首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Rheumatoid arthritis (RA) is a chronic and systemic autoimmune inflammatory disease. Typical pathological findings of RA include persistent synovitis and bone degradation in the peripheral joints. Equol, a metabolite of the major soybean isoflavone daidzein, shows superior bioactivity than other isoflavones. We investigated the effects of equol administration on inflammatory response and bone erosion in mice with collagen-induced arthritis (CIA). The severity of arthritis symptoms was significantly low in the equol-administered CIA mice. In addition, equol administration improved the CIA-induced bone mineral density decline. In the inflamed area of CIA mice, equol administration suppressed the expression of interleukin-6 and its receptor. Furthermore, equol reduced the expression of genes associated with bone formation inhibition, osteoclast and immature osteoblast specificity and cartilage destruction. These results suggest that equol suppresses RA development and RA-induced bone erosion by regulating inflammation and bone metabolism.  相似文献   

2.

Introduction

Matrix metalloproteinases (MMPs) are important in tissue remodelling. Here we investigate the role of collagenase-3 (MMP-13) in antibody-induced arthritis.

Methods

For this study we employed the K/BxN serum-induced arthritis model. Arthritis was induced in C57BL/6 wild type (WT) and MMP-13-deficient (MMP-13–/–) mice by intraperitoneal injection of 200 μl of K/BxN serum. Arthritis was assessed by measuring the ankle swelling. During the course of the experiments, mice were sacrificed every second day for histological examination of the ankle joints. Ankle sections were evaluated histologically for infiltration of inflammatory cells, pannus tissue formation and bone/cartilage destruction. Semi-quantitative PCR was used to determine MMP-13 expression levels in ankle joints of untreated and K/BxN serum-injected mice.

Results

This study shows that MMP-13 is a regulator of inflammation. We observed increased expression of MMP-13 in ankle joints of WT mice during K/BxN serum-induced arthritis and both K/BxN serum-treated WT and MMP-13–/– mice developed progressive arthritis with a similar onset. However, MMP-13–/– mice showed significantly reduced disease over the whole arthritic period. Ankle joints of WT mice showed severe joint destruction with extensive inflammation and erosion of cartilage and bone. In contrast, MMP-13–/– mice displayed significantly decreased severity of arthritis (50% to 60%) as analyzed by clinical and histological scoring methods.

Conclusions

MMP-13 deficiency acts to suppress the local inflammatory responses. Therefore, MMP-13 has a role in the pathogenesis of arthritis, suggesting MMP-13 is a potential therapeutic target.  相似文献   

3.
IntroductionInflammatory destructive arthritis, like rheumatoid arthritis (RA), is characterized by invasion of synovial fibroblasts (SF) into the articular cartilage and erosion of the underlying bone, leading to progressive joint destruction. Because fibroblast activation protein alpha (FAP) has been associated with cell migration and cell invasiveness, we studied the function of FAP in joint destruction in RA.MethodsExpression of FAP in synovial tissues and fibroblasts from patients with osteoarthritis (OA) and RA as well as from wild-type and arthritic mice was evaluated by immunohistochemistry, fluorescence microscopy and polymerase chain reaction (PCR). Fibroblast adhesion and migration capacity was assessed using cartilage attachment assays and wound-healing assays, respectively. For in vivo studies, FAP-deficient mice were crossed into the human tumor necrosis factor transgenic mice (hTNFtg), which develop a chronic inflammatory arthritis. Beside clinical assessment, inflammation, cartilage damage, and bone erosion were evaluated by histomorphometric analyses.ResultsRA synovial tissues demonstrated high expression of FAP whereas in OA samples only marginal expression was detectable. Consistently, a higher expression was detected in arthritis SF compared to non-arthritis OA SF in vitro. FAP-deficiency in hTNFtg mice led to less cartilage degradation despite unaltered inflammation and bone erosion. Accordingly, FAP−/− hTNFtg SF demonstrated a lower cartilage adhesion capacity compared to hTNFtg SF in vitro.ConclusionsThese data point to a so far unknown role of FAP in the attachment of SF to cartilage, promoting proteoglycan loss and subsequently cartilage degradation in chronic inflammatory arthritis.  相似文献   

4.
We investigated the role of Fcγ receptors (FcγRs) on synovial macrophages in immune-complex-mediated arthritis (ICA). ICA elicited in knee joints of C57BL/6 mice caused a short-lasting, florid inflammation and reversible loss of proteoglycans (PGs), moderate chondrocyte death, and minor erosion of the cartilage. In contrast, when ICA was induced in knee joints of Fc receptor (FcR) γ-chain-/- C57BL/6 mice, which lack functional FcγRI and RIII, inflammation and cartilage destruction were prevented. When ICA was elicited in DBA/1 mice, a very severe, chronic inflammation was observed, and significantly more chondrocyte death and cartilage erosion than in arthritic C57BL/6 mice. The synovial lining and peritoneal macrophages of na?ve DBA/1 mice expressed a significantly higher level of FcγRs than was seen in C57BL/6 mice. Moreover, elevated and prolonged expression of IL-1 was found after stimulation of these cells with immune complexes. Zymosan or streptococcal cell walls caused comparable inflammation and only mild cartilage destruction in all strains. We conclude that FcγR expression on synovial macrophages may be related to the severity of synovial inflammation and cartilage destruction during ICA.  相似文献   

5.
STATEMENT OF FINDINGS: We investigated the role of Fc gamma receptors (Fc gamma Rs) on synovial macrophages in immune-complex-mediated arthritis (ICA). ICA elicited in knee joints of C57BL/6 mice caused a short-lasting, florid inflammation and reversible loss of proteoglycans (PGs), moderate chondrocyte death, and minor erosion of the cartilage. In contrast, when ICA was induced in knee joints of Fc receptor (FcR) gamma-chain(-/-) C57BL/6 mice, which lack functional Fc gamma RI and RIII, inflammation and cartilage destruction were prevented. When ICA was elicited in DBA/1 mice, a very severe, chronic inflammation was observed, and significantly more chondrocyte death and cartilage erosion than in arthritic C57BL/6 mice. The synovial lining and peritoneal macrophages of na?ve DBA/1 mice expressed a significantly higher level of Fc gamma Rs than was seen in C57BL/6 mice. Moreover, elevated and prolonged expression of IL-1 was found after stimulation of these cells with immune complexes. Zymosan or streptococcal cell walls caused comparable inflammation and only mild cartilage destruction in all strains. We conclude that Fc gamma R expression on synovial macrophages may be related to the severity of synovial inflammation and cartilage destruction during ICA.  相似文献   

6.
Oncostatin M is a pro-inflammatory cytokine previously shown to promote marked cartilage destruction both in vitro and in vivo when in combination with IL-1 or tumour necrosis factor alpha. However, the in vivo effects of these potent cytokine combinations on bone catabolism are unknown. Using adenoviral gene transfer, we have overexpressed oncostatin M in combination with either IL-1 or tumour necrosis factor alpha intra-articularly in the knees of C57BL/6 mice. Both of these combinations induced marked bone damage and markedly increased tartrate-resistant acid phosphatase-positive multinucleate cell staining in the synovium and at the front of bone erosions. Furthermore, there was increased expression of RANK and its ligand RANKL in the inflammatory cells, in inflamed synovium and in articular cartilage of knee joints treated with the cytokine combinations compared with expression in joints treated with the cytokines alone or the control. This model of inflammatory arthritis demonstrates that, in vivo, oncostatin M in combination with either IL-1 or tumour necrosis factor alpha represents cytokine combinations that promote bone destruction. The model also provides further evidence that increased osteoclast-like, tartrate-resistant acid phosphatase-positive staining multinucleate cells and upregulation of RANK/RANKL in joint tissues are key factors in pathological bone destruction.  相似文献   

7.
Oncostatin M is a pro-inflammatory cytokine previously shown to promote marked cartilage destruction both in vitro and in vivo when in combination with IL-1 or tumour necrosis factor alpha. However, the in vivo effects of these potent cytokine combinations on bone catabolism are unknown. Using adenoviral gene transfer, we have overexpressed oncostatin M in combination with either IL-1 or tumour necrosis factor alpha intra-articularly in the knees of C57BL/6 mice. Both of these combinations induced marked bone damage and markedly increased tartrate-resistant acid phosphatase-positive multinucleate cell staining in the synovium and at the front of bone erosions. Furthermore, there was increased expression of RANK and its ligand RANKL in the inflammatory cells, in inflamed synovium and in articular cartilage of knee joints treated with the cytokine combinations compared with expression in joints treated with the cytokines alone or the control. This model of inflammatory arthritis demonstrates that, in vivo, oncostatin M in combination with either IL-1 or tumour necrosis factor alpha represents cytokine combinations that promote bone destruction. The model also provides further evidence that increased osteoclast-like, tartrate-resistant acid phosphatase-positive staining multinucleate cells and upregulation of RANK/RANKL in joint tissues are key factors in pathological bone destruction.  相似文献   

8.
9.
IL-17 is the hallmark cytokine for the newly identified subset of Th cells, Th17. Th17 cells are important instigators of inflammation in several models of autoimmune disease; in particular, collagen induced arthritis (CIA) and experimental autoimmune encephalomyelitis (EAE), which were previously characterized as Th1-mediated diseases. Although high levels of IFN-gamma are secreted in CIA and EAE, disease is exacerbated in IFN-gamma- or IFN-gamma receptor-deficient mice due to the ability of IFN-gamma to suppress IL-17 secretion. However, in proteoglycan-induced arthritis (PGIA), severe arthritis is dependent on the production of IFN-gamma. We were therefore interested in determining the role of IL-17 in PGIA. We assessed the progression of arthritis in IL-17-deficient (IL-17-/-) mice and found the onset and severity of arthritis were equivalent in wild-type (WT) and IL-17-/- mice. Despite evidence that IL-17 is involved in neutrophil recruitment, synovial fluid from arthritic joints showed a comparable proportion of Gr1+ neutrophils in WT and IL-17-/- mice. IL-17 is also implicated in bone destruction in autoimmune arthritis, however, histological analysis of the arthritic joints from WT and IL-17-/- mice revealed a similar extent of joint cellularity, cartilage destruction, and bone erosion despite significantly reduced RANKL (receptor activator of NK-kappaB ligand) expression. There were only subtle differences between WT and IL-17-/- mice in proinflammatory cytokine expression, T cell proliferation, and autoantibody production. These data demonstrate that IL-17 is not absolutely required for autoimmune arthritis and that the production of other proinflammatory mediators is sufficient to compensate for the loss of IL-17 in PGIA.  相似文献   

10.
胶原诱导型关节炎大鼠的关节影像学特点   总被引:2,自引:0,他引:2  
目的旨在分析CIA X线片四肢关节的破坏特点,揭示CIA大鼠关节破坏的规律,为规范评分方案提供依据。方法采用П型胶原和弗氏完全佐剂皮下注射清洁级Wistar大鼠,造模成功(每批10只,共3次)后第35天行全身X线钼靶照片,以正常组作为对照、每只大鼠评价96块骨破坏(erosion)和100个关节间隙(joint space narrowing,JSN);处死动物,取左前肢和右后肢近端第3足趾关节苏木素-伊红(HE)染色,评价中性粒细胞、淋巴细胞、浆细胞浸润、滑膜增生和软骨破坏的情况。结果造模成功后CIA大鼠关节出现明显的红肿,活动受限;HE病理显示,CIA关节存在明显的中性粒细胞、淋巴细胞和浆细胞浸润,滑膜增生,纤维组织增生,软骨破坏;X线片分析结果显示:①广泛性骨质疏松,边缘性骨质侵蚀,关节间隙狭窄或增宽,部分踝关节间隙消失,关节相互融合甚至骨性强直。②67%的骨出现erosion,JSN影响为78%,关节破坏以中、重度为主;③远端、近端趾间关节和踝关节发病率高,损害严重,掌趾关节发病率低,破坏较轻。④后肢关节破坏重于前肢(P〈0.01),左右肢没有显著性差异(P〉0.05)。结论①滑膜是CIA炎症反应启动的主要病灶,与骨交界的滑膜和血管翳造成了CIA的骨质破坏;②CIA影像学表现关节破坏严重,以远端、近端趾间关节和踝关节为主,这些关节可作为评价破坏程度的选择。本研究对于深入CIA关节破坏的病因病理和进一步规范X线片评分方案具有一定意义。  相似文献   

11.
Rheumatoid arthritis (RA) is a chronic and debilitating autoimmune disease of unknown etiology, characterized by chronic inflammation in the joints and subsequent destruction of the cartilage and bone. We describe here a new strategy for the treatment of arthritis: administration of the neuropeptide vasoactive intestinal peptide (VIP). Treatment with VIP significantly reduced incidence and severity of arthritis in an experimental model, completely abrogating joint swelling and destruction of cartilage and bone. The therapeutic effect of VIP was associated with downregulation of both inflammatory and autoimmune components of the disease. Our data indicate VIP as a viable candidate for the development of treatments for RA.  相似文献   

12.
The integrin-associated protein (IAP) has been shown to function in a signaling complex with beta3 integrins, influencing the migration of phagocytic cells into inflamed tissues. We have previously shown that gene-targeted mice deficient for IAP succumbed to peritonitis when inoculated with gram-negative bacteria. The aim of this study was to assess the role of IAP in our recently established model of haematogenously induced Staphylococcus aureus septicaemia and arthritis. In this model, neutrophils play a crucial role in the early phase of the infection. Mice lacking IAP and congenic controls were intravenously inoculated with S. aureus LS-1. The IAP-/- mice were resistant to developing clinical signs of arthritis compared with their IAP-expressing littermates. The clinical findings were corroborated by histopathological evaluation indicating that the IAP-/- mice had less cartilage and bone destruction in the joints. We believe that a delayed migration of leukocytes into the joints of mice lacking IAP expression leads to decreased susceptibility to develop S. aureus-induced arthritis.  相似文献   

13.
Rheumatoid arthritis is a chronic inflammatory joint disease, leading to cartilage and bone destruction. In this study, we investigated the effects of local IL-4 application, introduced by a recombinant human type 5 adenovirus vector, in the knee joint of mice with collagen-induced arthritis. One intraarticular injection with an IL-4-expressing virus caused overexpression of IL-4 in the mouse knee joint. Enhanced onset and aggravation of the synovial inflammation were found in the IL-4 group. However, despite ongoing inflammation, histologic analysis showed impressive prevention of chondrocyte death and cartilage erosion. In line with this, chondrocyte proteoglycan synthesis was enhanced in the articular cartilage. This was quantified with ex vivo 35S-sulfate incorporation in patellar cartilage and confirmed by autoradiography on whole knee joint sections. Reduction of cartilage erosion was further substantiated by lack of expression of the stromelysin-dependent cartilage proteoglycan breakdown neoepitope VDIPEN in the Ad5E1 mIL-4-treated knee joint. Reduced metalloproteinase activity was also supported by markedly diminished mRNA expression of stromelysin-3 in the synovial tissue. Histologic analysis revealed marked reduction of polymorphonuclear cells in the synovial joint space in the IL-4-treated joints. This was confirmed by immunolocalization studies on knee joint sections using NIMP-R14 staining and diminished mRNA expression of macrophage-inflammatory protein-2 in the synovium tissue. mRNA levels of TNF-alpha and IL-1beta were suppressed as well, and IL-1beta and nitric oxide production by arthritic synovial tissue were strongly reduced. Our data show an impressive cartilage-protective effect of local IL-4 and underline the feasibility of local gene therapy with this cytokine in arthritis.  相似文献   

14.
Adiponectin (APN) is a hormone released by adipose tissue with anti-inflammatory properties. The purpose of this study was to examine the therapeutic effects of systemic delivery of APN in murine arthritis model. Collagen-induced arthritis (CIA) was induced in male DBA1/J mice, and adenoviral vectors encoding human APN (Ad-APN) or beta-galactosidase (Ad-β-gal) as control were injected either before or during arthritis progression. Systemic APN delivery at both time points significantly decreased clinical disease activity scores of CIA. In addition, APN treatment before arthritis progression significantly decreased histological scores of inflammation and cartilage damage, bone erosion, and mRNA levels of pro-inflammatory cytokines in the joints, without altering serum anti-collagen antibodies levels. Immunohistochemical staining showed significant inhibition of complement C1q and C3 deposition in the joints of Ad-APN infected CIA mice. These results provide novel evidence that systemic APN delivery prevents inflammation and joint destruction in murine arthritis model.  相似文献   

15.
Thioredoxin (TRX) is an oxidative stress-inducible biological antioxidant that is highly expressed in the synoviocytes of rheumatoid arthritis (RA) patients. There is much evidence that oxidative stress plays a key role in the inflammation and destruction of RA joints; the functional relationship between TRX and RA remains unknown, however. We therefore investigated the role played by TRX in the inflammatory and joint-damaging processes of RA using a murine model in which arthritis was induced by administering a mixture of anti-type II collagen monoclonal antibodies (mAb) and lipopolysaccharide (LPS). In Wt mice mAb/LPS injection induced neutrophil infiltration, cartilage destruction, and chondrocyte apoptosis within the joints, all of which were dramatically suppressed in TRX transgenic (TRX-Tg) mice. Moreover, the 8-hydoxy-2'-deoxyguanosine (8-OHdG) expression seen in Wt mice after mAb/LPS injection was almost completely inhibited in TRX-Tg mice. The administration of recombinant TRX also suppressed mAb/LPS-induced joint swelling in Wt mice. Taken together, these results suggest that TRX protects against arthritis and is a plausible candidate with which to develop novel therapies for the treatment of RA.  相似文献   

16.
It has been suggested that the inflammatory cytokine IL-15 plays an important role in the development of several autoimmune diseases, including rheumatoid arthritis. We have generated a unique lytic and antagonistic IL-15 mutant/Fcgamma2a fusion protein (CRB-15) that targets the IL-15R. In the present study we examined the effects of targeting the IL-15R on the prevention and treatment of collagen-induced arthritis (CIA) in mice and probed the possible mechanisms of action of this IL-15 mutant/Fcgamma2a protein. Upon immunization with type II collagen, DBA/1 mice develop severe articular inflammation and destruction. Treatment of DBA/1 mice with a brief course of CRB-15 at the time of type II collagen challenge markedly inhibited the incidence and severity of arthritis. Moreover, in animals with ongoing established arthritis, treatment with CRB-15 effectively blocked disease progression compared with that in control-treated animals. The therapeutic effect of CRB-15 on either disease development or disease progression is remarkably stable, because withdrawal of treatment did not lead to disease relapse. A detailed analysis revealed that treatment with CRB-15 decreased synovitis in the joints; reduced bone erosion and cartilage destruction; reduced in situ production of the proinflammatory cytokines TNF-alpha, IL-1beta, IL-6, and IL-17; and decreased the responder frequency of autoreactive T cells. Our study suggests that the effective targeting of IL-15R-triggered events with CRB-15 can be of therapeutic importance in the treatment of rheumatoid arthritis.  相似文献   

17.
Chronic autoimmune inflammation, which is commonly observed in rheumatoid arthritis (RA), disrupts the delicate balance between bone resorption and formation causing thedestruction of the bone and joints. We undertook this study to verify the effects of natural grape-seed proanthocyanidin extract (GSPE), an antioxidant, on chronic inflammation and bone destruction. GSPE administration ameliorated the arthritic symptoms of collagen-induced arthritis (CIA), which are representative of cartilage and bone destruction. GSPE treatment reduced the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and osteoclast activity and increased differentiation of mature osteoblasts. Receptor activator of NFκB ligand expression in fibroblasts from RA patients was abrogated with GSPE treatment. GSPE blocked human peripheral blood mononuclear cell-derived osteoclastogenesis and acted as an antioxidant. GSPE improved the arthritic manifestations of CIA mice by simultaneously suppressing osteoclast differentiation and promoting osteoblast differentiation. Our results suggest that GSPE may be beneficial for the treatment of inflammation-associated bone destruction.  相似文献   

18.
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, leading to cartilage and bone destruction. We investigated whether the electrotransfer of IL-4 DNA could regulate the disease progress of murine collagen-induced arthritis (CIA). The maximum serum level of mIL-4 was measured by 340 pg/ml on day 1 following DNA transfer. The onset of severe CIA and the degree of synovitis and cartilage erosion were significantly reduced in mice treated with IL-4 DNA (P<0.05). The beneficial effect of IL-4 gene transfer lasted for at least 17 days subsequent to treatment. The expression of IL-1beta was considerably decreased in the paws by IL-4 DNA transfer (P<0.01). On the contrary, the ratio of TIMP2 to MMP2 significantly increased in the IL-4 DNA-treated group (P<0.01). These data demonstrated that electroporation-mediated gene transfer could provide a new approach as an IL-4 therapy for autoimmune arthritis.  相似文献   

19.
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by bone erosion and cartilage destruction in the joints. Many of the conventional antiarthritic drugs are effective in suppressing inflammation, but they do not offer protection against bone damage. Furthermore, the prolonged use of these drugs is associated with severe adverse reactions. Thus, new therapeutic agents that can control both inflammation and bone damage but with minimal side effects are sought. Celastrus is a Chinese herb that has been used for centuries in folk medicine for the treatment of various inflammatory diseases. However, its utility for protection against inflammation-induced bone damage in arthritis and the mechanisms involved therein have not been examined. We tested celastrus and its bioactive component celastrol for this attribute in the adjuvant-induced arthritis model of RA. The treatment of arthritic rats with celastrus/celastrol suppressed inflammatory arthritis and reduced bone and cartilage damage in the joints as demonstrated by histology and bone histomorphometry. The protective effects against bone damage are mediated primarily via the inhibition of defined mediators of osteoclastic bone remodeling (e.g. receptor activator of nuclear factor-κB ligand (RANKL)), the deviation of RANKL/osteoprotegerin ratio in favor of antiosteoclastic activity, and the reduction in osteoclast numbers. Furthermore, both the upstream inducers (proinflammatory cytokines) and the downstream effectors (MMP-9) of the osteoclastogenic mediators were altered. Thus, celastrus and celastrol controlled inflammation-induced bone damage by modulating the osteoimmune cross-talk. These natural products deserve further consideration and evaluation as adjuncts to conventional therapy for RA.  相似文献   

20.
Lee YR  Hwang JK  Koh HW  Jang KY  Lee JH  Park JW  Park BH 《Life sciences》2012,90(19-20):799-807
AimSulfuretin, a major flavonoid isolated from Rhus verniciflua, is known to have anti-inflammatory effects. However, the mechanisms underlying the anti-inflammatory effect of sulfuretin on rheumatoid arthritis have not been elucidated. In this study we investigated whether sulfuretin treatment modulates the severity of arthritis in an experimental model.Main methodsWe evaluated the effects of sulfuretin on tumor necrosis factor-α (TNF-α)-treated human rheumatoid fibroblast-like synoviocytes (FLS) in vitro and on collagen-induced arthritis (CIA) mice in vivo.Key findingsIn vitro experiments demonstrated that sulfuretin suppressed the chemokine production, matrix metalloproteinase secretion, and cell proliferation induced by tumor necrosis factor-α in rheumatoid FLS. In addition, sulfuretin inhibited the osteoclast differentiation induced by macrophage colony-stimulating factor and receptor activator of NF-κB ligand in bone marrow macrophages. In mice with CIA, early intervention with sulfuretin prevented joint destruction, as evidenced by a lower cumulative disease incidence and an absence of diverse disease features based on hind paw thickness, radiologic and histopathologic findings, and inflammatory cytokine levels. In mice with established arthritis, sulfuretin treatment significantly reduced synovial inflammation and joint destruction. The in vitro and in vivo protective effects of sulfuretin were mediated by inhibition of the NF-κB signaling pathway.SignificanceThese results suggest that using sulfuretin to block the NF-κB pathway in rheumatoid joints reduces both inflammatory responses and joint destruction. Therefore, sulfuretin may have therapeutic value in preventing or delaying the progression of rheumatoid arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号