首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brown spiders have a worldwide distribution, and their venom has a complex composition containing many different molecules. Herein, we report the existence of a family of astacin-like metalloprotease toxins in Loxosceles intermedia venom, as well as in the venom of different species of Loxosceles. Using a cDNA library from the L. intermedia venom gland, we cloned two novel cDNAs encoding astacin-like metalloprotease toxins, LALP2 and LALP3. Using an anti-serum against the previously described astacin-like toxin in L. intermedia venom (LALP1), we detected the presence of immunologically-related toxins in the venoms of L. intermedia, Loxosceles laeta, and Loxosceles gaucho. Zymographic experiments showed gelatinolytic activity of crude venoms of L. intermedia, L. laeta, and L. gaucho (which could be inhibited by the divalent metal chelator 1,10-phenanthroline) at electrophoretic mobilities identical to those reported for immunological cross-reactivity. Moreover, mRNAs extracted from L. laeta and L. gaucho venom glands were screened for astacin-like metalloproteases, and cDNAs obtained using LALP1-specific primers were sequenced, and their deduced amino acid sequences confirmed they were members of the astacin family with the family signatures (HEXXHXXGXXHE and MXY), LALP4 and LALP5, respectively. Sequence comparison of deduced amino acid sequences revealed that LALP2, LALP3, LALP4, and LALP5 are related to the astacin family. This study identified the existence of gene family of astacin-like toxins in the venoms of brown spiders and raises the possibility that these molecules are involved in the deleterious effects triggered by the venom.  相似文献   

2.
3.
Spiders have evolved highly selective toxins for insects. There are many insecticidal neurotoxins in spider venoms. Although a large amount of work has been done to focus on neurotoxicity of spider components, little information, which is related with effects of spider toxins on tumor cell proliferation and cytotoxicity, is available for Brachypelma albopilosum venom. In this work, a novel spider neurotoxin (brachyin) was identified and characterized from venoms of the spider, Brachypelma albopilosum. Brachyin is composed of 41 amino acid residues with the sequence of CLGENVPCDKDRPNCCSRYECLEPTGYGWWYASYYCYKKRS. There are six cysteines in this sequence, which form three disulfided bridges. The serine residue at the C-terminus is amidated. Brachyin showed strong lethal effects on American cockroaches (Periplaneta americana) and Tenebrio molitor (common mealbeetle). This neurotoxin also showed significant analgesic effects in mice models including abdominal writhing induced by acetic acid and formalin-induced paw licking tests. It was interesting that brachyin exerted marked inhibition on tumor cell proliferation.  相似文献   

4.
Venoms have attracted enormous attention because of their potent physiological effects and dynamic evolution, including the convergent recruitment of homologous genes for venom expression. Here we provide novel evidence for the recruitment of genes from the Crustacean Hyperglycemic Hormone (CHH) and arthropod Ion Transport Peptide (ITP) superfamily for venom expression in black widow spiders. We characterized latrodectin peptides from venom gland cDNAs from the Western black widow spider (Latrodectus hesperus), the brown widow (Latrodectus geometricus) and cupboard spider (Steatoda grossa). Phylogenetic analyses of these sequences with homologs from other spider, scorpion and wasp venom cDNAs, as well as CHH/ITP neuropeptides, show latrodectins as derived members of the CHH/ITP superfamily. These analyses suggest that CHH/ITP homologs are more widespread in spider venoms, and were recruited for venom expression in two additional arthropod lineages. We also found that the latrodectin 2 gene and nearly all CHH/ITP genes include a phase 2 intron in the same position, supporting latrodectin's placement within the CHH/ITP superfamily. Evolutionary analyses of latrodectins suggest episodes of positive selection along some sequence lineages, and positive and purifying selection on specific codons, supporting its functional importance in widow venom. We consider how this improved understanding of latrodectin evolution informs functional hypotheses regarding its role in black widow venom as well as its potential convergent recruitment for venom expression across arthropods.  相似文献   

5.
6.
Spider venoms provide a highly valuable source of peptide toxins that act on a wide diversity of membrane-bound receptors and ion channels. In this work, we report isolation, biochemical analysis, and pharmacological characterization of a novel family of spider peptide toxins, designated β/δ-agatoxins. These toxins consist of 36–38 amino acid residues and originate from the venom of the agelenid funnel-web spider Agelena orientalis. The presented toxins show considerable amino acid sequence similarity to other known toxins such as μ-agatoxins, curtatoxins, and δ-palutoxins-IT from the related spiders Agelenopsis aperta, Hololena curta, and Paracoelotes luctuosus. β/δ-Agatoxins modulate the insect NaV channel (DmNaV1/tipE) in a unique manner, with both the activation and inactivation processes being affected. The voltage dependence of activation is shifted toward more hyperpolarized potentials (analogous to site 4 toxins) and a non-inactivating persistent Na+ current is induced (site 3-like action). Interestingly, both effects take place in a voltage-dependent manner, producing a bell-shaped curve between −80 and 0 mV, and they are absent in mammalian NaV channels. To the best of our knowledge, this is the first detailed report of peptide toxins with such a peculiar pharmacological behavior, clearly indicating that traditional classification of toxins according to their binding sites may not be as exclusive as previously assumed.  相似文献   

7.
It has proven difficult to identify those spiders which cause necrotic lesions. In an effort to design a simple, inexpensive screening method for identifying spiders with necrotizing venoms, we have examined the venom gland homogenates of a variety of spider species for their ability to cause red blood cell lysis. Those venoms which were positive were further examined for the presence of sphingomyelinase D, and their ability to evoke necrotic lesions in the skin of rabbits. Sphingomyelinase D is known to be the causative agent of necrosis and red blood cell lysis in the venom of the brown recluse spider (Loxosceles reclusa), and our assumption was that this would be the same agent in other spider venoms as well. This did not prove to be the case. Of 45 species examined, only the venom of L. reclusa and Cheiracanthium mildei lysed sheep red blood cells. Unlike L. reclusa venom, however, C. mildei venom did not possess sphingomyelinase D nor did it cause necrotic lesions in the skin of rabbits. We present evidence suggesting that a phospholipase A2 is the hemolytic agent in C. mildei venom.  相似文献   

8.
9.

Background

The spider family Sicariidae includes two genera, Sicarius and Loxosceles. Bites by Sicarius are uncommon in humans and, in Brazil, a single report is known of a 17-year old man bitten by a Sicarius species that developed a necrotic lesion similar to that caused by Loxosceles. Envenomation by Loxosceles spiders can result in dermonecrosis and severe ulceration. Sicarius and Loxosceles spider venoms share a common characteristic, i.e., the presence of Sphingomyelinases D (SMase D). We have previously shown that Loxosceles SMase D is the enzyme responsible for the main pathological effects of the venom. Recently, it was demonstrated that Sicarius species from Africa, like Loxosceles spiders from the Americas, present high venom SMase D activity. However, despite the presence of SMase D like proteins in venoms of several New World Sicarius species, they had reduced or no detectable SMase D activity. In order to contribute to a better understanding about the toxicity of New World Sicarius venoms, the aim of this study was to characterize the toxic properties of male and female venoms from the Brazilian Sicarius ornatus spider and compare these with venoms from Loxosceles species of medical importance in Brazil.

Methodology/Principal Findings

SDS-PAGE analysis showed variations in the composition of Loxosceles spp. and Sicarius ornatus venoms. Differences in the electrophoretic profiles of male and female venoms were also observed, indicating a possible intraspecific variation in the composition of the venom of Sicarius spider. The major component in all tested venoms had a Mr of 32–35 kDa, which was recognized by antiserum raised against Loxosceles SMases D. Moreover, male and female Sicarius ornatus spiders'' venoms were able to hydrolyze sphingomyelin, thus showing an enzymatic activity similar to that determined for Loxosceles venoms. Sicarius ornatus venoms, as well as Loxosceles venoms, were able to render erythrocytes susceptible to lysis by autologous serum and to induce a significant loss of human keratinocyte cell viability; the female Sicarius ornatus venom was more efficient than male.

Conclusion

We show here, for the first time, that the Brazilian Sicarius ornatus spider contains active Sphingomyelinase D and is able to cause haemolysis and keratinocyte cell death similar to the South American Loxosceles species, harmful effects that are associated with the presence of active SMases D. These results may suggest that envenomation by this Sicarius spider has the potential to cause similar pathological events as that caused by Loxosceles envenomation. Our results also suggest that, in addition to the interspecific differences, intraspecific variations in the venoms composition may play a role in the toxic potential of the New World Sicarius venoms species.  相似文献   

10.
11.
12.
We have studied the behavioral responses of fishing spiders (Dolomedes triton and Dolomedes okefinokensis) to water surface wave stimuli. D.okefinokensis responded to click-like wave stimuli (Fig. 3C) in less than 15% of the cases. Responsiveness did not increase if up to 20 clicks were elicited in quick succession from the same spot (Fig. 5). If longer lasting concentric stimuli were offered, the spiders determined the direction (Fig. 6) and the distance (Fig. 8) to the wave source. This was true for monofrequency stimuli and for narrow-band and broadband noise stimuli. If concentric multifrequency surface waves were offered, even a fivefold decrease in stimulus amplitude did not significantly change the mean running distance of D.triton. However, if multifrequency wave stimuli with a flat wave front were presented, the spiders (D.triton) no longer determined the source distance precisely (Figs. 11, 12). Our results indicate that fishing spiders of the genus Dolomedes mainly use the curvature of a concentric wave stimulus for distance determination.  相似文献   

13.
We present solution-state NMR structures for two putative venom peptides from Sicarius dolichocephalus. These peptides were identified from cDNA libraries created from venom gland mRNA and then recombinantly expressed. They are the first structures from any species of Sicarius spiders, and the first peptide structures for any haplogyne spiders. These peptides are homologous to one another, and while they have at most only 20% sequence identity with known venom peptides their structures follow the inhibitor cystine knot motif that has been found in a broad range of venom peptides.  相似文献   

14.
Venom of Lachesana tarabaevi (Zodariidae, “ant spiders”) exhibits high insect toxicity and serves a rich source of potential insecticides. Five new peptide toxins active against insects were isolated from the venom by means of liquid chromatography and named latartoxins (LtTx). Complete amino acid sequences of LtTx (60-71 residues) were established by a combination of Edman degradation, mass spectrometry and selective proteolysis. Three toxins have eight cysteine residues that form four intramolecular disulfide bridges, and two other molecules contain an additional cystine; three LtTx are C-terminally amidated. Latartoxins can be allocated to two groups with members similar to CSTX and LSTX toxins from Cupiennius salei (Ctenidae) and Lycosa singoriensis (Lycosidae). The interesting feature of the new toxins is their modular organization: they contain an N-terminal cysteine-rich (knottin or ICK) region as in many neurotoxins from spider venoms and a C-terminal linear part alike some cytolytic peptides. The C-terminal fragment of one of the most abundant toxins LtTx-1a was synthesized and shown to possess membrane-binding activity. It was found to assume amphipathic α-helical conformation in membrane-mimicking environment and exert antimicrobial activity at micromolar concentrations. The tails endow latartoxins with the ability to bind and damage membranes; LtTx show cytolytic activity in fly larvae neuromuscular preparations. We suggest a membrane-dependent mode of action for latartoxins with their C-terminal linear modules acting as anchoring devices.  相似文献   

15.
16.
17.
Loxosceles spider venom usually causes a typical dermonecrotic lesion in bitten patients, but it may also cause systemic effects that may be lethal. Gel filtration on Sephadex G-100 ofLoxosceles gaucho, L. laeta, orL. intermedia spider venoms resulted in three fractions (A, containing higher molecular mass components, B containing intermediate molecular mass components, and C with lower molecular mass components). The dermonecrotic and lethal activities were detected exclusively in fraction A of all three species. Analysis by SDS-PAGE showed that the major protein contained in fraction A has molecular weight approximately 35 kDa inL. gaucho andL. intermedia, but 32 kDa inL. laeta venom. These toxins were isolated from venoms ofL. gaucho, L. laeta, andL. intermedia by SDS-PAGE followed by blotting to PVDF membrane and sequencing. A database search showed a high level of identity between each toxin and a fragment of theL. reclusa (North American spider) toxin. A multiple sequence alignment of theLoxosceles toxins showed many common identical residues in their N-terminal sequences. Identities ranged from 50.0% (L. gaucho andL. reclusa) to 61.1% (L. intermedia andL. reclusa). The purified toxins were also submitted to capillary electrophoresis peptide mapping afterin situ partial hydrolysis of the blotted samples. The results obtained suggest thatL. intermedia protein is more similar toL. laeta toxin thanL. gaucho toxin and revealed a smaller homology betweenL. intermedia andL gaucho. Altogether these findings suggest that the toxins responsible for most important activities of venoms ofLoxosceles species have a molecular mass of 32–35 kDa and are probably homologous proteins.  相似文献   

18.
There are now more than 40,000 identified spider species in the world, and considered about 100 species as actually dangerous to human. Spider bites cause a range of symptoms from simple swellings to disfiguring necrotic lesions, and occasionally death. While spider bites are not a major medical problem in Korea, it would be of great value to know which species of spiders pose a threat to human health. A middle molecular weight protein, sphingomyelinase D, has been identified in the venom of the brown recluse spider and strong evidence suggests that they have a major role in spider bite necrosis. For the identification of necrotizing species, we have investigated using recently developed non‐radioactive assay of sphingomyelinase for rapidly screening the necrotizing venoms. Here, we demonstrate the fetal toxicity of total 57 species (32 genera, 9 families) of the wandering spiders among 622 identified spider species in Korea. It has been revealed that two species of the Thomisidae spider, Ozyptila nongae (0.2467) and Diaea subdola (0.2020) have the strongest sphingomyelinase activities among themselves. In addition one species of the family Pisauridae, Dolomedes sulfureus (0.2341) has also relatively higher value comparing to other wandering spiders. However comparing to that of the brown recluse spider, Loxosceles reclusa (1.814) in North America the necrotizing activities of these Korean wandering species are still very low state, so there seems to be little possibilities to create serious medical problems by the necrotizing arachnidism in Korean peninsula.  相似文献   

19.
20.
Envenoming with brown spiders (Loxosceles genus) is common throughout the world. Cutaneous symptoms following spider bite accidents include dermonecrosis, erythema, itching and pain. In some cases, accidents can cause hypersensibility or even allergic reactions. These responses could be associated with histaminergic events, such as an increase in vascular permeability and vasodilatation. A protein that may be related to the effects of spider venom was identified from a previously obtained cDNA library of the L. intermedia venom gland. The amino acid sequence of this protein is homologous to proteins from the TCTP (translationally-controlled tumor protein) family, which are extracellular histamine-releasing factors (HRF) that are associated with the allergic reactions to parasites. Herein, we described the cloning, heterologous expression, purification and functional characterization of a novel member of the TCTP family from the Loxosceles intermedia venom gland. This recombinant protein, named LiRecTCTP, causes edema, enhances vascular permeability and is likely related to the inflammatory activity of the venom. Moreover, LiRecTCTP presents an immunological relationship with mammalian TCTPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号