首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neuregulin-1 (Nrg1) provides a key axonal signal that regulates Schwann cell proliferation, migration and myelination through binding to ErbB2/3 receptors. The analysis of a number of genetic models has unmasked fundamental mechanisms underlying the specificity of the Nrg1/ErbB signaling axis. Differential expression of Nrg1 isoforms, Nrg1 processing, and ErbB receptor localization and trafficking represent important regulatory themes in the control of Nrg1/ErbB function. Nrg1 binding to ErbB2/3 receptors results in the activation of intracellular signal transduction pathways that initiate changes in Schwann cell behavior. Here, we review data that has defined the role of key Nrg1/ErbB signaling components like Shp2, ERK1/2, FAK, Rac1/Cdc42 and calcineurin in development of the Schwann cell lineage in vivo. Many of these regulators receive converging signals from other cues that are provided by Notch, integrin or G-protein coupled receptors. Signaling by multiple extracellular factors may act as key modifiers and allow Schwann cells at different developmental stages to respond in distinct manners to the Nrg1/ErbB signal.  相似文献   

2.
3.
Although it has been known for several decades that peripheral myelin is formed from an extended, spiraled, and compacted sheet of Schwann cell (SC) plasma membrane, the mechanism by which this unique spiraling is accomplished remains unknown. We have studied the movements of SC nuclei before, during, and subsequent to myelin formation (over periods of 24-72 h) to determine if this nuclear motion (noted in earlier reports) would provide useful insights into the mechanism of myelinogenesis. We used rodent sensory neuron and SC cultures in which initiation of myelinogenesis is relatively synchronized and bright field conditions that allowed resolution of the axon, compact myelin, and position of the SC nucleus. Observed areas were subsequently examined by electron microscopy (EM); eight myelinating SCs with known nuclear movement history were subjected to detailed EM analysis. We observed that, prefatory to myelination, SCs extended along the length of larger axons, apparently competing with adjacent SCs for axonal surface contact. This lengthening preceded the deposition of compact myelin. SC nuclear circumnavigation of the axon was found to attend early myelin sheath formation. This movement was rarely greater than 0.25 turns per 3 h; on the average, more nuclear motion was seen in relation to internodes that formed during observation (0.8 +/- 0.1 turns/24 h) than in relation to those that had begun to form before observation (0.3 +/- 0.1 turns/24 h). Nuclear circumnavigation generally proceeded in one direction, could be in similar or opposite direction in neighboring myelinating SCs on the same axon, and was not proportional to the number of major dense lines within the myelin sheath. A critical finding was that, in all eight cases examined, the overall direction of nuclear movement was the same as that of the inner end of the spiraling SC process, and thus opposite the direction of the outer end of the spiral. We conclude that the correspondence of the direction of nuclear rotation and inner end of the spiraling cytoplasmic lip implicates active progression of the inner lip over the axonal surface to form the membranous spiral of myelin, the nuclear motion resulting from towing by the advancing adaxonal lip. This interpretation fits with finding basal lamina and macular adhering junctions associated with the external lip of SC cytoplasm; these attributes would imply anchorage rather than movement of this region of the SC.  相似文献   

4.
5.
6.
7.
The receptor Tyro3 together with Axl and Mer form the Axl/Tyro3 family of receptor tyrosine kinases. Members of this family play essential roles in spermatogenesis, immunoregulation, and phagocytosis. Gas6, the product of growth arrest-specific gene, activates the kinase activity of all three receptors. Here, we report the first biochemical and structural characterization of a member of this family, namely of a fragment spanning the two N-terminal Ig domains of the extracellular part of human Tyro3. Its ligand binding specificity profile is identical to the activation profile of the native receptor. The 1.95-A crystal structure suggests a common ligand-binding site in this receptor family located at the interface of the Ig domains and unusually rich in cis-prolines. Furthermore, both in the crystal and in solution we observed the ligand-independent dimerization of the receptor fragment. This homophilic interaction emphasizes previous functional reports, which hinted that in addition to signal transduction, members of this family of receptors might participate in cell adhesion.  相似文献   

8.
Hematopoietic progenitor kinase 1 (HPK1), a mammalian Ste20-related serine/threonine protein kinase, is a hematopoietic-specific upstream activator of the c-Jun N-terminal kinase. Here, we provide evidence to demonstrate the involvement of HPK1 in T cell receptor (TCR) signaling. HPK1 was activated and tyrosine-phosphorylated with similar kinetics following TCR/CD3 or pervanadate stimulation. Co-expression of protein-tyrosine kinases, Lck and Zap70, with HPK1 led to HPK1 activation and tyrosine phosphorylation in transfected mammalian cells. Upon TCR/CD3 stimulation, HPK1 formed inducible complexes with the adapters Nck and Crk with different kinetics, whereas it constitutively interacted with the adapters Grb2 and CrkL in Jurkat T cells. Interestingly, HPK1 also inducibly associated with linker for activation of T cells (LAT) through its proline-rich motif and translocated into glycolipid-enriched microdomains (also called lipid rafts) following TCR/CD3 stimulation, suggesting a critical role for LAT in the regulation of HPK1. Together, these results identify HPK1 as a new component of TCR signaling. T cell-specific signaling molecules Lck, Zap70, and LAT play roles in the regulation of HPK1 during TCR signaling. Differential complex formation between HPK1 and adapters highlights the possible involvement of HPK1 in multiple signaling pathways in T cells.  相似文献   

9.
The cell adhesion molecule L1 regulates cellular responses in the developing and adult nervous system. Here, we show that stimulation of cultured mouse cerebellar neurons by a function‐triggering L1 antibody leads to cathepsin E‐mediated generation of a sumoylated 30 kDa L1 fragment (L1‐30) and to import of L1‐30 into the nucleus. Mutation of the sumoylation site at K1172 or the cathepsin E cleavage site at E1167 abolishes generation of L1‐30, while mutation of the nuclear localization signal at K1147 prevents nuclear import of L1‐30. Moreover, the aspartyl protease inhibitor pepstatin impairs the generation of L1‐30 and inhibits L1‐induced migration of cerebellar neurons and Schwann cells as well as L1‐dependent in vitro myelination on axons of dorsal root ganglion neurons by Schwann cells. L1‐stimulated migration of HEK293 cells expressing L1 with mutated cathepsin E cleavage site is diminished in comparison to migration of cells expressing non‐mutated L1. In addition, L1‐stimulated migration of HEK293 cells expressing non‐mutated L1 is also abolished upon knock‐down of cathepsin E expression and enhanced by over‐expression of cathepsin E. The findings of the present study indicate that generation and nuclear import of L1‐30 regulate neuronal and Schwann cell migration as well as myelination.

  相似文献   


10.
11.
The glycoprotein VI (GPVI)-Fc receptor (FcR) gamma-chain complex, a key activatory receptor for collagen on platelet surface membranes, is constitutively associated with the Src family kinases Fyn and Lyn. Molecular cloning of GPVI has revealed the presence of a proline-rich domain in the sequence of GPVI cytoplasmic tail which has the consensus for interaction with the Src homology 3 (SH3) domains of Fyn and Lyn. A series of in vitro experiments demonstrated the ability of the SH3 domains of both Src kinases to bind the proline-rich domain of GPVI. Furthermore, depletion of the proline-rich domain in GPVI (Pro(-)-GPVI) prevented binding of Fyn and Lyn and markedly reduced phosphorylation of FcR gamma-chain in transiently transfected COS-7 cells, but did not affect the association of the gamma-chain with GPVI. Jurkat cells stably transfected with wild type GPVI show robust increases in tyrosine phosphorylation and intracellular Ca2+ in response to the snake venom convulxin that targets GPVI. Importantly, convulxin is not able to activate cells transfected with Pro(-)-GPVI, even though the association with the immunoreceptor tyrosine-based activation motif-containing chains is maintained. These findings demonstrate that the proline-rich domain of GPVI mediates the association with Fyn/Lyn via their SH3 domain and that this interaction initiates activation signals through GPVI.  相似文献   

12.
13.
The homologous proteins Gas6 and protein S (ProS1) are both natural ligands for the TAM (Tyro3, Axl, MerTK) receptor tyrosine kinases. ProS1 selectively activates Tyro3; however, the precise molecular interface of the ProS1-Tyro3 contact has not been characterised. We used a set of chimeric proteins in which each of the C-terminal laminin G-like (LG) domains of ProS1 were swapped with those of Gas6, as well as a set of ProS1 mutants with novel added glycosylations within LG1. Alongside wildtype ProS1, only the chimera containing ProS1 LG1 domain stimulated Tyro3 and Erk phosphorylation in human cancer cells, as determined by Western blot. In contrast, Gas6 and chimeras containing minimally the Gas6 LG1 domain stimulated Axl and Akt phosphorylation. We performed in silico homology modelling and molecular docking analysis to construct and evaluate structural models of both ProS1-Tyro3 and Gas6-Axl ligand-receptor interactions. These analyses revealed a contact between the ProS1 LG1 domain and the first immunoglobulin domain of Tyro3, which was similar to the Gas6-Axl interaction, and involved long-range electrostatic interactions that were further stabilised by hydrophobic and polar contacts. The mutant ProS1 proteins, which had added glycosylations within LG1 but which were all outside of the modelled contact region, all activated Tyro3 in cells with no hindrance. In conclusion, we show that the LG1 domain of ProS1 is necessary for activation of the Tyro3 receptor, involving protein-protein interaction interfaces that are homologous to those of the Gas6-Axl interaction.  相似文献   

14.
15.
Homophilic binding of the neural cell adhesion molecule (NCAM) results in intracellular signaling, which also involves heterophilic engagement of coreceptors such as the fibroblast growth factor receptor (FGFR) and receptor protein tyrosine phosphatase-α (RPTPα). NCAM's own cellular dynamic itinerary includes endocytosis and recycling to the plasma membrane. Recent works suggest that NCAM could influence the trafficking of other receptor molecules that it associates with, particularly the FGFR. Furthermore, it was demonstrated that NCAM could undergo proteolytic processing upon activation. A processed fragment of NCAM, together with an N-terminal fragment of focal adhesion kinase (FAK), is translocated into the nucleus. Here, the authors discuss these rather unique (though not without precedence and analogues) receptor trafficking activities that are associated with NCAM and NCAM signaling.  相似文献   

16.
Filoviruses, represented by the genera Ebolavirus and Marburgvirus, cause a lethal hemorrhagic fever in humans and in nonhuman primates. Although filovirus can replicate in various tissues or cell types in these animals, the molecular mechanisms of its broad tropism remain poorly understood. Here we show the involvement of members of the Tyro3 receptor tyrosine kinase family-Axl, Dtk, and Mer-in cell entry of filoviruses. Ectopic expression of these family members in lymphoid cells, which otherwise are highly resistant to filovirus infection, enhanced infection by pseudotype viruses carrying filovirus glycoproteins on their envelopes. This enhancement was reduced by antibodies to Tyro3 family members, Gas6 ligand, or soluble ectodomains of the members. Live Ebola viruses infected both Axl- and Dtk-expressing cells more efficiently than control cells. Antibody to Axl inhibited infection of pseudotype viruses in a number of Axl-positive cell lines. These results implicate each Tyro3 family member as a cell entry factor in filovirus infection.  相似文献   

17.
18.
This report investigated mechanisms responsible for failed Schwann cell myelination in mice that overexpress P(0) (P(0)(tg)), the major structural protein of PNS myelin. Quantitative ultrastructural immunocytochemistry established that P(0) protein was mistargeted to abaxonal, periaxonal, and mesaxon membranes in P(0)(tg) Schwann cells with arrested myelination. The extracellular leaflets of P(0)-containing mesaxon membranes were closely apposed with periodicities of compact myelin. The myelin-associated glycoprotein was appropriately sorted in the Golgi apparatus and targeted to periaxonal membranes. In adult mice, occasional Schwann cells myelinated axons possibly with the aid of endocytic removal of mistargeted P(0). These results indicate that P(0) gene multiplication causes P(0) mistargeting to mesaxon membranes, and through obligate P(0) homophilic adhesion, renders these dynamic membranes inert and halts myelination.  相似文献   

19.
BCR signaling regulates the activities and fates of B cells. BCR signaling encompasses two feedback loops emanating from Lyn and Fyn, which are Src family protein tyrosine kinases (SFKs). Positive feedback arises from SFK-mediated trans phosphorylation of BCR and receptor-bound Lyn and Fyn, which increases the kinase activities of Lyn and Fyn. Negative feedback arises from SFK-mediated cis phosphorylation of the transmembrane adapter protein PAG1, which recruits the cytosolic protein tyrosine kinase Csk to the plasma membrane, where it acts to decrease the kinase activities of Lyn and Fyn. To study the effects of the positive and negative feedback loops on the dynamical stability of BCR signaling and the relative contributions of Lyn and Fyn to BCR signaling, we consider in this study a rule-based model for early events in BCR signaling that encompasses membrane-proximal interactions of six proteins, as follows: BCR, Lyn, Fyn, Csk, PAG1, and Syk, a cytosolic protein tyrosine kinase that is activated as a result of SFK-mediated phosphorylation of BCR. The model is consistent with known effects of Lyn and Fyn deletions. We find that BCR signaling can generate a single pulse or oscillations of Syk activation depending on the strength of Ag signal and the relative levels of Lyn and Fyn. We also show that bistability can arise in Lyn- or Csk-deficient cells.  相似文献   

20.
Axon-glial interactions are critical for the induction of myelination and the domain organization of myelinated fibers. Although molecular complexes that mediate these interactions in the nodal region are known, their counterparts along the internode are poorly defined. We report that neurons and Schwann cells express distinct sets of nectin-like (Necl) proteins: axons highly express Necl-1 and -2, whereas Schwann cells express Necl-4 and lower amounts of Necl-2. These proteins are strikingly localized to the internode, where Necl-1 and -2 on the axon are directly apposed by Necl-4 on the Schwann cell; all three proteins are also enriched at Schmidt-Lanterman incisures. Binding experiments demonstrate that the Necl proteins preferentially mediate heterophilic rather than homophilic interactions. In particular, Necl-1 on axons binds specifically to Necl-4 on Schwann cells. Knockdown of Necl-4 by short hairpin RNA inhibits Schwann cell differentiation and subsequent myelination in cocultures. These results demonstrate a key role for Necl-4 in initiating peripheral nervous system myelination and implicate the Necl proteins as mediators of axo-glial interactions along the internode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号