, and several immatures from May 2005 to May 2006. We followed the group for 2014 h along the Menanggul River, Sabah, Malaysia (118°30′E, 5°30′N). Observations focused mainly on ranging behavior. We determined availability and seasonal changes in plant species consumed by the members of the group by vegetation surveys in a 2.15-ha area along 200–500 m trails in the riverine forest. During the observation period, the group ranged ≤800 m from the riverbank, within a total range of 138.3 ha. The daily path length of the group ranged from 220 to 1734 m (mean, 799 m), and daily path length correlates negatively with fruit availability. The monkeys were apt to remain within a small range in fruit-abundant seasons. Because the monkeys preferred to feed on fruits of dominant plant species in the study area, their daily path length may decrease on days when they feed on fruits. The core areas of the group’s home range were along the river because the monkeys typically returned to riverside trees to sleep. The group most often used areas that were nearer the riverbank and where the availability of fruits was higher. The most frequently used grids were the ones where the group often had sleeping sites and crossed the river. Avoiding predation may be the main reason for river crossing and selecting particular sleeping sites; hence not only food availability but also the risk of predation appears to influence the ranging of the BE-Group.  相似文献   

9.
Floodplain forests are generally areas of high plant diversity compared with upland forests. Higher environmental heterogeneity, especially variation in belowground properties may help explain this high diversity. However, there is little information available on the spatial scale and pattern of belowground resources in floodplain forests. Geostatistics and coefficient of variation (CV) were used to describe the spatial variability of 20 soil properties ranging from essential plant nutrients, such as NH4 or PO4, to nonessential elements like Ti or V. The spatial variation of Si-to-(Al + Fe) ratio, an index of soil development, was also analyzed. Semivariograms and maps of selected properties were used to discriminate between the effect of flooding (and other mechanisms that may contribute to large scale trends in data) and local heterogeneity. The hypothesis that elements mainly cycled through biological processes (such as N) show different spatial properties than elements cycled through both biological and geological processes (such as P) or elements under strict geological control (such as Ti or V) is also presented. Redox potential was the most variable property (CV = 1.35) followed by mineral N, phosphate, organic matter, and carbon. Nonessential elements for organisms such as Si, Al, Ti, Rh, or V were less variable, supporting the hypothesis that biological control on soil properties leads to higher spatial variability. The range (the average distance within which the samples correlate spatially) varied between 3.89 m for water content to 18.5 m for the Si-to-(Al + Fe) ratio. The proportion of the total variance that can be modeled as spatial dependence (structural variance) was very variable, ranging between 0.34 for Fe and 0.96 for K. The addition of the large trend had a strong influence on the CV of most soil variables and created a gradient in C accumulation and the mineral weathering rate. The results suggest that flooding and other processes that are responsible for large spatial trends in the floodplain forest differentially affect biologically and geologically controlled variables with different turnover rates, thus providing a heterogeneous edaphic environment.  相似文献   

10.
Global change is expected to modify the frequency and magnitude of defoliating insect outbreaks in forest ecosystems. Bats are increasingly acknowledged as effective biocontrol agents for pest insect populations. However, a better understanding is required of whether and how bat communities contribute to the resilience of forests to man- and climate-driven biotic disturbances. We studied the responses of forest insectivorous bats to a major pine defoliator, the pine processionary moth pityocampa, which is currently expanding its range in response to global warming. We used pheromone traps and ultrasound bat recorders to estimate the abundance and activity of moths and predatory bats along the edge of infested pine stands. We used synthetic pheromone to evaluate the effects of experimentally increased moth availability on bat foraging activity. We also evaluated the top-down regulation of moth population by estimating T. pityocampa larval colonies abundance on the same edges the following winter. We observed a close spatio-temporal matching between emergent moths and foraging bats, with bat activity significantly increasing with moth abundance. The foraging activity of some bat species was significantly higher near pheromone lures, i.e. in areas of expected increased prey availability. Furthermore moth reproductive success significantly decreased with increasing bat activity during the flight period of adult moths. These findings suggest that bats, at least in condition of low prey density, exhibit numerical and functional responses to a specific and abundant prey, which may ultimately result in an effective top-down regulation of the population of the prey. These observations are consistent with bats being useful agents for the biocontrol of insect pest populations in plantation forests.  相似文献   

11.
We hypothesised that plant species composition and richness would affect soil chemical and microbial community properties, and that these in turn would affect soil microbial resistance and resilience to an experimentally imposed drying disturbance. We performed a container experiment that manipulated the composition and species richness of common pasture plant species (Trifolium repens, Lolium perenne, and Plantago lanceolata) by growing them in monoculture, and in all the possible two and three-way combinations, along with an unplanted control soil. Experimental units were harvested at four different times over a 16-month period to determine the effect of plant community development and seasonal changes in temperature and moisture on belowground properties. Results showed that plant species composition influenced soil chemistry, soil microbial community properties and soil microbial resistance and resilience. Soil from planted treatments generally showed reduced soil microbial resistance to drying compared to unplanted control soils. Soils from under T. repens showed a higher resistance and resilience than the soils from under P. lanceolata, and a higher resistance than soils from under L. perenne. We suggest that differences across soils in either resource limitation or soil microbial community structure may be responsible for these results. Plant species richness rarely affected soil microbial community properties or soil microbial resistance and resilience, despite having some significant effects on plant community biomass and soil nitrogen contents in some harvests. The effect that treatments had for most variables differed between harvests, suggesting that results can be altered by the stage of plant community development or by extrinsic environmental factors that varied with harvest timing. These results in combination show that soil microbial resistance and resilience was affected by plant community composition, and the time of measurement, but was largely unrelated to plant species richness.  相似文献   

12.

Objective

There are increasing numbers of reports describing human vaginal tissue composition in women with and without pelvic organ prolapse with conflicting results. The aim of this study was to compare ovine and human posterior vaginal tissue in terms of histological and biochemical tissue composition and to assess passive biomechanical properties of ovine vagina to further characterise this animal model for pelvic organ prolapse research.

Study Design

Vaginal tissue was collected from ovariectomised sheep (n = 6) and from postmenopausal women (n = 7) from the proximal, middle and distal thirds. Tissue histology was analyzed using Masson''s Trichrome staining; total collagen was quantified by hydroxyproline assays, collagen III/I+III ratios by delayed reduction SDS PAGE, glycosaminoglycans by dimethylmethylene blue assay, and elastic tissue associated proteins (ETAP) by amino acid analysis. Young''s modulus, maximum stress/strain, and permanent strain following cyclic loading were determined in ovine vagina.

Results

Both sheep and human vaginal tissue showed comparable tissue composition. Ovine vaginal tissue showed significantly higher total collagen and glycosaminoglycan values (p<0.05) nearest the cervix. No significant differences were found along the length of the human vagina for collagen, GAG or ETAP content. The proximal region was the stiffest (Young''s modulus, p<0.05), strongest (maximum stress, p<0.05) compared to distal region, and most elastic (permanent strain).

Conclusion

Sheep tissue composition and mechanical properties showed regional differences along the postmenopausal vaginal wall not apparent in human vagina, although the absolute content of proteins were similar. Knowledge of this baseline variation in the composition and mechanical properties of the vaginal wall will assist future studies using sheep as a model for vaginal surgery.  相似文献   

13.
14.
The change in vegetative cover of a Hawaiian soil from forest to pasture led to significant changes in the composition of the soil bacterial community. DNAs were extracted from both soil habitats and compared for the abundance of guanine-plus-cytosine (G+C) content, by analysis of abundance of phylotypes of small-subunit ribosomal DNA (SSU rDNA) amplified from fractions with 63 and 35% G+C contents, and by phylogenetic analysis of the dominant rDNA clones in the 63% G+C content fraction. All three methods showed differences between the forest and pasture habitats, providing evidence that vegetation had a strong influence on microbial community composition at three levels of taxon resolution. The forest soil DNA had a peak in G+C content of 61%, while the DNA of the pasture soil had a peak in G+C content of 67%. None of the dominant phylotypes found in the forest soil were detected in the pasture soil. For the 63% G+C fraction SSU rDNA sequence analysis of the three most dominant members revealed that their phyla changed from Fibrobacter and Syntrophomonas assemblages in the forest soil to Burkholderia and Rhizobium–Agrobacterium assemblages in the pasture soil.  相似文献   

15.
16.
Degradation of soil properties following deforestation and long-term soil cultivation may lead to decreases in soil microbial diversity and functional stability. In this study, we investigated the differences in the stability (resistance and resilience) of microbial community composition and enzyme activities in adjacent soils under either native tropical forest (FST) or in agricultural cropping use for 14 years (AGR). Mineral soil samples (0 to 5 cm) from both areas were incubated at 40°C, 50°C, 60°C, or 70°C for 15 min in order to successively reduce the microbial biomass. Three and 30 days after the heat shocks, fluorescein diacetate (FDA) hydrolysis, cellulase and laccase activities, and phospholipid-derived fatty acids-based microbial community composition were measured. Microbial biomass was reduced up to 25% in both soils 3 days after the heat shocks. The higher initial values of microbial biomass, enzyme activity, total and particulate soil organic carbon, and aggregate stability in the FST soil coincided with higher enzymatic stability after heat shocks. FDA hydrolysis activity was less affected (more resistance) and cellulase and laccase activities recovered more rapidly (more resilience) in the FST soil relative to the AGR counterpart. In the AGR soil, laccase activity did not show resilience to any heat shock level up to 30 days after the disturbance. Within each soil type, the microbial community composition did not differ between heat shock and control samples at day 3. However, at day 30, FST soil samples treated at 60°C and 70°C contained a microbial community significantly different from the control and with lower biomass regardless of high enzyme resilience. Results of this study show that deforestation followed by long-term cultivation changed microbial community composition and had differential effects on microbial functional stability. Both soils displayed similar resilience to FDA hydrolysis, a composite measure of a broad range of hydrolases, supporting the concept of high functional redundancy in soil microbial communities. In contrast, the resilience of the substrate-specific activities of laccase and cellulase were lower in AGR soils, indicating a less diverse community of microorganisms capable of producing these enzymes and confirming that specific microbial functions are more sensitive measurements for evaluating change in the ecological stability of soils.  相似文献   

17.
Ecosystems - Subtropical and tropical forests account for over 50% of soil CO2 production, 47% of N2O fluxes of natural ecosystems, and act as both significant sources and sinks of atmospheric CH4....  相似文献   

18.
Aboveground net primary production (ANPP) is a key integrator of C uptake and energy flow in many terrestrial ecosystems. As such, ecologists have long sought to understand the factors driving variation in this important ecosystem process. Although total annual precipitation has been shown to be a strong predictor of ANPP in grasslands across broad spatial scales, it is often a poor predictor at local scales. Here we examine the amount of variation in ANPP that can be explained by total annual precipitation versus precipitation during specific periods of the year (precipitation periods) and nutrient availability at three sites representing the major grassland types (shortgrass steppe, mixed-grass prairie, and tallgrass prairie) spanning the broad precipitation gradient of the U.S. Central Great Plains. Using observational data, we found that precipitation periods and nutrient availability were much stronger predictors of site-level ANPP than total annual precipitation. However, the specific nutrients and precipitation periods that best predicted ANPP differed among the three sites. These effects were mirrored experimentally at the shortgrass and tallgrass sites, with precipitation and nutrient availability co-limiting ANPP, but not at the mixed-grass site, where nutrient availability determined ANPP exclusive of precipitation effects. Dominant grasses drove the ANPP response to increased nutrient availability at all three sites. However, the relative responses of rare grasses and forbs were greater than those of the dominant grasses to experimental nutrient additions, thus potentially driving species turnover with chronic nutrient additions. This improved understanding of the factors driving variation in ANPP within ecosystems spanning the broad precipitation gradient of the Great Plains will aid predictions of alterations in ANPP under future global change scenarios.  相似文献   

19.
Despite the critical position of nitrification in N cycling in coniferous forest soils of western North America, little information exists on the composition of ammonia-oxidizing bacteria (AOB) in these soils, or their response to treatments that promote or reduce nitrification. To this end, an experiment was conducted in which a set of soil cores was reciprocally transplanted between adjacent forest (low nitrification potential) and meadow (high nitrification potential) environments, at two high-elevation (~1500 m) sites in the H.J. Andrews Experimental Forest located in the Cascade Mountains of Oregon. Half of the cores were placed in screened PVC pipe (closed) to prevent new root colonization, large litter debris inputs, and animal disturbance; the other cores were placed in open mesh bags. A duplicate set of open and closed soil cores was not transferred between sites and was incubated in place. Over the 2-year experiment, net nitrification increased in both open and closed cores transferred from forest to meadow, and to a lesser extent in cores remaining in the forest. In three of four forest soil treatments, net nitrification increases were accompanied by increases in nitrification potential rates (NPR) and 10- to 100-fold increases in AOB populations. In open cores remaining in the forests, however, increases in net nitrification were not accompanied by significant increases in either NPR or AOB populations. Although some meadow soil treatments reduced both net nitrification and nitrification potential rates, significant changes were not detected in most probable number (MPN)-based estimates of AOB population densities. Terminal restriction fragment profiles (T-RFs) of a PCR-amplified 491-bp fragment of the ammonia monooxygenase subunit A gene (amoA) changed significantly in response to some soil treatments, and treatment effects differed among locations and between years. A T-RF previously shown to be a specific biomarker of Nitrosospira cluster 4 (Alu390) was widespread and dominant in the majority of soil samples. Despite some treatments causing substantial increases in AOB population densities and nitrification potential rates, nitrosomonads remained undetectable, and the nitrosospirad AOB community composition did not change radically following treatment.  相似文献   

20.
Precipitation and temperature are important drivers of soil respiration. The role of moisture and temperature are generally explored at seasonal or inter-annual timescales; however, significant variability also occurs on hourly to daily time-scales. We used small (1.54 m2), throughfall exclusion shelters to evaluate the role soil moisture and temperature as temporal controls on soil CO2 efflux from a humid tropical forest in Puerto Rico. We measured hourly soil CO2 efflux, temperature and moisture in control and exclusion plots (n = 6) for 6-months. The variance of each time series was analyzed using orthonormal wavelet transformation and Haar-wavelet coherence. We found strong negative coherence between soil moisture and soil respiration in control plots corresponding to a two-day periodicity. Across all plots, there was a significant parabolic relationship between soil moisture and soil CO2 efflux with peak soil respiration occurring at volumetric soil moisture of approximately 0.375 m3/m3. We additionally found a weak positive coherence between CO2 and temperature at longer time-scales and a significant positive relationship between soil temperature and CO2 efflux when the analysis was limited to the control plots. The coherence between CO2 and both temperature and soil moisture were reduced in exclusion plots. The reduced CO2 response to temperature in exclusion plots suggests that the positive effect of temperature on CO2 is constrained by soil moisture availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号