首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Transmission of African trypanosomes by tsetse flies requires that the parasites migrate out of the midgut lumen and colonize the ectoperitrophic space. Early procyclic culture forms correspond to trypanosomes in the lumen; on agarose plates they exhibit social motility, migrating en masse as radial projections from an inoculation site. We show that an Rft1−/− mutant needs to reach a greater threshold number before migration begins, and that it forms fewer projections than its wild-type parent. The mutant is also up to 4 times less efficient at establishing midgut infections. Ectopic expression of Rft1 rescues social motility defects and restores the ability to colonize the fly. These results are consistent with social motility reflecting movement to the ectoperitrophic space, implicate N-glycans in the signaling cascades for migration in vivo and in vitro, and provide the first evidence that parasite-parasite interactions determine the success of transmission by the insect host.  相似文献   

4.
The role of adipokinetic hormone (AKH) and adenosine in the anti-stress response was studied in Drosophila melanogaster larvae and adults carrying a mutation in the Akh gene (Akh1), the adenosine receptor gene (AdoR1), or in both of these genes (Akh1 AdoR1 double mutant). Stress was induced by starvation or by the addition of an oxidative stressor paraquat (PQ) to food. Mortality tests revealed that the Akh1 mutant was the most resistant to starvation, while the AdoR1 mutant was the most sensitive. Conversely, the Akh1 AdoR1 double mutant was more sensitive to PQ toxicity than either of the single mutants. Administration of PQ significantly increased the Drome-AKH level in w1118 and AdoR1 larvae; however, this was not accompanied by a simultaneous increase in Akh gene expression. In contrast, PQ significantly increased the expression of the glutathione S-transferase D1 (GstD1) gene. The presence of both a functional adenosine receptor and AKH seem to be important for the proper control of GstD1 gene expression under oxidative stress, however, the latter appears to play more dominant role. On the other hand, differences in glutathione S-transferase (GST) activity among the strains, and between untreated and PQ-treated groups were minimal. In addition, the glutathione level was significantly lower in all untreated AKH- or AdoR-deficient mutant flies as compared with the untreated control w1118 flies and further declined following treatment with PQ. All oxidative stress characteristics modified by mutations in Akh gene were restored or even improved by ‘rescue’ mutation in flies which ectopically express Akh. Thus, the results of the present study demonstrate the important roles of AKH and adenosine in the anti-stress response elicited by PQ in a D. melanogaster model, and provide the first evidence for the involvement of adenosine in the anti-oxidative stress response in insects.  相似文献   

5.
Extended periods of waking result in physiological impairments in humans, rats, and flies. Sleep homeostasis, the increase in sleep observed following sleep loss, is believed to counter the negative effects of prolonged waking by restoring vital biological processes that are degraded during sleep deprivation. Sleep homeostasis, as with other behaviors, is influenced by both genes and environment. We report here that during periods of starvation, flies remain spontaneously awake but, in contrast to sleep deprivation, do not accrue any of the negative consequences of prolonged waking. Specifically, the homeostatic response and learning impairments that are a characteristic of sleep loss are not observed following prolonged waking induced by starvation. Recently, two genes, brummer (bmm) and Lipid storage droplet 2 (Lsd2), have been shown to modulate the response to starvation. bmm mutants have excess fat and are resistant to starvation, whereas Lsd2 mutants are lean and sensitive to starvation. Thus, we hypothesized that bmm and Lsd2 may play a role in sleep regulation. Indeed, bmm mutant flies display a large homeostatic response following sleep deprivation. In contrast, Lsd2 mutant flies, which phenocopy aspects of starvation as measured by low triglyceride stores, do not exhibit a homeostatic response following sleep loss. Importantly, Lsd2 mutant flies are not learning impaired after sleep deprivation. These results provide the first genetic evidence, to our knowledge, that lipid metabolism plays an important role in regulating the homeostatic response and can protect against neuronal impairments induced by prolonged waking.  相似文献   

6.
Mutation of the gene drop-dead (drd) causes adult Drosophila to die within 2 weeks of eclosion and is associated with reduced rates of defecation and increased volumes of crop contents. In the current study, we demonstrate that flies carrying the strong allele drdlwf display a reduction in the transfer of ingested food from the crop to the midgut, as measured both as a change in the steady-state distribution of food within the gut and also in the rates of crop emptying and midgut filling following a single meal. Mutant flies have abnormal triglyceride (TG) and glycogen stores over the first 4 days post-eclosion, consistent with their inability to move food into the midgut for digestion and nutrient absorption. However, the lifespan of mutants was dependent upon food presence and quality, suggesting that at least some individual flies were able to digest some food. Finally, spontaneous motility of the crop was abnormal in drdlwf flies, with the crops of mutant flies contracting significantly more rapidly than those of heterozygous controls. We therefore hypothesize that mutation of drd causes a structural or regulatory defect that inhibits the entry of food into the midgut.  相似文献   

7.
The V(0) complex forms the proteolipid pore of an ATPase that acidifies vesicles. In addition, an independent function in membrane fusion has been proposed largely based on yeast vacuolar fusion experiments. We have isolated mutations in the largest V(0) component vha100-1 in flies in an unbiased genetic screen for synaptic malfunction. The protein is only required in neurons, colocalizes with markers for synaptic vesicles as well as active zones, and interacts with t-SNAREs. Loss of vha100-1 leads to vesicle accumulation in synaptic terminals, suggesting a deficit in release. The amplitude of spontaneous release events and release with hypertonic stimulation indicate normal levels of neurotransmitter loading, yet mutant embryos display severe defects in evoked synaptic transmission and FM1-43 uptake. Our data suggest that Vha100-1 functions downstream of SNAREs in synaptic vesicle fusion.  相似文献   

8.
We screened for mutations that confer sensitivities to the calcineurin inhibitor FK506 and to a high concentration of MgCl2 and isolated the cis4-1 mutant, an allele of the gene encoding a cation diffusion facilitator (CDF) protein that is structurally related to zinc transporters. Consistently, the addition of extracellular Zn2+ suppressed the phenotypes of the cis4 mutant cells. The cis4 mutants and the mutant cells of another CDF-encoding gene SPBC16E9.14c (we named zrg17+) shared common and nonadditive zinc-suppressible phenotypes, and Cis4 and Zrg17 physically interacted. Cis4 localized at the cis-Golgi, suggesting that Cis4 is responsible for Zn2+ uptake to the cis-Golgi. The cis4 mutant cells showed phenotypes such as weak cell wall and decreased acid phosphatase secretion that are thought to be resulting from impaired membrane trafficking. In addition, the cis4 deletion cells showed synthetic growth defects with all the four membrane-trafficking mutants tested, namely ypt3-i5, ryh1-i6, gdi1-i11, and apm1-1. Interestingly, the addition of extracellular Zn2+ significantly suppressed the phenotypes of the ypt3-i5 and apm1-1 mutant cells. These results suggest that Cis4 forms a heteromeric functional complex with Zrg17 and that Cis4 is implicated in Golgi membrane trafficking through the regulation of zinc homeostasis in fission yeast.  相似文献   

9.
African trypanosomes undergo a complex developmental process in their tsetse fly vector before transmission back to a vertebrate host. Typically, 90% of fly infections fail, most during initial establishment of the parasite in the fly midgut. The specific mechanism(s) underpinning this failure are unknown. We have previously shown that a Glossina-specific, immunoresponsive molecule, tsetse EP protein, is up regulated by the fly in response to gram-negative microbial challenge. Here we show by knockdown using RNA interference that this tsetse EP protein acts as a powerful antagonist of establishment in the fly midgut for both Trypanosoma brucei brucei and T. congolense. We demonstrate that this phenomenon exists in two species of tsetse, Glossina morsitans morsitans and G. palpalis palpalis, suggesting tsetse EP protein may be a major determinant of vector competence in all Glossina species. Tsetse EP protein levels also decline in response to starvation of the fly, providing a possible explanation for increased susceptibility of starved flies to trypanosome infection. As starvation is a common field event, this fact may be of considerable importance in the epidemiology of African trypanosomiasis.  相似文献   

10.
11.
Storage of energy metabolites has been investigated in different sets of laboratory selected desiccation or starvation resistant lines but few studies have examined such changes in wild-caught populations of Drosophila melanogaster. In contrast to parallel selection of desiccation and starvation tolerance under laboratory selection experiments, opposite clines were observed in wild populations of D. melanogaster. If resistance to desiccation and starvation occurs in opposite directions under field conditions, we may expect a trade-off for energy metabolites but such correlated changes are largely unknown. We tested whether there is a trade-off for storage as well as actual utilization of carbohydrates (trehalose and glycogen), lipids and proteins in D. melanogaster populations collected from different altitudes (512-2500 m). For desiccation resistance, darker flies (> 50% body melanization) store more body water content and endure greater loss of water (higher dehydration tolerance) as compared to lighter flies (< 30% body melanization). Based on within population analysis, we found evidence for coadapted phenotypes i.e. darker flies store and actually utilize more carbohydrates to confer greater desiccation resistance. In contrast, higher starvation resistance in lighter flies is associated with storage and actual utilization of greater lipid amount. However, darker and lighter flies did not vary in the rate of utilization of carbohydrates under desiccation stress; and of lipids under starvation stress. Thus, we did not find support for the hypothesis that a lower rate of utilization of energy metabolites may contribute to greater stress resistance. Further, for increased desiccation resistance of darker flies, about two-third of total energy budget is provided by carbohydrates. By contrast, lighter flies derive about 66% of total energy content from lipids which sustain higher starvation tolerance. Our results support evolutionary trade-off for storage as well as utilization of energy metabolites for desiccation versus starvation resistance in D. melanogaster.  相似文献   

12.
The mutant genotype Abnormal abdomen (A53g) of Drosophila melanogaster causes an increase in the amount of soluble protein per fly when compared to a wild-type strain (Ore-R). This increase is first detected at 50 hr after puparium formation and is preceded 2 hr earlier by an increase in total RNA. A direct correlation is found between the expressivity of the A53g mutation in the adult fly and the total soluble protein per mg body weight of that fly. Quantitative analyses of supernatant protein from mutant and wild-type flies on polyacrylamide disk gel electrophoresis reveal that the increases observed in the mutant are due to increases in specific electrophoretic classes of proteins and not to a general stimulation of all proteins. Reciprocal crosses between mutant and wild-type flies indicate that the penetrance and expressivity of the A53g phenotype is under maternal control and that an increased soluble protein content in F1 flies is found only when the mutant genotype is contributed to the F1 through the maternal gamete.  相似文献   

13.
Despite the fundamental role of thick filaments in muscle contraction, little is known about the mechanical behavior of these filaments and how myosin-associated proteins dictate differences between muscle types. In this study, we used atomic force microscopy to study the morphological and mechanical properties of fully hydrated native thick filaments isolated from indirect flight muscle (IFM) of normal and mutant Drosophila lacking flightin (fln0). IFM thick filaments from newly eclosed (0-1 h old) wild-type flies have a mean length of 3.04 ± 0.05 μm. In contrast, IFM thick filaments from newly eclosed fln0 flies are more variable in length and, on average, are significantly longer (3.90 ± 1.33 μm) than wild-type filaments from flies of the same age. In the absence of flightin, thick filaments can attain lengths > 300% of wild-type filaments, indicating that flightin is required for setting the proper filament length in vivo. Filaments lacking flightin are structurally compromised, and filament preparations from fully matured 3- to 5-day-old adult fln0 IFM yielded fragments of variable length much shorter than 3.20 ± 0.04 μm, the length obtained from wild-type flies of similar age. The persistence length, an index of bending stiffness, was calculated from measurements of filament end-to-end length and contour length. We show that the presence of flightin increases persistence length by more than 40% and that wild-type filaments increase in stiffness with age. These results indicate that flightin fulfills an essential role in defining the structural and mechanical properties of IFM thick filaments.  相似文献   

14.
Procyclic forms of Trypanosoma brucei reside in the midgut of tsetse flies where they are covered by several million copies of glycosylphosphatidylinositol-anchored proteins known as procyclins. It has been proposed that procyclins protect parasites against proteases and/or participate in tropism, directing them from the midgut to the salivary glands. There are four different procyclin genes, each subject to elaborate levels of regulation. To determine if procyclins are essential for survival and transmission of T. brucei, all four genes were deleted and parasite fitness was compared in vitro and in vivo. When co-cultured in vitro, the null mutant and wild type trypanosomes (tagged with cyan fluorescent protein) maintained a near-constant equilibrium. In contrast, when flies were infected with the same mixture, the null mutant was rapidly overgrown in the midgut, reflecting a reduction in fitness in vivo. Although the null mutant is patently defective in competition with procyclin-positive parasites, on its own it can complete the life cycle and generate infectious metacyclic forms. The procyclic form of T. brucei thus differs strikingly from the bloodstream form, which does not tolerate any perturbation of its variant surface glycoprotein coat, and from other parasites such as Plasmodium berghei, which requires the circumsporozoite protein for successful transmission to a new host.  相似文献   

15.
The composition of the intestinal microbiota of Drosophila has been studied in some detail in recent years. Environmental, developmental and host-specific genetic factors influence microbiome composition in the fly. Our previous work has indicated that intestinal bacterial load can be affected by chromatin-targeted regulatory mechanisms. Here we studied a potential role of the conserved chromatin assembly and remodeling factor CHD1 in the shaping of the gut microbiome in Drosophila melanogaster. Using high-throughput sequencing of 16S rRNA gene amplicons, we found that Chd1 deletion mutant flies exhibit significantly reduced microbial diversity compared to rescued control strains. Specifically, although Acetobacteraceae dominated the microbiota of both Chd1 wild-type and mutant guts, Chd1 mutants were virtually monoassociated with this bacterial family, whereas in control flies other bacterial taxa constituted ~20% of the microbiome. We further show age-linked differences in microbial load and microbiota composition between Chd1 mutant and control flies. Finally, diet supplementation experiments with Lactobacillus plantarum revealed that, in contrast to wild-type flies, Chd1 mutant flies were unable to maintain higher L. plantarum titres over time. Collectively, these data provide evidence that loss of the chromatin remodeler CHD1 has a major impact on the gut microbiome of Drosophila melanogaster.  相似文献   

16.
In animals, V-ATPases are believed to play roles in the plasma membrane,as well as endomembrane. To understand these different functions, it isnecessary to adopt a genetic approach in a physiologically tractable modelorganism. For this purpose, Drosophila melanogaster is ideal,because of the powerful genetics associated with the organism and because ofthe unusually informative epithelial phenotype provided by the Malpighiantubule. Recently, the first animal knockouts of a V-ATPase weredescribed in Drosophila. The resulting phenotypes have generalutility for our understanding of V-ATPase function and suggest a screen fornovel subunits and associated proteins. Genome project resources haveaccelerated our knowledge of the V-ATPase gene family size and the newDrosophila genes vhaSFD, vha100-1, vha100-2, vha100-3, vha16-2,vha16-3, vha16-4, vhaPPA1, vhaPPA2, vhaM9.7.1, and vhaM9.7.2are described. The Drosophila V-ATPase model is thus well-suited toboth forward and reverse genetic analysis of this complex multifunctionalenzyme.  相似文献   

17.
Mutant B1-41a, obtained by UV-irradiation of Gibberella fujikuroi strain GF-1a, does not metabolise mevalonic acid lactone (MVL), ent-kaur-16-ene, ent-kaurenol, and ent-kaurenal to gibberellins. ent-Kaur-16-ene-19-oic acid is completely metabolised to give the same gibberellins in similar concentration as unsupplemented cultures of the parent strain. It is concluded that this mutant is blocked for gibberellin synthesis at the step from ent-kaurenal to ent-kaurenoic acid. Comparison of the incorporation of MVL into GA3 by the mutant and the parent strains indicate that the metabolic block is 97·5% effective. A method of preparing ent-kaur-16-ene, labelled at C-15 and C-17 by [2H] and [3H] is described.  相似文献   

18.
Resistance and resilience constitute the two complementary aspects of epithelial host defenses in Drosophila. Epithelial cell homeostasis is necessary for the recovery of damages caused by stress or infections. However, the genes responsible for gut epithelial homeostasis remain poorly understood. Here, we show that rgnG4035 mutant flies have higher mortality than wild-type flies after ingestion of sodium dodecyl sulfate (SDS). Excessive melanization and increased necrotic cells in the gut contribute to the reduced survival of rgnG4035 mutant flies following SDS ingestion. rgn mutant flies have a defect in the replenishment of intestinal stem cells (ISCs) following gut damage. The antimicrobial peptide (AMP) expression is affected in rgnG4035 mutant fly guts. Together, our study provides evidence that rgn gene is essential for gut cell homeostasis following damage in Drosophila.  相似文献   

19.
Summary Vestigial (vg) mutants of Drosophila melanogaster are characterized by atrophied wings. In this paper we show that: (1) aminopterin an inhibitor of dihydrofolate reductase (DHFR) and fluorodeoxyuridine (FUdR), an inhibitor of thymidylate synthetase induce nicks in the wings of wild-type flies and phenocopies of the vg mutant phenotype when vg/+ and vg B/+ flies are reared on these substances (vgB is a deficiency of the vg locus). Only thymidine and thymidylate can rescue the flies from the effect of aminopterin. We propose that the vg phenotype is due to a decrease in the dTMP pool in the wings. (2) Mutant vg strains yield more offspring on medium containing aminopterin than on normal medium. The resistance of vg larvae to the inhibitor seems specific to the gene. This is the first case of aminopterin resistance in living eucaryotes. In contrast sensitivity of the vg larvae to FUdR is observed. (3) An increase in the activity and amount of DHFR is observed in mutant strains as compared with the wild-type flies.Our data suggest that the vg + gene is a regulatory gene acting on the DHFR gene or a structural gene involved in the same metabolic pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号