首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Influenza A viruses are a major cause of morbidity and mortality in the human population, causing epidemics in the winter, and occasional worldwide pandemics. In addition there are periodic outbreaks in domestic poultry, horses, pigs, dogs, and cats. Infections of domestic birds can be fatal for the birds and their human contacts. Control in man operates through vaccines and antivirals, but both have their limitations. In the search for an alternative treatment we have focussed on defective interfering (DI) influenza A virus. Such a DI virus is superficially indistinguishable from a normal virus but has a large deletion in one of the eight RNAs that make up the viral genome. Antiviral activity resides in the deleted RNA. We have cloned one such highly active DI RNA derived from segment 1 (244 DI virus) and shown earlier that intranasal administration protects mice from lethal disease caused by a number of different influenza A viruses. A more cogent model of human influenza is the ferret. Here we found that intranasal treatment with a single dose of 2 or 0.2 µg 244 RNA delivered as A/PR/8/34 virus particles protected ferrets from disease caused by pandemic virus A/California/04/09 (A/Cal; H1N1). Specifically, 244 DI virus significantly reduced fever, weight loss, respiratory symptoms, and infectious load. 244 DI RNA, the active principle, was amplified in nasal washes following infection with A/Cal, consistent with its amelioration of clinical disease. Animals that were treated with 244 DI RNA cleared infectious and DI viruses without delay. Despite the attenuation of infection and disease by DI virus, ferrets formed high levels of A/Cal-specific serum haemagglutination-inhibiting antibodies and were solidly immune to rechallenge with A/Cal. Together with earlier data from mouse studies, we conclude that 244 DI virus is a highly effective antiviral with activity potentially against all influenza A subtypes.  相似文献   

2.
The dynamic changes in the temporal appearance and quantity of a new class of influenza virus, noninfectious cell-killing particles (niCKP), were compared to defective interfering particles (DIP). After a single high-multiplicity passage in MDCK cells of an egg-derived stock that lacked detectable niCKP or DIP, both classes of particles appeared in large numbers (>5 × 108/ml), and the plaque-forming particle (PFP) titer dropped ∼60-fold. After two additional serial high-multiplicity passages the DIP remained relatively constant, the DIP/niCKP ratio reached 10:1, and the PFP had declined by about 10,000-fold. Together, the niCKP and DIP subpopulations constituted ca. 20% of the total hemagglutinating particle population in which these noninfectious biologically active particles (niBAP) were subsumed. DIP neither killed cells nor interfered with the cell-killing (apoptosis-inducing) activity of niCKP or PFP (infectious CKP), even though they blocked the replication of PFP. Relative to the UV-target of ∼13,600 nucleotides (nt) for inactivation of PFP, the UV target for niCKP was ∼2,400 nt, consistent with one of the polymerase subunit genes, and that for DIP was ∼350 nt, consistent with the small DI-RNA responsible for DIP-mediated interference. Thus, niCKP and DIP are viewed as distinct particles with a propensity to form during infection at high multiplicities. These conditions are postulated to cause aberrations in the temporally regulated replication of virus and its packaging, leading to the production of niBAP. DIP have been implicated in the virulence of influenza virus, but the role of niCKP is yet unknown.Infectious particles constitute a minor subpopulation of biologically active influenza virus populations but command major attention because of their critical role in replication and pathogenesis. However, there are other subpopulations of biologically active particles (BAP). Some of these particles, such as interferon (IFN)-inducing particles (IFP) (20), IFN induction-suppressing particles (ISP) (21), or defective interfering particles (DIP) (26), are intrinsically noninfectious and exist in large excess over infectious virions. These noninfectious BAP (niBAP) have the potential to influence the course of pathogenesis through their capacity to stimulate or suppress antiviral responses intrinsic to the innate immune system (8, 11, 14, 30, 34, 42) and/or by direct interference with virus replication (26). Noninfectious cell-killing particles (niCKP) of influenza virus represent a newly identified member of the niBAP family (29). The numbers and sizes of these subpopulations and their contribution to pathogenesis are poorly understood because the extent to which they appear and function in a population of host cells, let alone during natural infection (4, 9), has not been assessed. All subpopulations of infectious and noninfectious BAP are subsumed in the population of hemagglutinating particles (HAP) which represent total physical particles. Although the majority of HAP have no known biological activity, they are deemed capable of contributing large numbers of gene segments to cells in the course of infection. It is not known whether such a large influx of gene copies can compromise the normal temporal regulation of virus replication (24, 38) and the proper packaging of gene segments (16, 33), thereby influencing the generation of niBAP and the outcome of an infection or the action of live-attenuated vaccines (14, 34, 39, 42).Considerable progress has been reported in identifying genetic changes within infectious particles of influenza virus that directly affect its virulence (3, 43). What is less clear is the extent to which the large subpopulations of niBAP and biologically inactive HAP that may be presented to cells during the course of infection contribute to virulence and pathogenesis.This report compares for the first time the generation of subpopulations of niCKP (29) under conditions of high-multiplicity (HM) passages that also favor the generation of DIP, the classical von Magnus particles (41) that interfere with virus replication (26), and act as an antiviral agent (12). Production of DIP is most often associated with HM passages of the virus (26, 41). Evidence is provided here that niCKP and DIP represent two distinct subpopulations of influenza virus and that niCKP share the attributes of defective noninterfering particles (DNIP) inferred from an observed excess of polymerase activity relative to that expected on the basis of infectivity in influenza virus stocks (7). Lastly, a model is proposed showing a transitional state for subpopulations of BAP from the most to the least complex and that postulates their origin, in part, from aberrations that may result from high multiplicities during infection.  相似文献   

3.
4.
5.
6.
The 1918-1919 "Spanish" influenza pandemic is estimated to have caused 50 million deaths worldwide. Understanding the origin, virulence, and pathogenic properties of past pandemic influenza viruses, including the 1918 virus, is crucial for current public health preparedness and future pandemic planning. The origin of the 1918 pandemic virus has not been resolved, but its coding sequences are very like those of avian influenza virus. The proteins encoded by the 1918 virus differ from typical low-pathogenicity avian influenza viruses at only a small number of amino acids in each open reading frame. In this study, a series of chimeric 1918 influenza viruses were created in which each of the eight 1918 pandemic virus gene segments was replaced individually with the corresponding gene segment of a prototypical low-pathogenicity avian influenza (LPAI) H1N1 virus in order to investigate functional compatibility of the 1918 virus genome with gene segments from an LPAI virus and to identify gene segments and mutations important for mammalian adaptation. This set of eight "7:1" chimeric viruses was compared to the parental 1918 and LPAI H1N1 viruses in intranasally infected mice. Seven of the 1918 LPAI 7:1 chimeric viruses replicated and caused disease equivalent to the fully reconstructed 1918 virus. Only the chimeric 1918 virus containing the avian influenza PB2 gene segment was attenuated in mice. This attenuation could be corrected by the single E627K amino acid change, further confirming the importance of this change in mammalian adaptation and mouse pathogenicity. While the mechanisms of influenza virus host switch, and particularly mammalian host adaptation are still only partly understood, these data suggest that the 1918 virus, whatever its origin, is very similar to avian influenza virus.  相似文献   

7.
《Seminars in Virology》1997,8(2):131-139
The functions of thecis-acting sequence elements at the termini of the negative strand RNA virus vesicular stomatitis virus and its defective-interfering particles were evaluated. Either genomic terminus could signal replication but increasing the complementarity of the termini enhanced replication irrespective of whether the termini consisted of the 3′ leader and its complement or the 5′ trailer and its complement. The 5′ trailer region contains an essentialcis-acting requirement for assembly of RNPs into infectious particles. These findings explain why the majority of DI RNAs are of the 5′ copy-back class: RNAs with complementary termini from either end have a replicative advantage, but only 5′ copy-back RNAs contain the signal for assembly into particles.  相似文献   

8.
Influenza virus A (FluA) reassortants with low-functional neuraminidase (NA) of subtype N1 and hemagglutinin (HA) of subtypes H2, H3, H4, and H13 display virion aggregation and accumulate to a lower titer because sialyl residues are not completely removed from virion components. Nonaggregating variants of FluA (H13N1) were shown to result from a mutation that reduces the HA affinity for sialyl substrates. Amino acid substitution K156E, which increases a negative charge at the edge of the receptor-binding pocket of HA large subunit (HA1), was revealed in two independent variants. This substitution was the only difference between HA1 of the original reassortant and one of its variants and, therefore, accounted for restoration of the functional match between HA and NA.  相似文献   

9.
邱涛  张菁  陆仁后  朱作言 《病毒学报》2001,17(2):140-143
草鱼出血病病毒基因组由 11条dsRNA片段组成。最近在研究其基因组时发现 ,在病毒基因组外存在许多核酸成份 ,但在核苷酸数量上少于基因组成份 ,表现为较小分子量的RNA片段。在完整地克隆了这些片段的全长cDNA后 ,测定了其中两个克隆的序列组成 ,发现它们为病毒基因组经剪切后的部分片段 ,已经重新装配 ,而且都含有原基因组某一片段 3′端和 5′端的保守区和倒转重复区 ,缺失中间部分。根据其特点来看 ,它们应为目前病毒学研究的重要材料———缺损性干扰颗粒的亚基因组成份。  相似文献   

10.
11.
12.
13.
Ding  Xiao  Qin  Luyao  Meng  Jing  Peng  Yousong  Wu  Aiping  Jiang  Taijiao 《中国病毒学》2021,36(6):1273-1283
Virologica Sinica - Genomic reassortment is an important evolutionary mechanism for influenza viruses. In this process, the novel viruses acquire new characteristics by the exchange of the intact...  相似文献   

14.
Infection of HeLa cells by mixtures of standard poliovirus and defective, interfering (DI) poliovirus particles leads to a higher ratio of DI particles in the progeny than in the inoculum. The extent of this enrichment could be varied by various manipulations of the co-infected cells. At any time during the infection cycle, virions made within short times after addition of radioactive uridine were hyperenriched in DI particles; this transient hyperenrichment fell to the equilibrium enrichment level within 45 min after uridine addition. A shift of the temperature of infection from 37 to 31 C also led to a hyperenrichment of DI particles and pulse-labeling revealed a superimposed transient hyperenrichment. By contrast, cells continuously infected at 31 C showed a severe decrement in DI particles apparently because poliovirus DI particles behave as cold-sensitive mutants for RNA synthesis. Cycloheximide treatment early in the infection cycle also led to hyperenrichment. Study of the cycloheximide effect showed that the drug acted as if to change the input ratio of standard to DI particles. These effects on enrichment can be explained as aspects of two different phenomena: enrichment due to preferential DI RNA synthesis and enrichment due to preferential encapsidation of DI RNA. Both mechanisms probably play a role in the normal level of enrichment.  相似文献   

15.
Coinfection of a cell by two different strains of a segmented virus can give rise to a “reassortant” with phenotypic characteristics that might differ from those of the parental strains. Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) segmented virus and the cause of bluetongue, a major infectious disease of livestock. BTV exists as at least 26 different serotypes (BTV-1 to BTV-26). Prompted by the isolation of a field reassortant between BTV-1 and BTV-8, we systematically characterized the process of BTV reassortment. Using a reverse genetics approach, our study clearly indicates that any BTV-1 or BTV-8 genome segment can be rescued in the heterologous “backbone.” To assess phenotypic variation as a result of reassortment, we examined viral growth kinetics and plaque sizes in in vitro experiments and virulence in an experimental mouse model of bluetongue disease. The monoreassortants generated had phenotypes that were very similar to those of the parental wild-type strains both in vitro and in vivo. Using a forward genetics approach in cells coinfected with BTV-1 and BTV-8, we have shown that reassortants between BTV-1 and BTV-8 are generated very readily. After only four passages in cell culture, we could not detect wild-type BTV-1 or BTV-8 in any of 140 isolated viral plaques. In addition, most of the isolated reassortants contained heterologous VP2 and VP5 structural proteins, while only 17% had homologous VP2 and VP5 proteins. Our study has shown that reassortment in BTV is very flexible, and there is no fundamental barrier to the reassortment of any genome segment. Given the propensity of BTV to reassort, it is increasingly important to have an alternative classification system for orbiviruses.  相似文献   

16.
17.
18.
A class of defective interfering (DI) poliovirus particles has been identified. The first was found as a contaminant of a viral stock; others have been isolated by serial passage at a high multiplicity of infection. The DI particles are less dense than standard virus and sediment more slowly. Their ribonucleic acid (RNA) sediments more slowly than standard RNA and has a higher electrophoretic mobility. Competition hybridization experiments with double-stranded viral RNA indicate that DI RNA is 80 to 90% of the length of standard RNA. The proteins of DI particles are indistinguishable from those of standard poliovirus.  相似文献   

19.
BHK cells infected with defective-interfering passages of Sindbis virus accumulate a species of RNA (20S) that is about half the molecular weight of the major viral mRNA (26S). We have performed competitive hybridization experiments with these species of RNA and have established that 20S RNA contains approximately 50% of the nucleotide sequences present in 26S RNA. Our further studies, however, demonstrate that 20S RNA is unable to carry out the messenger function of 26S RNA. We found very little of the defective RNA associated with polysomes in vivo. In addition, it was unable to stimulate protein synthesis in vitro under conditions in which 26S RNA was translated. We have also examined viral RNA synthesis in BHK cells infected with standard or defective-interfering passages of Sindbis virus. This comparison suggests that defective partioles do not synthesize a functional replicase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号