首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteria which were β-d-galactosidase and β-d-glucuronidase positive or expressed only one of these enzymes were isolated from environmental water samples. The enzymatic activity of these bacteria was measured in 25-min assays by using the fluorogenic substrates 4-methylumbelliferyl-β-d-galactoside and 4-methylumbelliferyl-β-d-glucuronide. The enzyme activity, enzyme induction, and enzyme temperature characteristics of target and nontarget bacteria in assays aimed at detecting coliform bacteria and Escherichia coli were investigated. The potential interference of false-positive bacteria was evaluated. Several of the β-d-galactosidase-positive nontarget bacteria but none of the β-d-glucuronidase-positive nontarget bacteria contained unstable enzyme at 44.5°C. The activity of target bacteria was highly inducible. Nontarget bacteria were induced much less or were not induced by the inducers used. The results revealed large variations in the enzyme levels of different β-d-galactosidase- and β-d-glucuronidase-positive bacteria. The induced and noninduced β-d-glucuronidase activities of Bacillus spp. and Aerococcus viridans were approximately the same as the activities of induced E. coli. Except for some isolates identified as Aeromonas spp., all of the induced and noninduced β-d-galactosidase-positive, noncoliform isolates exhibited at least 2 log units less mean β-d-galactosidase activity than induced E. coli. The noncoliform bacteria must be present in correspondingly higher concentrations than those of target bacteria to interfere in the rapid assay for detection of coliform bacteria.Indicators of pollution (e.g., coliforms, fecal coliforms, and Escherichia coli) are traditionally used for monitoring the microbiological safety of water supplies and recreational water. Several techniques for detection of coliforms and E. coli are based on enzymatic hydrolysis of fluorogenic or chromogenic substrates for β-d-galactosidase and β-d-glucuronidase (9, 20). Current methods of recovery are usually culture based, and the analysis time is 18 to 24 h. In addition to enzymatic activity, these techniques use growth at appropriate temperatures in the presence of inhibitors, combined with demonstration of enzymatic activity, to selectively detect target bacteria.Rapid methods which require less than 6 h and are based on chromogenic, fluorogenic, or chemiluminogenic substrates for detection of coliforms, fecal coliforms, or E. coli have been described (13, 10, 27, 28). These rapid assays are based on the assumption that β-d-galactosidase and β-d-glucuronidase are markers for coliforms and E. coli, respectively. However, when the incubation time is 1 h or less, growth is not a selective step, and all β-d-galactosidase-positive or β-d-glucuronidase-positive microorganisms in a water sample contribute to the activity measured. At low initial concentrations of target bacteria (i.e., E. coli and total coliforms), increasing the preincubation time to 5 to 6 h did not result in a predominance of target bacteria compared to nontarget bacteria (28).The β-d-galactosidase or β-d-glucuronidase activity calculated per cultivable coliform or fecal coliform bacterium in environmental samples can be 1 to 2 log units higher than the activity per induced E. coli cell in pure culture (11, 26). The presence of active, noncultivable bacteria can be one reason for this. Studies of survival (7, 24, 25) and disinfection (26) of E. coli have shown that loss of cultivability does not necessarily result in a loss of β-d-galactosidase activity. The presence of false-positive bacteria can be another reason.β-d-Galactosidase has been found in numerous microorganisms, including gram-negative bacteria (e.g., strains belonging to the Enterobacteriaceae, Vibrionaceae, Pseudomonadaceae, and Neisseriaceae), several gram-positive bacteria, yeasts, protozoa, and fungi (17, 29). β-d-Glucuronidase is produced by most E. coli strains and also by other members of the Enterobacteriaceae, including some Shigella and Salmonella strains and a few Yersinia, Citrobacter, Edwardia, and Hafnia strains. Production of β-d-glucuronidase by Flavobacterium spp., Bacteroides spp., Staphylococcus spp., Streptococcus spp., anaerobic corynebacteria, and Clostridium has also been reported (12).High numbers of false-positive bacteria in sewage and contaminated water have been revealed by enumeration of β-d-galactosidase- and β-d-glucuronidase-positive CFU on nonselective agar supplemented with fluorogenic or chromogenic substrates (11, 28). Whether the activity from nontarget organisms can be neglected in a rapid assay depends on the number of nontarget organisms compared with the number of target bacteria and also on the level of their enzyme activity. Plant and algal biomass must be present at high concentrations to interfere in rapid bacterial β-d-galactosidase and β-d-glucuronidase assays (8).The main objective of this study was to investigate the enzyme characteristics of β-d-galactosidase- and β-d-glucuronidase-positive bacteria isolated from environmental water samples and to evaluate the potential influence of false-positive bacteria in rapid assays for coliform bacteria or E. coli in water. The effect of temperature on enzyme activity and on the interference of nontarget bacteria in the rapid assays was investigated as an important factor.(Some of the results were presented at the 97th General Meeting of the American Society for Microbiology 1997, Miami Beach, Fla., 4 to 8 May 1997.)  相似文献   

2.
β-Galactosidase-catalysed hydrolysis of β-d-galactopyranosyl azide   总被引:3,自引:3,他引:0  
1. β-d-Galactopyranosyl azide is hydrolysed by the β-galactosidase of Escherichia coli to galactose and azide ion at a mechanistically significant rate. 2. Methyl 1-thio-β-d-galactopyranoside is a competitive inhibitor of the hydrolysis of the azide and of o-nitrophenyl β-d-galactopyranoside with Ki 1.8mm. 3. β-Galactosidase can thus hydrolyse a range of substrates of general structure β-d-galactopyranosyl-X(Y), where the atom X has a lone pair of electrons on which the enzyme may act as a Lewis or Brønsted acid, but in which the length of the bond cleaved varies significantly, which is inconsistent with the orbital steering hypothesis.  相似文献   

3.
A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4′-O-β-d-glucoside, resveratrol 3,5-O-β-d-diglucoside, and resveratrol 3,5,4′-O-β-d-triglucoside. The conversion rates and numbers of products formed were found to vary with the other NDP sugar donors. Resveratrol 3-O-β-d-2-deoxyglucoside and resveratrol 3,5-O-β-d-di-2-deoxyglucoside were found to be produced using TDP-2-deoxyglucose as a donor; however, the monoglycosides resveratrol 4′-O-β-d-galactoside, resveratrol 4′-O-β-d-viosaminoside, resveratrol 3-O-β-l-rhamnoside, and resveratrol 3-O-β-l-fucoside were produced from the respective sugar donors. Altogether, 10 diverse glycoside derivatives of the medically important resveratrol were generated, demonstrating the capacity of YjiC to produce structurally diverse resveratrol glycosides.  相似文献   

4.
Phenethyl β-d-galactopyranoside (PEG) was hydrolyzed by the β-galactosidase of Escherichia coli to form the toxic product phenethyl alcohol. Salmonella typhimurium did not hydrolyze PEG. In mixed culture, the ratio of S. typhimurium to E. coli was increased by growing the organisms in lactose broth containing 2.5% PEG. The high concentration of PEG required for inhibition of E. coli can be attributed to inadequate cell permeability rather than to prevention of β-galactosidase induction.  相似文献   

5.
Streptococcus intermedius is a known human pathogen and belongs to the anginosus group (S. anginosus, S. intermedius, and S. constellatus) of streptococci (AGS). We found a large open reading frame (6,708 bp) in the lac operon, and bioinformatic analysis suggested that this gene encodes a novel glycosidase that can exhibit β-d-galactosidase and N-acetyl-β-d-hexosaminidase activities. We, therefore, named this protein “multisubstrate glycosidase A” (MsgA). To test whether MsgA has these glycosidase activities, the msgA gene was disrupted in S. intermedius. The msgA-deficient mutant no longer showed cell- and supernatant-associated β-d-galactosidase, β-d-fucosidase, N-acetyl-β-d-glucosaminidase, and N-acetyl-β-d-galactosaminidase activities, and all phenotypes were complemented in trans with a recombinant plasmid carrying msgA. Purified MsgA had all four of these glycosidase activities and exhibited the lowest Km with 4-methylumbelliferyl-linked N-acetyl-β-d-glucosaminide and the highest kcat with 4-methylumbelliferyl-linked β-d-galactopyranoside. In addition, the purified LacZ domain of MsgA had β-d-galactosidase and β-d-fucosidase activities, and the GH20 domain exhibited both N-acetyl-β-d-glucosaminidase and N-acetyl-β-d-galactosaminidase activities. The β-d-galactosidase and β-d-fucosidase activities of MsgA are thermolabile, and the optimal temperature of the reaction was 40°C, whereas almost all enzymatic activities disappeared at 49°C. The optimal temperatures for the N-acetyl-β-d-glucosaminidase and N-acetyl-β-d-galactosaminidase activities were 58 and 55°C, respectively. The requirement of sialidase treatment to remove sialic acid residues of the glycan branch end for glycan degradation by MsgA on human α1-antitrypsin indicates that MsgA has exoglycosidase activities. MsgA and sialidase might have an important function in the production and utilization of monosaccharides from oligosaccharides, such as glycans for survival in a normal habitat and for pathogenicity of S. intermedius.  相似文献   

6.
Previously, we successfully cloned a d-cycloserine (d-CS) biosynthetic gene cluster consisting of 10 open reading frames (designated dcsA to dcsJ) from d-CS-producing Streptomyces lavendulae ATCC 11924. In this study, we put four d-CS biosynthetic genes (dcsC, dcsD, dcsE, and dcsG) in tandem under the control of the T7 promoter in an Escherichia coli host. SDS-PAGE analysis demonstrated that the 4 gene products were simultaneously expressed in host cells. When l-serine and hydroxyurea (HU), the precursors of d-CS, were incubated together with the E. coli resting cell suspension, the cells produced significant amounts of d-CS (350 ± 20 μM). To increase the productivity of d-CS, the dcsJ gene, which might be responsible for the d-CS excretion, was connected downstream of the four genes. The E. coli resting cells harboring the five genes produced d-CS at 660 ± 31 μM. The dcsD gene product, DcsD, forms O-ureido-l-serine from O-acetyl-l-serine (OAS) and HU, which are intermediates in d-CS biosynthesis. DcsD also catalyzes the formation of l-cysteine from OAS and H2S. To repress the side catalytic activity of DcsD, the E. coli chromosomal cysJ and cysK genes, encoding the sulfite reductase α subunit and OAS sulfhydrylase, respectively, were disrupted. When resting cells of the double-knockout mutant harboring the four d-CS biosynthetic genes, together with dcsJ, were incubated with l-serine and HU, the d-CS production was 980 ± 57 μM, which is comparable to that of d-CS-producing S. lavendulae ATCC 11924 (930 ± 36 μM).  相似文献   

7.
Lipopolysaccharide was prepared from the extracellular lipoglycopeptide produced by the lysine-requiring mutant Escherichia coli A.T.C.C. 12408 grown under lysine-limiting conditions. The lipid moiety, containing glucosamine phosphate and four fatty acids (lauric acid, myristic acid, β-hydroxymyristic acid and palmitic acid) corresponded in composition to lipid A of known bacterial lipopolysaccharides. The components of the polysaccharide moiety were d-glucose, d-galactose, l-glycero-d-manno-heptose, 3-deoxy-2-oxo-octonic acid, ethanolamine and phosphate. These are the constituents of the polysaccharide of the cell-wall antigens from rough strains of E. coli. Lipopolysaccharides were also prepared from whole cells of E. coli 12408 grown with excess or limited amounts of lysine; they were identical in carbohydrate composition with the extracellular lipopolysaccharide. The biological properties of this material also resembled those of known lipopolysaccharides; it was antigenic, pyrogenic, toxic and had adjuvant activity.  相似文献   

8.
Previous results (TJ Buckhout, Planta [1989] 178: 393-399) indicated that the structural specificity of the H+-sucrose symporter on the plasma membrane from sugar beet leaves (Beta vulgaris L.) was specific for the sucrose molecule. To better understand the structural features of the sucrose molecule involved in its recognition by the symport carrier, the inhibitory activity of a variety of phenylhexopyranosides on sucrose uptake was tested. Three competitive inhibitors of sucrose uptake were found, phenyl-α-d-glucopyranoside, phenyl-α-d-thioglucopyranoside, and phenyl-α-d-4-deoxythioglucopyranoside (PDTGP; Ki = 67, 180, and 327 micromolar, respectively). The Km for sucrose uptake was approximately 500 micromolar. Like sucrose, phenyl-α-d-thioglucopyranoside and to a lesser extent, PDTGP induced alkalization of the external medium, which indicated that these derivatives bound to and were transported by the sucrose symporter. Phenyl-α-d-3-deoxy-3-fluorothioglucopyranoside, phenyl-α-d-4-deoxy-4-fluorothioglucopyranoside, and phenyl-α-d-thioallopyranoside only weakly but competively inhibited sucrose uptake with Ki values ranging from 600 to 800 micromolar, and phenyl-α-d-thiomannopyranoside, phenyl-β-d-glucopyranoside, and phenylethyl-β-d-thiogalactopyranoside did not inhibit sucrose uptake. Thus, the hydroxyl groups of the fructose portion of sucrose were not involved in a specific interaction with the carrier protein because phenyl and thiophenyl derivatives of glucose inhibited sucrose uptake and, in the case of phenyl-α-d-thioglucopyranoside and PDTGP, were transported.  相似文献   

9.
A gene cluster involved in N-glycan metabolism was identified in the genome of Bacteroides thetaiotaomicron VPI-5482. This gene cluster encodes a major facilitator superfamily transporter, a starch utilization system-like transporter consisting of a TonB-dependent oligosaccharide transporter and an outer membrane lipoprotein, four glycoside hydrolases (α-mannosidase, β-N-acetylhexosaminidase, exo-α-sialidase, and endo-β-N-acetylglucosaminidase), and a phosphorylase (BT1033) with unknown function. It was demonstrated that BT1033 catalyzed the reversible phosphorolysis of β-1,4-d-mannosyl-N-acetyl-d-glucosamine in a typical sequential Bi Bi mechanism. These results indicate that BT1033 plays a crucial role as a key enzyme in the N-glycan catabolism where β-1,4-d-mannosyl-N-acetyl-d-glucosamine is liberated from N-glycans by sequential glycoside hydrolase-catalyzed reactions, transported into the cell, and intracellularly converted into α-d-mannose 1-phosphate and N-acetyl-d-glucosamine. In addition, intestinal anaerobic bacteria such as Bacteroides fragilis, Bacteroides helcogenes, Bacteroides salanitronis, Bacteroides vulgatus, Prevotella denticola, Prevotella dentalis, Prevotella melaninogenica, Parabacteroides distasonis, and Alistipes finegoldii were also suggested to possess the similar metabolic pathway for N-glycans. A notable feature of the new metabolic pathway for N-glycans is the more efficient use of ATP-stored energy, in comparison with the conventional pathway where β-mannosidase and ATP-dependent hexokinase participate, because it is possible to directly phosphorylate the d-mannose residue of β-1,4-d-mannosyl-N-acetyl-d-glucosamine to enter glycolysis. This is the first report of a metabolic pathway for N-glycans that includes a phosphorylase. We propose 4-O-β-d-mannopyranosyl-N-acetyl-d-glucosamine:phosphate α-d-mannosyltransferase as the systematic name and β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase as the short name for BT1033.  相似文献   

10.
A new β-glucosidase from a novel strain of Terrabacter ginsenosidimutans (Gsoil 3082T) obtained from the soil of a ginseng farm was characterized, and the gene, bgpA (1,947 bp), was cloned in Escherichia coli. The enzyme catalyzed the conversion of ginsenoside Rb1 {3-O-[β-d-glucopyranosyl-(1-2)-β-d-glucopyranosyl]-20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol} to the more pharmacologically active rare ginsenosides gypenoside XVII {3-O-β-d-glucopyranosyl-20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol}, gypenoside LXXV {20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol}, and C-K [20-O-(β-d-glucopyranosyl)-20(S)-protopanaxadiol]. A BLAST search of the bgpA sequence revealed significant homology to family 3 glycoside hydrolases. Expressed in E. coli, β-glucosidase had apparent Km values of 4.2 ± 0.8 and 0.14 ± 0.05 mM and Vmax values of 100.6 ± 17.1 and 329 ± 31 μmol·min−1·mg of protein−1 against p-nitrophenyl-β-d-glucopyranoside and Rb1, respectively. The enzyme catalyzed the hydrolysis of the two glucose moieties attached to the C-3 position of ginsenoside Rb1, and the outer glucose attached to the C-20 position at pH 7.0 and 37°C. These cleavages occurred in a defined order, with the outer glucose of C-3 cleaved first, followed by the inner glucose of C-3, and finally the outer glucose of C-20. These results indicated that BgpA selectively and sequentially converts ginsenoside Rb1 to the rare ginsenosides gypenoside XVII, gypenoside LXXV, and then C-K. Herein is the first report of the cloning and characterization of a novel ginsenoside-transforming β-glucosidase of the glycoside hydrolase family 3.Ginseng refers to the roots of members of the plant genus Panax, which have been used as a traditional medicine in Asian countries for over 2,000 years due to their observed beneficial effects on human health. Ginseng saponins, also referred to as ginsenosides, are the major active components of ginseng (27). Various biological activities have been ascribed to ginseng saponins, including anti-inflammatory activity (43), antitumor effects (23, 39), and neuroprotective and immunoprotective (15, 31) effects.Ginsenosides can be categorized as protopanaxadiol (PPD), protopanaxatriol, and oleanane saponins, based on the structure of the aglycon, with a dammarane skeleton (29). The PPD-type ginsenosides are further classified into subgroups based on the position and number of sugar moieties attached to the aglycon at positions C-3 and C-20. For example, one of the largest PPD-type ginsenosides, Rb1 {3-O-[β-d-glucopyranosyl-(1-2)-β-d-glucopyranosyl]-20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol}, contains 4 glucose moieties, two each attached via glycosidic linkages to the C-3 and C-20 positions of the aglycon (Fig. (Fig.11).Open in a separate windowFIG. 1.Chemical structures of protopanaxadiol and protopanaxatriol ginsenosides (5). The ginsenosides represented here are all (S)-type ginsenosides. glc, β-d-glucopyranosyl; arap, α-l-arabinopyranosyl; araf, α-l-arabinofuranosyl; rha, α-l-rhamnopyranosyl; Gyp, gypenoside; C, compound.Because of their size, low solubility, and poor permeability across the cell membrane, it is difficult for human body to directly absorb large ginsenosides (44), although these components constitute the major portion of the total ginsenoside in raw ginseng (30). Moreover, the lack of the availability of the rare ginsensoides limits the research on their biological and medicinal properties. Therefore, transformation of these major ginsenosides into smaller deglycosylated ginsenosides, which are more effective in in vivo physiological action, is required (1, 37).The production of large amounts of rare ginsenosides from the major ginsenosides can be accomplished through a number of physiochemical methods such as heating (17), acid treatment (2), and alkali treatment (48). However, these approaches produce nonspecific racemic mixtures of rare ginsenosides. As an alternative, enzymatic methods have been explored as a way to convert the major ginsenosides into more pharmacologically active rare ginsenosides in a more specific manner (14, 20).To date, three types of glycoside hydrolases, β-d-glucosidase, α-l-arabinopyranosidase, and α-l-arabinofuranosidase, have been found to be involved in the biotransformation of PPD-type ginsenosides. For example, a β-glucosidase isolated from a fungus converts Rb1 to C-K [20-O-(β-d-glucopyranosyl)-20(S)-protopanaxadiol] (45), and an α-l-arabinopyranosidase and α-l-arabinofuranosidase have been isolated from an intestinal bacterium that hydrolyze, respectively, Rb2 {3-O-[β-d-glucopyranosyl-(1-2)-β-d-glucopyranosyl]-20-O-[α-l-arabinopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol} to Rd {3-O-[β-d-glucopyranosyl-(1-2)-β-d-glucopyranosyl]-20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol} and Rc {3-O-[β-d-glucopyranosyl-(1-2)-β-d-glucopyranosyl]-20-O- [α-l-arabinofuranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol} to Rd (34). Two recombinant enzymes that convert major ginsenosides into rare ginsenosides have been cloned and expressed in Escherichia coli: Solfolobus solfataricus β-glycosidase, which transforms Rb1 or Rc to C-K (28), and β-glucosidase from a soil metagenome, which transforms Rb1 to Rd (16). Both of these glycoside hydrolases are family 1 glycoside hydrolases.Here, we report the cloning and expression in E. coli of a gene (bgpA) encoding a new ginsenoside-hydrolyzing β-glucosidase from a novel bacterial strain, Terrabacter ginsenosidimutans sp. nov. Gsoil 3082, isolated from a ginseng farm in Korea. BgpA is a family 3 glycoside hydrolase, and the recombinant enzyme employs a different enzymatic pathway from ginsenoside-hydrolyzing family 1 glycoside hydrolases. BgpA preferentially and sequentially hydrolyzed the terminal and inner glucoses at the C-3 position of ginsenoside Rb1 and then the outer glucose at the C-20 position. Thus, BgpA could be effective in the biotransformation of ginsenoside Rb1 to gypenoside (Gyp) XVII {3-O-β-d-glucopyranosyl-20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol}, Gyp LXXV {20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol}, and C-K.  相似文献   

11.
1. The previous study (Conchie, Gelman & Levvy, 1967b) of the specificity of β-glucosidase, β-galactosidase and β-d-fucosidase in barley, limpet, almond emulsin and rat epididymis was extended to α-l-arabinosidase. 2. The inhibitory action of l-arabinono-(1→5)-lactone was tested against all four types of enzyme, and α-l-arabinosidase was examined for inhibition by glucono-, galactono- and d-fucono-lactone. 3. In emulsin, the enzyme that hydrolyses β-glucosides, β-galactosides and β-d-fucosides also hydrolyses α-l-arabinosides. Rat epididymis resembles emulsin except that, as already noted, it lacks β-glucosidase activity. 4. In the limpet, α-l-arabinosidase activity is associated with the enzyme that hydrolyses β-glucosides and β-d-fucosides, and not with the separate β-galactosidase. 5. The effects of the different lactones on the barley preparation suggest that α-l-arabinosidase activity is associated with the β-galactosidase rather than with the enzyme that hydrolyses β-glucosides and β-d-fucosides. Fractionation and heat-inactivation experiments indicate that there is also a separate α-l-arabinosidase in the preparation.  相似文献   

12.
Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative γ-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative γ-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no γ-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 μmol·min−1·mg−1, respectively, and those for d-allo-isoleucine were 13.2 mM and 286 μmol·min−1·mg−1, respectively. Hydroxylamine and other inhibitors of pyridoxal 5′-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5′-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position.  相似文献   

13.
Cytokinin-active ribonucleosides have been isolated from tRNA of whole spinach (Spinacia oleracea L.) leaves and isolated spinach chloroplasts. The tRNA from spinach leaf blades contained: 6-(4-hydroxy-3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine (cis and trans isomers), 6-(3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine, and 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-d -ribofuranosylpurine (cis and trans isomers). A method for isolation of large amounts of intact chloroplasts was developed and subsequently used for the isolation of chloroplast tRNA. The chloroplast tRNA contained 6-(3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine and 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-d -ribofuranosylpurine (the cis isomer only). The structures of these compounds were assigned on the basis of their chromatographic properties and mass spectra of trimethylsilyl derivatives which were identical with those of the corresponding synthetic compounds. The results of this study indicate that ribosylzeatin was present in spinach leaf tRNA, but absent from the purified chloroplast tRNA preparation.  相似文献   

14.
Chloroplasts prepared from mesophyll protoplasts of the primary leaf of wheat (Triticum aestivum L. cv Egret) contain about 50% of the cellular β-galactosidase (EC 3.2.1.23) activity. More than 80% of this activity is associated with the stroma and most of the remainder, although tightly bound to the thylakoids, can be washed free with sodium pyrophosphate. The vacuole contained about 20% and the remaining enzyme was presumed to be cytoplasmic or associated with one of the other organelles. Both the vacuolar and chloroplast enzymes were capable of releasing galactose from the galactolipid monogalactosyldiacylglycerol. Apart from their distinct locations within the cells, we conclude that the enzymes are different because they differed with respect to assay pH-optimum, comparative activity against the synthetic substrates phenyl-β-d-galactoside, 4-methylumbelliferyl-β-d-galactoside, 6-bromo-2-naphthyl-β-d-galactoside, the disaccharide lactose, and the inhibitors d-galactose and d-galactono-1,4-lactone.  相似文献   

15.
Dwarf maize (Zea mays L.), a mutant deficient in gibberellin synthesis, provides an excellent model to study the influence of gibberellin on biochemical processes related to plant development. Alterations in the chemical structure of the cell wall mediated by gibberellin were examined in seedlings of this mutant. The composition of the walls of roots, mesocotyl, coleoptile, and primary leaves of dwarf maize was similar to that of normal maize and other cereal grasses. Glucuronoarabinoxylans constituted the principal hemicelluloses, but walls also contained substantial amounts of xyloglucan and mixed-linkage β-d-glucan. Root growth in dwarf maize was essentially normal, but growth of mesocotyl and primary leaves was severely retarded. Injection of the gibberellin into the cavity of the coleoptile resulted in a marked increase in elongation of the primary leaves. This elongation was accompanied by increases in total wall mass, but the proportion of β-d-glucan decreased from 20% to 15% of the hemicellulosic polysaccharide. During leaf expansion, the proportion decreased further to only 10%. Through 4 days incubation, the proportion of β-d-glucan in leaves of control seedlings without gibberellin was nearly constant. Extraction of exo- and endo-β-d-glucan hydrolases from purified cell walls and assay against a purified oat bran β-d-glucan demonstrated that gibberellin increased the activity of the endo-β-d-glucan hydrolase. These and other data support the hypothesis that β-d-glucan metabolism is central to control of cell expansion in cereal grasses.  相似文献   

16.
1. A number of disaccharides and oligosaccharides have been isolated from the products of mild acid hydrolysis of the specific substance from Lactobacillus casei, serological group C. 2. The major disaccharide is O-β-d-glucopyranosyl-(1→3)-N-acetyl- d-galactosamine (B4) and evidence is presented for the structure of a tetrasaccharide composed of O-β-d-glucopyranosyl-(1→6)-d-galactose (B1) joined through its reducing end group to B4. 3. Disaccharide B1 is also a component of a trisaccharide O-β-d-glucopyranosyl-(1→6)-O-β- d-galactopyranosyl-(1→6)-N-acetyl-d-glucosamine (A7). 4. A number of other oligosaccharides have been shown to be related structurally. 5. The ability of certain of the oligosaccharides to inhibit the precipitin reaction has been studied. The disaccharide B1 is more effective as an inhibitor than gentiobiose and the trisaccharide A7 is considerably more effective than B1. 6. These results have been compared with those obtained previously for the composition of the cell wall.  相似文献   

17.
Ruminococcus albus is a typical ruminal bacterium digesting cellulose and hemicellulose. Cellobiose 2-epimerase (CE; EC 5.1.3.11), which converts cellobiose to 4-O-β-d-glucosyl-d-mannose, is a particularly unique enzyme in R. albus, but its physiological function is unclear. Recently, a new metabolic pathway of mannan involving CE was postulated for another CE-producing bacterium, Bacteroides fragilis. In this pathway, β-1,4-mannobiose is epimerized to 4-O-β-d-mannosyl-d-glucose (Man-Glc) by CE, and Man-Glc is phosphorolyzed to α-d-mannosyl 1-phosphate (Man1P) and d-glucose by Man-Glc phosphorylase (MP; EC 2.4.1.281). Ruminococcus albus NE1 showed intracellular MP activity, and two MP isozymes, RaMP1 and RaMP2, were obtained from the cell-free extract. These enzymes were highly specific for the mannosyl residue at the non-reducing end of the substrate and catalyzed the phosphorolysis and synthesis of Man-Glc through a sequential Bi Bi mechanism. In a synthetic reaction, RaMP1 showed high activity only toward d-glucose and 6-deoxy-d-glucose in the presence of Man1P, whereas RaMP2 showed acceptor specificity significantly different from RaMP1. RaMP2 acted on d-glucose derivatives at the C2- and C3-positions, including deoxy- and deoxyfluoro-analogues and epimers, but not on those substituted at the C6-position. Furthermore, RaMP2 had high synthetic activity toward the following oligosaccharides: β-linked glucobioses, maltose, N,N′-diacetylchitobiose, and β-1,4-mannooligosaccharides. Particularly, β-1,4-mannooligosaccharides served as significantly better acceptor substrates for RaMP2 than d-glucose. In the phosphorolytic reactions, RaMP2 had weak activity toward β-1,4-mannobiose but efficiently degraded β-1,4-mannooligosaccharides longer than β-1,4-mannobiose. Consequently, RaMP2 is thought to catalyze the phosphorolysis of β-1,4-mannooligosaccharides longer than β-1,4-mannobiose to produce Man1P and β-1,4-mannobiose.  相似文献   

18.
The Gram-positive bacterium Cellulomonas fimi produces a large array of carbohydrate-active enzymes. Analysis of the collection of carbohydrate-active enzymes from the recent genome sequence of C. fimi ATCC 484 shows a large number of uncharacterized genes for glycoside hydrolase (GH) enzymes potentially involved in biomass utilization. To investigate the enzymatic activity of potential β-glucosidases in C. fimi, genes encoding several GH3 enzymes and one GH1 enzyme were cloned and recombinant proteins were expressed in Escherichia coli. Biochemical analysis of these proteins revealed that the enzymes exhibited different substrate specificities for para-nitrophenol-linked substrates (pNP), disaccharides, and oligosaccharides. Celf_2726 encoded a bifunctional enzyme with β-d-xylopyranosidase and α-l-arabinofuranosidase activities, based on pNP-linked substrates (CfXyl3A). Celf_0140 encoded a β-d-glucosidase with activity on β-1,3- and β-1,6-linked glucosyl disaccharides as well as pNP-β-Glc (CfBgl3A). Celf_0468 encoded a β-d-glucosidase with hydrolysis of pNP-β-Glc and hydrolysis/transglycosylation activities only on β-1,6-linked glucosyl disaccharide (CfBgl3B). Celf_3372 encoded a GH3 family member with broad aryl-β-d-glycosidase substrate specificity. Celf_2783 encoded the GH1 family member (CfBgl1), which was found to hydrolyze pNP-β-Glc/Fuc/Gal, as well as cellotetraose and cellopentaose. CfBgl1 also had good activity on β-1,2- and β-1,3-linked disaccharides but had only very weak activity on β-1,4/6-linked glucose.  相似文献   

19.
An α-l-arabinofuranosidase has been purified 1043-fold from radish (Raphanus sativus L.) seeds. The purified enzyme was a homogeneous glycoprotein consisting of a single polypeptide with an apparent molecular weight of 64,000 and an isoelectric point value of 4.7, as evidenced by denaturing gel electrophoresis and reversed-phase or size-exclusion high-performance liquid chromatography and isoelectric focusing. The enzyme characteristically catalyzes the hydrolysis of p-nitrophenyl α-l-arabinofuranoside and p-nitrophenyl β-d-xylopyranoside in a constant ratio (3:1) of the initial velocities at pH 4.5, whereas the corresponding α-l-arabinopyranoside and β-d-xylofuranoside are unsusceptible. The following evidence was provided to support that a single enzyme with one catalytic site was responsible for the specificity: (a) high purity of the enzyme preparation, (b) an invariable ratio of the activities toward the two substrates throughout the purification steps, (c) a parallelism of the activities in activation with bovine serum albumin and in heat inactivation of the enzyme as well as in the inhibition with heavy metal ions and sugars such as Hg2+, Ag+, l-arabino-(1→4)-lactone, and d-xylose, and (d) results of the mixed substrate kinetic analysis using the two substrates. The enzyme was shown to split off α-l-arabinofuranosyl residues in sugar beet arabinan, soybean arabinan-4-galactan, and radish seed and leaf arabinogalactan proteins. Arabinose and xylose were released by the action of the enzyme on oat-spelt xylan. Synergistic action of α-l-arabinofuranosidase and β-d-galactosidase on radish seed arabinogalactan protein resulted in the extensive degradation of the carbohydrate moiety.  相似文献   

20.
The complement system is part of our first line of defense against invading pathogens. The strategies used by Enterococcus faecalis to evade recognition by human complement are incompletely understood. In this study, we identified an insertional mutant of the wall teichoic acid (WTA) synthesis gene tagB in E. faecalis V583 that exhibited an increased susceptibility to complement-mediated killing by neutrophils. Further analysis revealed that increased killing of the mutant was due to a higher rate of phagocytosis by neutrophils, which correlated with higher C3b deposition on the bacterial surface. Our studies indicated that complement activation via the lectin pathway was much stronger on the tagB mutant compared with wild type. In concordance, we found an increased binding of the key lectin pathway components mannose-binding lectin and mannose-binding lectin-associated serine protease-2 (MASP-2) on the mutant. To understand the mechanism of lectin pathway inhibition by E. faecalis, we purified and characterized cell wall carbohydrates of E. faecalis wild type and V583ΔtagB. NMR analysis revealed that the mutant strain lacked two WTAs with a repeating unit of →6)[α-l-Rhap-(1→3)]β-d-GalpNAc-(1→5)-Rbo-1-P and →6) β-d-Glcp-(1→3) [α-d-Glcp-(1→4)]-β-d-GalpNAc-(1→5)-Rbo-1-P→, respectively (Rbo, ribitol). In addition, compositional changes in the enterococcal rhamnopolysaccharide were noticed. Our study indicates that in E. faecalis, modification of peptidoglycan by secondary cell wall polymers is critical to evade recognition by the complement system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号