共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
YUJI MISHINA TAKASHI KATO AKIO URABE FUMIMARO TAKAKU SHUNJI NATORI MASUO OBINATA 《Development, growth & differentiation》1986,28(1):1-6
Erythroid cells were fractionated by preformed Percoll density gradient from livers of 12.5 day old mouse fetuses. With combination of lysing of mature erythroid cells, the CFU-E (colony forming unit of erythroid) was enriched as high as 30% pure. The mRNA levels of the rt-genes previously cloned as genes expressed in the reticulocytes are estimated in the fractionated erythroid cells. These rt-genes show a drastic change in expression during erythroid differentiation; Their expression was not detectable at the CFU-E cell stage. But it reached to maximum at the polychromatic erythroblast (stage I) and then decreases with maturation. The result suggests that mRNA synthesis of these rt-genes may be induced after the stimulation of erythropoietin. 相似文献
3.
4.
Successful pregnancy depends on the precise regulation of extravilloustrophoblast (EVT) invasion into the uterine decidua. SPARC (secreted protein acidic and rich in cysteine) is a matricellular glycoprotein that plays critical roles in the pathologies associated with obesity and diabetes, as well as tumorigenesis. The objective of this study was to investigate the role of SPARC in the process of trophoblast invasion which shares many similarities with tumor cell invasion. By Western blot, higher expression of SPARC was observed in mouse brain, ovary and uterus compared to other mouse tissues. Immunohistochemistry analysis revealed a spatio-temporal expression of SPARC in mouse uterus in the periimplantation period. At the implantation site of d8 pregnancy, SPARC mainly accumulated in the secondary decidua zone (SDZ), trophoblast cells and blastocyst. The expression of SPARC was also detected in human placental villi and trophoblast cell lines. In a Matrigel invasion assay, we found SPARC-specific RNA interference significantly reduced the invasion of human extravilloustrophoblast HTR8/SVneo cells. Microarray analysis revealed that SPARC depletion upregulated the expression of interleukin 11 (IL11), KISS1, insulin-like growth factor binding protein 4 (IGFBP4), collagen type I alpha 1 (COLIA1), matrix metallopeptidase 9 (MMP9), and downregulated the expression of the alpha polypeptide of chorionic gonadotropin (CGA), MMP1, gap junction protein alpha 1 (GJA1), et al. The gene array result was further validated by qRT-PCR and Western blot. The present data indicate that SPARC may play an important role in the regulation of normal placentation by promoting the invasion of trophoblast cells into the uterine decidua. 相似文献
5.
6.
The crucial role of structural support fulfilled by keratin intermediate filaments (IFs) in surface epithelia likely requires that they be organized into cross-linked networks. For IFs comprised of keratins 5 and 14 (K5 and K14), which occur in basal keratinocytes of the epidermis, formation of cross-linked bundles is, in part, self-driven through cis-acting determinants. Here, we targeted the expression of a bundling-competent KRT5/KRT8 chimeric cDNA (KRT8bc) or bundling-deficient wild type KRT8 as a control to the epidermal basal layer of Krt5-null mice to assess the functional importance of keratin IF self-organization in vivo. Such targeted expression of K8bc rescued Krt5-null mice with a 47% frequency, whereas K8 completely failed to do so. This outcome correlated with lower than expected levels of K8bc and especially K8 mRNA and protein in the epidermis of E18.5 replacement embryos. Ex vivo culture of embryonic skin keratinocytes confirmed the ability of K8bc to form IFs in the absence of K5. Additionally, electron microscopy analysis of E18.5 embryonic skin revealed that the striking defects observed in keratin IF bundling, cytoarchitecture, and mitochondria are partially restored by K8bc expression. As young adults, viable KRT8bc replacement mice develop alopecia and chronic skin lesions, indicating that the skin epithelia are not completely normal. These findings are consistent with a contribution of self-mediated organization of keratin IFs to structural support and cytoarchitecture in basal layer keratinocytes of the epidermis and underscore the importance of context-dependent regulation for keratin genes and proteins in vivo. 相似文献
7.
《Cell communication & adhesion》2013,20(2-3):97-103
During fetal lymph node organogenesis in mice, lymph node postcapillary high endothelial venules briefly express the Peyer's patch addressin MAdCAM-1. This allows initial seeding by two unusual lymphocyte populations selectively expressing the Peyer's patch homing receptor integrin alpha4beta7: CD4 + CD3- oligolineage progenitors and TCR gammadelta + T cells. It was found that the CD4 + CD3- cells are lineage-restricted progenitors that express surface lymphotoxin-beta (LTbeta) and the chemokine receptor BLR1. They can differentiate into natural killer cells, dendritic antigen-presenting cells, and follicular cells of unknown outcome, but these cells do not become T or B lymphocytes.In addition to LN, CD4 + CD3- cells can also be found in fetal spleen starting at 13.5 dpc, while absent from fetal liver. In view of the necessity of lymphotoxin in lymphoid organ development, it is thought that the novel subset of CD4 + CD3-LTbeta + fetal cells is instrumental in the development of lymphoid tissue architecture. 相似文献
8.
9.
10.
Along with microtubules and microfilaments, intermediate filaments are a major component of the eukaryotic cytoskeleton and play a key role in cell mechanics. In cells, keratin intermediate filaments form networks of bundles that are sparser in structure and have lower connectivity than, for example, actin networks. Because of this, bending and buckling play an important role in these networks. Buckling events, which occur due to compressive intracellular forces and cross-talk between the keratin network and other cytoskeletal components, are measured here in situ. By applying a mechanical model for the bundled filaments, we can access the mechanical properties of both the keratin bundles themselves and the surrounding cytosol. Bundling is characterized by a coupling parameter that describes the strength of the linkage between the individual filaments within a bundle. Our findings suggest that coupling between the filaments is mostly complete, although it becomes weaker for thicker bundles, with some relative movement allowed. 相似文献
11.
12.
13.
14.
Yolanda Gonzalez María Teresa Herrera Esmeralda Juárez Miguel Angel Salazar-Lezama Karen Bobadilla Martha Torres 《PloS one》2015,10(4)
Alveolar resident memory T cells (TRM) comprise a currently uncharacterized mixture of cell subpopulations. The CD3+CD161+ T cell subpopulation resides in the liver, intestine and skin, but it has the capacity for tissue migration; however, the presence of resident CD3+CD161+ T cells in the bronchoalveolar space under normal conditions has not been reported. Bronchoalveolar cells (BACs) from healthy volunteers were evaluated and found that 8.6% (range 2.5%-21%) of these cells were CD3+ T lymphocytes. Within the CD3+ population, 4.6% of the cells (2.1–11.3) expressed CD161 on the cell surface, and 74.2% of the CD161+CD3+ T cells expressed CD45RO. The number of CD3+CD161+ T cells was significantly lower in the bronchoalveolar space than in the blood (4.6% of BACs vs 8.4% of peripheral blood mononuclear cells (PBMCs); P<0.05). We also found that 2.17% of CD4+ T lymphocytes and 1.52% of CD8+ T lymphocytes expressed CD161. Twenty-two percent of the alveolar CD3+CD161+ T lymphocytes produced cytokines upon stimulation by PMA plus ionomycin, and significantly more interferon gamma (IFN-γ) was produced compared with other cytokines (P = 0.05). Most alveolar CD3+CD161+ T cells produced interleukin-17 (IL-17) and IFN-γ simultaneously, and the percentage of these cells was significantly higher than the percentage of CD3+CD161− T cells. Moreover, the percentage of alveolar CD3+CD161+ T lymphocytes that produced IFN-γ/IL-17 was significantly higher than those in the peripheral blood (p<0.05). In conclusion, Th1/Th17-CD3+CD161+ TRM could contribute to compartment-specific immune responses in the lung. 相似文献
15.
16.
Specification of the trophectoderm is one of the earliest differentiation events of mammalian development. The trophoblast lineage derived from the trophectoderm mediates implantation and generates the fetal part of the placenta. As a result, the development of this lineage is essential for embryo survival. Derivation of trophoblast stem (TS) cells from mouse blastocysts was first described by Tanaka et al. 1998. The ability of TS cells to preserve the trophoblast specific property and their expression of stage- and cell type-specific markers after proper stimulation provides a valuable model system to investigate trophoblast lineage development whereby recapitulating early placentation events. Furthermore, trophoblast cells are one of the few somatic cell types undergoing natural genome amplification. Although the molecular pathways underlying trophoblast polyploidization have begun to unravel, the physiological role and advantage of trophoblast genome amplification remains largely elusive. The development of diploid stem cells into polyploid trophoblast cells in culture makes this ex vivo system an excellent tool for elucidating the regulatory mechanism of genome replication and instability in health and disease. Here we describe a protocol based on previous reports with modification published in Chiu et al. 2008.Download video file.(116M, mp4) 相似文献
17.
18.
《生命科学研究》2017,(3):213-219
人细胞角蛋白Keratin 14是I型中间丝蛋白家族的亚群,参与形成上皮细胞的细胞骨架。利用生物信息学分析Keratin 14基因的启动子区、CpG岛及其所编码的蛋白质的理化性质、结构特点和功能特征。结果表明,Keratin 14基因存在两个启动子区,启动子区不存在CpG岛;Keratin 14全长472个氨基酸,其等电点为5.09,是一个无跨膜结构的亲水性蛋白质;角蛋白Keratin 14二级结构具7个α螺旋和5个β折叠,预测三级结构的拉曼图分析显示其结构稳定;与Keratin 14相互作用的蛋白质主要是角蛋白,而且Keratin 14还参与细胞的生长和分裂,有促进细胞分化的作用;此外,Keratin 14的氨基酸序列在哺乳动物间的同源性较高。上述对角蛋白Keratin 14的表达、结构和功能的预测可以为研究其在生命过程中的作用提供重要的信息。 相似文献
19.
Reprogramming the Cell Cycle for Endoreduplication in Rodent Trophoblast Cells 总被引:13,自引:1,他引:13 下载免费PDF全文
Differentiation of trophoblast giant cells in the rodent placenta is accompanied by exit from the mitotic cell cycle and onset of endoreduplication. Commitment to giant cell differentiation is under developmental control, involving down-regulation of Id1 and Id2, concomitant with up-regulation of the basic helix-loop-helix factor Hxt and acquisition of increased adhesiveness. Endoreduplication disrupts the alternation of DNA synthesis and mitosis that maintains euploid DNA content during proliferation. To determine how the mammalian endocycle is regulated, we examined the expression of the cyclins and cyclin-dependent kinases during the transition from replication to endoreduplication in the Rcho-1 rat choriocarcinoma cell line. We cultured these cells under conditions that gave relatively synchronous endoreduplication. This allowed us to study the events that occur during the transition from the mitotic cycle to the first endocycle. With giant cell differentiation, the cells switched cyclin D isoform expression from D3 to D1 and altered several checkpoint functions, acquiring a relative insensitivity to DNA-damaging agents and a coincident serum independence. The initiation of S phase during endocycles appeared to involve cycles of synthesis of cyclins E and A, and termination of S was associated with abrupt loss of cyclin A and E. Both cyclins were absent from gap phase cells, suggesting that their degradation may be necessary to allow reinitiation of the endocycle. The arrest of the mitotic cycle at the onset of endoreduplication was associated with a failure to assemble cyclin B/p34cdk1 complexes during the first endocycle. In subsequent endocycles, cyclin B expression was suppressed. Together these data suggest several points at which cell cycle regulation could be targeted to shift cells from a mitotic to an endoreduplicative cycle. 相似文献