首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of murine cerebrospinal fluid (CSF) by quantitative mass spectrometry is challenging because of low CSF volume, low total protein concentration, and the presence of highly abundant proteins such as albumin. We demonstrate that the CSF proteome of individual mice can be analyzed in a quantitative manner to a depth of several hundred proteins in a robust and simple workflow consisting of single ultra HPLC runs on a benchtop mass spectrometer. The workflow is validated by a comparative analysis of BACE1−/− and wild-type mice using label-free quantification. The protease BACE1 cleaves the amyloid precursor protein (APP) as well as several other substrates and is a major drug target in Alzheimer''s disease. We identified a total of 715 proteins with at least 2 unique peptides and quantified 522 of those proteins in CSF from BACE1−/− and wild-type mice. Several proteins, including the known BACE1 substrates APP, APLP1, CHL1 and contactin-2 showed lower abundance in the CSF of BACE1−/− mice, demonstrating that BACE1 substrate identification is possible from CSF. Additionally, ectonucleotide pyrophosphatase 5 was identified as a novel BACE1 substrate and validated in cells using immunoblots and by an in vitro BACE1 protease assay. Likewise, receptor-type tyrosine-protein phosphatase N2 and plexin domain-containing 2 were confirmed as BACE1 substrates by in vitro assays. Taken together, our study shows the deepest characterization of the mouse CSF proteome to date and the first quantitative analysis of the CSF proteome of individual mice. The BACE1 substrates identified in CSF may serve as biomarkers to monitor BACE1 activity in Alzheimer patients treated with BACE inhibitors.Cerebrospinal fluid (CSF)1 consists of interstitial fluid that is in continuous exchange with the central nervous system and the peripheral blood system. It represents the only body fluid in humans that is in direct contact with brain tissue and accessible in a routine clinical setting. Thus, the easy accessibility from the periphery renders CSF perfectly suited to study pathologic neurological processes (1). Human CSF has a relatively low protein content (∼ 0.4 mg/ml), but features a highly diverse proteome. It is thus increasingly studied by modern mass spectrometry based proteomics (2). The proteomic analysis of human CSF typically involves various protein concentration and fractionation steps as well as the depletion of highly abundant proteins, such as serum albumin. This allows the identification of several hundred up to 2600 proteins from several milliliters of human CSF (3).Mice are the most popular animal model in preclinical research, because of their similarity to humans in genetics and physiology, their unlimited supply and their ease of genetic engineering. The study of their CSF can provide valuable insights into disease mechanisms and biomarker discovery and may allow the rapid translation of preclinical findings into human patients. However, the proteomic study of murine CSF has been limited because of several shortcomings. The low total CSF volume of ∼30 μl and an average yield of only ∼10 μl blood-free CSF pose a challenge for various protein concentration and depletion steps that are routinely applied to human CSF, where the sample volume is up to 1,000-fold more (4, 5). One study reported the identification of 289 proteins and the quantification of 103 proteins using pooled immunodepleted CSF from 10–12 mice per sample (6). A second study reported the identification of 566 proteins in murine CSF of individual mice, relying on time consuming fractionation by two dimensional liquid chromatography tandem MS (2D-LC-MS/MS) (7).Here we show that label-free quantitative proteomics in murine CSF can be achieved in unprecedented depth in individual animals using single ultra HPLC runs on the benchtop Q Exactive mass spectrometer. We demonstrate the feasibility of our approach by comparing the CSF of BACE1 (β-site amyloid precursor protein (APP) cleaving enzyme 1) −/− mice with their wild-type littermates.BACE1 is a membrane bound aspartyl protease that is essential in the pathogenesis of Alzheimer''s disease. It is the rate-limiting enzyme in a proteolytic cascade leading to the liberation of the neurotoxic Aβ peptide from the much larger amyloid precursor protein (APP) into the extracellular space (8, 9). Inhibition of BACE1 abolishes Aβ generation, rendering BACE1 a prime drug target for the therapy of Alzheimer''s disease (10). Besides APP, BACE1 processes numerous other substrates in vivo and in vitro, which raises concerns about mechanism based side effects on the therapeutic inhibition of this protease (11). Although BACE1 expression levels are the highest in the brain, it is currently unknown whether BACE1 substrate levels besides APP can be monitored in the CSF as a read-out of BACE1 activity. This would be desirable, as it would allow the longitudinal monitoring of BACE1 substrate levels on therapeutic inhibition of BACE1 in humans and thus an effective screening for possible adverse effects.Our approach allows the accurate identification and quantification of several hundred proteins in as little as 2 μl of murine CSF in ∼4.5 h per sample, at a much greater speed and proteomic depth than in previous studies, despite using lower sample amounts (6, 7). Overall, 715 proteins were identified with at least two unique peptides and 522 proteins were quantified in at least three biological replicates of both BACE1−/− and wild-type mice. We provide evidence that BACE1 activity is reflected in the composition of the CSF, as the secreted ectodomains of well-known BACE1 substrates were reduced in BACE1−/− animals. In addition, we identified and validated a previously unknown BACE1 substrate candidate and confirmed two recently described novel BACE1 substrates. The three proteins may represent novel prognostic or diagnostic biomarkers and may aid in the development of APP-specific BACE1 inhibitors.  相似文献   

2.
Rhodnius prolixus Nitrophorin 4 (abbreviated NP4) is an almost pure β-sheet heme protein. Its dynamics is investigated by X-ray structure determination at eight different temperatures from 122 to 304 K and by means of Mössbauer spectroscopy. A comparison of this β-sheet protein with the pure α-helical protein myoglobin (abbreviated Mbmet) is performed. The mean square displacement derived from the Mössbauer spectra increases linearly with temperature below a characteristic temperature T c. It is about 10 K larger than that of myoglobin. Above T c the mean square displacements increase dramatically. The Mössbauer spectra are analyzed by a two state model. The increased mean square displacements are caused by very slow motions occurring on a time scale faster than 140 ns. With respect to these motions NP4 shows the same protein specific modes as Mbmet. There is, however, a difference in the fast vibration regime. The B values found in the X-ray structures vary linearly over the entire temperature range. The mean square displacements in NP4 increase with slopes which are 60% larger than those observed for Mbmet. This indicates that nitrophorin has a larger structural distribution which makes it more flexible than myoglobin.  相似文献   

3.
Amyloid precursor protein cleaving enzyme 1 (BACE1), an aspartyl protease, initiates processing of the amyloid precursor protein (APP) into β-amyloid (Aβ); the peptide likely contributes to development of Alzheimer’s disease (AD). BACE1 is an attractive therapeutic target for AD treatment, but it exhibits other physiological activities and has many other substrates besides APP. Thus, inhibition of BACE1 function may cause adverse side effects. Here, we present a peptide, S1, isolated from a peptide library that selectively inhibits BACE1 hydrolytic activity by binding to the β-proteolytic site on APP and Aβ N-terminal. The S1 peptide significantly reduced Aβ levels in vitro and in vivo and inhibited Aβ cytotoxicity in SH-SY5Y cells. When applied to APPswe/PS1dE9 double transgenic mice by intracerebroventricular injection, S1 significantly improved the spatial memory as determined by the Morris Water Maze, and also attenuated their Aβ burden. These results indicate that the dual-functional peptide S1 may have therapeutic potential for AD by both reducing Aβ generation and inhibiting Aβ cytotoxicity.  相似文献   

4.
It is becoming increasingly clear that many proteins start to fold cotranslationally before the entire polypeptide chain has been synthesized on the ribosome. One class of proteins that a priori would seem particularly prone to cotranslational folding is repeat proteins, that is, proteins that are built from an array of nearly identical sequence repeats. However, while the folding of repeat proteins has been studied extensively in vitro with purified proteins, only a handful of studies have addressed the issue of cotranslational folding of repeat proteins. Here, we have determined the structure and studied the cotranslational folding of a β-helix pentarepeat protein from the human pathogen Clostridium botulinum—a homolog of the fluoroquinolone resistance protein MfpA—using an assay in which the SecM translational arrest peptide serves as a force sensor to detect folding events. We find that cotranslational folding of a segment corresponding to the first four of the eight β-helix coils in the protein produces enough force to release ribosome stalling and that folding starts when this unit is ~ 35 residues away from the P-site, near the distal end of the ribosome exit tunnel. An additional folding transition is seen when the whole PENT moiety emerges from the exit tunnel. The early cotranslational formation of a folded unit may be important to avoid misfolding events in vivo and may reflect the minimal size of a stable β-helix since it is structurally homologous to the smallest known β-helix protein, a four-coil protein that is stable in solution.  相似文献   

5.
The β-amyloid precursor protein has been the focus of much attention from the Alzheimer's disease community for the past decade and a half. The β-amyloid precursor protein holds a pivotal position in Alzheimer's disease research because it is the precursor to the amyloid β-protein which many believe plays a central role in Alzheimer's disease pathogenesis. It was also the first gene in which mutations associated with inherited Alzheimer's disease were found. Although the molecular details of the generation of amyloid β-protein from β-amyloid precursor protein are being unraveled, the actual physiological functions of β-amyloid precursor protein are far from clear. This situation is changing as accumulating new evidence suggests that the C-terminal cytosolic tail of β-amyloid precursor protein may have multiple biological activities, ranging from axonal transport to nuclear signaling. This article reviews the current state of knowledge about the biological functions of β-amyloid precursor protein .  相似文献   

6.
该研究成功地构建了C/EBP β过表达慢病毒载体,在体外人胚肾细胞(HEK293FT)进行病毒包装并感染小鼠海马神经元细胞(HT22)。通过荧光素酶报告基因实验(luciferase assay)检测C/EBPβ对淀粉样前体蛋白(amyloid precursor protein,APP)启动子活性的影响;通过实时荧光定量PCR(Q-PCR)来检测C/EBPβ对APP和Sp1在转录水平上的表达;通过蛋白免疫印迹分析(Western blot assay)检测C/EBPβ对APP和Sp1蛋白表达的作用。萤火虫荧光素酶分析结果显示,C/EBPβ对APP启动子的表达有正调控作用;Western blot和Q-PCR分析的结果表明,C/EBPβ对APP和Sp1基因的表达有正调控作用。C/EBPβ对APP基因表达的调控作用的机制可能在于C/EBPβ上调了内源性转录因子Sp1的基因表达,而Sp1基因表达的增强直接导致了APP基因表达的上调。  相似文献   

7.
The γ-secretase complex is responsible for intramembrane processing of over 60 substrates and is involved in Notch signaling as well as in the generation of the amyloid β-peptide (Aβ). Aggregated forms of Aβ have a pathogenic role in Alzheimer disease and, thus, reducing the Aβ levels by inhibiting γ-secretase is a possible treatment strategy for Alzheimer disease. Regrettably, clinical trials have shown that inhibition of γ-secretase results in Notch-related side effects. Therefore, it is of great importance to find ways to inhibit amyloid precursor protein (APP) processing without disturbing vital signaling pathways such as Notch. Nicastrin (Nct) is part of the γ-secretase complex and has been proposed to be involved in substrate recognition and selection. We have investigated how the four evenly spaced and conserved cysteine residues in the Nct ectodomain affect APP and Notch processing. We mutated these cysteines to serines and analyzed them in cells lacking endogenous Nct. We found that two mutants, C213S (C2) and C230S (C3), differentially affected APP and Notch processing. Both the formation of Aβ and the intracellular domain of amyloid precursor protein (AICD) were reduced, whereas the production of Notch intracellular domain (NICD) was maintained on a high level, although C230S (C3) showed impaired complex assembly. Our data demonstrate that single residues in a γ-secretase component besides presenilin are able to differentially affect APP and Notch processing.  相似文献   

8.
The kinetics of phase separation and microstructure of oat β-glucan/whey protein binary mixtures varying in concentration (4–16% w/v protein, 0.3–1.2% w/v β-glucan) and β-glucan molecular weight (1.3 × 106, 640 × 103, 180 × 103, and 120 × 103 g/mol) was investigated by turbidimetry and fluorescent microscopy. The phase separation of the mixed systems was followed at pH 7.0 and at room temperature under quiescent conditions. Application of first principles revealed that phase separation of the systems follows first-order kinetics. Acceleration of the phase-separation process was observed with increase of β-glucan concentration for the three lowest-MW samples but the highest molecular weight (1.3 × 106 g/mol) exhibited the opposite trend. Changes in the polysaccharide molecular weight resulted in considerable differences in β-glucan aggregate morphology in the mixed systems. The change in the continuity of the mixed system from polysaccharide-, to bi-, to protein-continuous was confirmed for a wide range of mixed systems differing in biopolymer concentration, and β-glucan molecular weight.  相似文献   

9.
Several prior investigations of Alzheimer's disease (AD) patients have indicated naturally occurring autoantibodies against amyloid-β (Aβ) species are produced. Although many studies have focused on the relative concentrations or binding affinities of autoantibodies against Aβ-related proteins in AD and aging, data regarding their functional properties are limited. It is generally believed that these antibodies act to aid in clearance of Aβ. However, as antibodies which bind to Aβ also typically bind to the parent amyloid precursor protein (APP), we reasoned that certain Aβ-targeting autoantibodies may bind to APP thereby altering its conformation and processing. Here we show for the first time, that naturally occurring Aβ-reactive autoantibodies isolated from AD patients, but not from healthy controls, promote β-secretase activity in cultured cells. Furthermore, using monoclonal antibodies to various regions of Aβ, we found that antibodies generated against the N-terminal region, especially Aβ(1-17) , dose dependently promoted amyloidogenic processing of APP viaβ-secretase activation. Thus, this property of certain autoantibodies in driving Aβ generation could be of etiological importance in the development of sporadic forms of AD. Furthermore, future passive or active anti-Aβ immunotherapies must consider potential off-target effects resulting from antibodies targeting the N-terminus of Aβ, as co-binding to the corresponding region of APP may actually enhance Aβ generation.  相似文献   

10.
-Amyloid (A), a 39–43 residue peptide generated by splicing of the amyloid precursor protein (APP), is one of the major components of senile plaques which are the hallmark of Alzheimer's disease (AD); and therefore, a role of A in neuronal degeneration has been proposed. The factors which regulate the levels of A have not been fully identified. Since an elevation of the intracellular levels of adenosine, 3, 5-cyclic monophosphate (cAMP) in neuroblastoma cells (NB) induces terminal differentiation, and since these differentiated NB cells undergo spontaneous degeneration, the role of cAMP in the regulation of A levels in these cells have been investigated. In order to determine the specificity of the effect of cAMP on nerve cells, rat glioma cells (C-6) were investigated in a similar manner. Results showed that an elevation of the levels of cAMP in NB cells enhances the intensity of A immunostaining without changing the levels of APP or APP mRNA. This suggests that the rate of processing of APP to A increases following an elevation of cAMP level in NB cells. Data also revealed that an elevation of cAMP level in glioma cells did not alter the intensity of staining with APP or A.  相似文献   

11.
12.
Abstract

The tumor suppressor p53 protein plays a critical role in the cell-cycle progression. The role of the 3′-to-5′ exonuclease activity of p53 protein in the DNA repair process remains elusive. Using an in vitro exonuclease assay and defined oligonucleotides terminated with β-D- and β-L-nucleoside analogs at the 3′-terminus, we studied the ability of p53 protein to excise β-L- and β-D-nucleoside analogs which have anticancer or antiviral potential. p53 protein removes β-D-nucleoside analogs more efficiently compared to that of β-L-nucleoside analogs. The affinity of p53 protein for an β-L-nucleotide terminated primer was 5 fold lower compared to non-modified primer. The hypothesis on an important role of the 3′-to-5′ exonuclease activity of p53 protein in the action of nucleoside analogs was proposed.  相似文献   

13.
Flavodoxin adopts the common repeat β/α topology and folds in a complex kinetic reaction with intermediates. To better understand this reaction, we analyzed a set of Desulfovibrio desulfuricans apoflavodoxin variants with point mutations in most secondary structure elements by in vitro and in silico methods. By equilibrium unfolding experiments, we first revealed how different secondary structure elements contribute to overall protein resistance to heat and urea. Next, using stopped-flow mixing coupled with far-UV circular dichroism, we probed how individual residues affect the amount of structure formed in the experimentally detected burst-phase intermediate. Together with in silico folding route analysis of the same point-mutated variants and computation of growth in nucleation size during early folding, computer simulations suggested the presence of two competing folding nuclei at opposite sides of the central β-strand 3 (i.e., at β-strands 1 and 4), which cause early topological frustration (i.e., misfolding) in the folding landscape. Particularly, the extent of heterogeneity in folding nuclei growth correlates with the in vitro burst-phase circular dichroism amplitude. In addition, ?-value analysis (in vitro and in silico) of the overall folding barrier to apoflavodoxin's native state revealed that native-like interactions in most of the β-strands must form in transition state. Our study reveals that an imbalanced competition between the two sides of apoflavodoxin's central β-sheet directs initial misfolding, while proper alignment on both sides of β-strand 3 is necessary for productive folding.  相似文献   

14.
Despite its central role in the protein folding process, the specific mechanism(s) behind β-sheet formation has yet to be determined. For example, whether the nucleation of β-sheets, often containing strands separated in sequence by many residues, is local or not remains hotly debated. Here, we investigate the initial nucleation step of β-sheet formation by performing an analysis of the smallest β-sheets in a non-redundant dataset on the grounds that the smallest sheets, having undergone little growth after nucleation, will be enriched for nucleating characteristics. We find that the residue propensities are similar for small and large β-sheets as are their interstrand pairing preferences, suggesting that nucleation is not primarily driven by specific residues or interacting pairs. Instead, an examination of the structural environments of the two-stranded sheets shows that virtually all of them are contained in single, compact structural modules, or when multiple modules are present, one or both of the chain termini are involved. We, therefore, find that β-nucleation is a local phenomenon resulting either from sequential or topological proximity. We propose that β-nucleation is a result of two opposite factors; that is, the relative rigidity of an associated folding module that holds two stretches of coil close together in topology coupled with sufficient chain flexibility that enables the stretches of coil to bring their backbones in close proximity. Our findings lend support to the hydrophobic zipper model of protein folding (Dill, K. A., Fiebig, K. M., and Chan, H. S. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 1942–1946). Implications for protein folding are discussed.  相似文献   

15.
FAS-associated factor 1 (FAF1) antagonizes Wnt signaling by stimulating β-catenin degradation. However, the molecular mechanism underlying this effect is unknown. Here, we demonstrate that the E3 ubiquitin ligase β-transducin repeat-containing protein (β-TrCP) is required for FAF1 to suppress Wnt signaling and that FAF1 specifically associates with the SCF (Skp1-Cul1-F-box protein)-β-TrCP complex. Depletion of β-TrCP reduced FAF1-mediated β-catenin polyubiquitination and impaired FAF1 in antagonizing Wnt/β-catenin signaling. FAF1 was shown to act as a scaffold for β-catenin and β-TrCP and thereby to potentiate β-TrCP-mediated β-catenin ubiquitination and degradation. Data mining revealed that FAF1 expression is statistically down-regulated in human breast carcinoma compared with normal breast tissue. Consistent with this, FAF1 expression is higher in epithelial-like MCF7 than mesenchymal-like MDA-MB-231 human breast cancer cells. Depletion of FAF1 in MCF7 cells resulted in increased β-catenin accumulation and signaling. Importantly, FAF1 knockdown promoted a decrease in epithelial E-cadherin and an increase in mesenchymal vimentin expression, indicative for an epithelial to mesenchymal transition. Moreover, ectopic FAF1 expression reduces breast cancer cell migration in vitro and invasion/metastasis in vivo. Thus, our studies strengthen a tumor-suppressive function for FAF1.  相似文献   

16.
Autophagy is a conserved process that contributes to cell homeostasis. It is well known that induction mainly occurs in response to nutrient starvation, such as starvation of amino acids and insulin, and its mechanisms have been extensively characterized. However, the mechanisms behind cellular glucose deprivation-induced autophagy are as of now poorly understood. In the present study, we determined a mechanism by which glucose deprivation induced the PKC-dependent proteasomal degradation of β-catenin, leading to autophagy. Glucose deprivation was shown to cause a sub-G1 transition and enhancement of the LC3-II protein levels, whereas β-catenin protein underwent degradation in a proteasome-dependent manner. Moreover, the inhibition of GSK3β was unable to abolish the glucose deprivation-mediated β-catenin degradation or up-regulation of LC3-II protein levels, which suggested GSK3β-independent protein degradation. Intriguingly, the inhibition of PKCα using a pharmacological inhibitor and transfection of siRNA for PKCα was observed to effectively block glucose deprivation-induced β-catenin degradation as well as the increase in LC3-II levels and the accumulation of a sub-G1 population. Together, our results demonstrated a molecular mechanism by which glucose deprivation can induce the GSK3β-independent protein degradation of β-catenin, leading to autophagy.  相似文献   

17.
Pleiotrophin is a growth factor that induces carcinogenesis. Despite the fact that many published reports focused on the role of pleiotrophin and its receptors, receptor protein tyrosine phosphatase (RPTPβ/ζ), and syndecan-3 during tumor development, no information is available regarding their function in tumor metastasis. To investigate the mechanism through which pleiotrophin regulates tumor metastasis, we used two different prostate carcinoma cell lines, DU145 and PC3, in which the expression of RPTPβ/ζ or syndecan-3 was down-regulated by the RNAi technology. The loss of RPTPβ/ζ expression initiated epithelial-to-mesenchymal transition (EMT) and increased the ability of the cells to migrate and invade. Importantly, the loss of RPTPβ/ζ expression increased metastasis in nude mice in an experimental metastasis assay. We also demonstrate that RPTPβ/ζ counterbalanced the pleiotrophin-mediated syndecan-3 pathway. While the inhibition of syndecan-3 expression inhibited the pleiotrophin-mediated cell migration and attachment through the Src and Fak pathway, the inhibition of RPTPβ/ζ expression increased pleiotrophin-mediated migration and attachment through an interaction with Src and the subsequent activation of a signal transduction pathway involving Fak, Pten, and Erk1/2. Taken together, these results suggest that the loss of RPTPβ/ζ may contribute to the metastasis of prostate cancer cells by inducing EMT and promoting pleiotrophin activity through the syndecan-3 pathway.  相似文献   

18.
Among the known pathways of protein nuclear import, the karyopherin β2/transportin pathway is only the second to have a defined nuclear localization signal (NLS) consensus. Huntingtin, a 350-kDa protein, has defined roles in the nucleus, as well as a CRM1/exportin-dependent nuclear export signal; however, the NLS and exact pathway of import have remained elusive. Here, using a live cell assay and affinity chromatography, we show that huntingtin has a karyopherin β2-dependent proline-tyrosine (PY)-NLS in the amino terminus of the protein. This NLS comprises three consensus components: a basic charged sequence, a downstream conserved arginine, and a PY sequence. Unlike the classic PY-NLS, which has an unstructured intervening sequence between the consensus components, we show that a β sheet structured region separating the consensus elements is critical for huntingtin NLS function. The huntingtin PY-NLS is also capable of import through the importin/karyopherin β1 pathway but was not functional in all cell types tested. We propose that this huntingtin PY-NLS may comprise a new class of multiple import factor-dependent NLSs with an internal structural component that may regulate NLS activity.  相似文献   

19.
In the canonical Wnt signaling pathway, the translocation of β-catenin is important for the activation of target genes in the nucleus. However, the molecular mechanisms underlying its nuclear localization remain unclear. In the present study, we found IQGAP1 to be a regulator of β-catenin function via importin-β5. In Xenopus embryos, depletion of IQGAP1 reduced Wnt-induced nuclear accumulation of β-catenin and expression of Wnt target genes during early embryogenesis. Depletion of endogenous importin-β5 associated with IQGAP1 also reduced expression of Wnt target genes and the nuclear localization of IQGAP1 and β-catenin. Moreover, a small GTPase, Ran1, contributes to the nuclear translocation of β-catenin and the activation of Wnt target genes. These results suggest that IQGAP1 functions as a regulator of translocation of β-catenin in the canonical Wnt signaling pathway.  相似文献   

20.
Computational design has been used with mixed success for the design of protein surfaces, with directed evolution heretofore providing better practical solutions than explicit design. Directed evolution, however, requires a tractable high-throughput screen because the random nature of mutation does not enrich for desired traits. Here we demonstrate the successful design of the β-sheet surface of a red fluorescent protein (RFP), enabling control over its oligomerization. To isolate the problem of surface design, we created a hybrid RFP from DsRed and mCherry with a stabilized protein core that allows for monomerization without loss of fluorescence. We designed an explicit library for which 93 of 96 (97%) of the protein variants are soluble, stably fluorescent, and monomeric. RFPs are heavily used in biology, but are natively tetrameric, and creating RFP monomers has proven extremely difficult. We show that surface design and core engineering are separate problems in RFP development and that the next generation of RFP markers will depend on improved methods for core design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号