首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.

Background

Prostaglandins (PGs) mediate insect immune responses to infections and invasions. Although the presence of PGs has been confirmed in several insect species, their biosynthesis in insects remains a conundrum because orthologs of the mammalian cyclooxygenases (COXs) have not been found in the known insect genomes. PG-mediated immune reactions have been documented in the beet armyworm, Spodoptera exigua. The purpose of this research is to identify the source of PGs in S. exigua.

Principal Findings

Peroxidases (POXs) are a sister group of COX genes. Ten putative POXs (SePOX-A ∼ SePOX-J) were expressed in S. exigua. Expressions of SePOX-F and -H were induced by bacterial challenge and expressed in the hemocytes and the fat body. RNAi of each POX was performed by hemocoelic injection of their specific double-stranded RNAs. dsPOX-F or, separately, dsPOX-H, but not the other eight dsRNA constructs, specifically suppressed hemocyte-spreading behavior and nodule formation; these two reactions were also inhibited by aspirin, a COX inhibitor. PGE2, but not arachidonic acid, treatment rescued the immunosuppression. Sequence analysis indicated that both POX genes were clustered with peroxinectin (Pxt) and their cognate proteins shared some conserved domains corresponding to the Pxt of Drosophila melanogaster.

Conclusions

SePOX-F and -H are Pxt-like genes associated with PG biosynthesis in S. exigua.  相似文献   

2.
Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae) was selected for 15 years in the laboratory for resistance to Xentari™, a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression between susceptible and resistant insects. Among the differentially expressed genes, repat and arylphorin were identified and their increased expression was correlated with B. thuringiensis resistance. We also found overlap among genes that were constitutively over-expressed in resistant insects with genes that were up-regulated in susceptible insects after exposure to Xentari™, suggesting a permanent activation of the response to Xentari™ in resistant insects. Increased aminopeptidase activity in the lumen of resistant insects in the absence of exposure to Xentari™ corroborated the hypothesis of permanent activation of response genes. Increase in midgut proliferation has been proposed as a mechanism of response to pathogens in the adult from several insect species. Analysis of S. exigua larvae revealed that midgut proliferation was neither increased in resistant insects nor induced by exposure of susceptible larvae to Xentari™, suggesting that mechanisms other than midgut proliferation are involved in the response to B. thuringiensis by S. exigua larvae.  相似文献   

3.
4.
5.
Wolbachia pipientis is a ubiquitous, maternally transmitted bacterium that infects the germline of insect hosts. Estimates are that Wolbachia infect nearly 40% of insect species on the planet, making it the most prevalent infection on Earth. The bacterium, infamous for the reproductive phenotypes it induces in arthropod hosts, has risen to recent prominence due to its use in vector control. Wolbachia infection prevents the colonization of vectors by RNA viruses, including Drosophila C virus and important human pathogens such as Dengue and Chikungunya. Here we present data indicating that Wolbachia utilize the host actin cytoskeleton during oogenesis for persistence within and transmission between Drosophila melanogaster generations. We show that phenotypically wild type flies heterozygous for cytoskeletal mutations in Drosophila profilin (chic221/+ and chic1320/+) or villin (qua6-396/+) either clear a Wolbachia infection, or result in significantly reduced infection levels. This reduction of Wolbachia is supported by PCR evidence, Western blot results and cytological examination. This phenotype is unlikely to be the result of maternal loading defects, defects in oocyte polarization, or germline stem cell proliferation, as the flies are phenotypically wild type in egg size, shape, and number. Importantly, however, heterozygous mutant flies exhibit decreased total G-actin in the ovary, compared to control flies and chic221 heterozygous mutants exhibit decreased expression of profilin. Additionally, RNAi knockdown of profilin during development decreases Wolbachia titers. We analyze evidence in support of alternative theories to explain this Wolbachia phenotype and conclude that our results support the hypothesis that Wolbachia utilize the actin skeleton for efficient transmission and maintenance within Drosophila.  相似文献   

6.
The importance of intraspecific variation in plant functional traits for structuring communities and driving ecosystem processes is increasingly recognized, but mechanisms governing this variation are less studied. Variation could be due to adaptation to local conditions, plasticity in observed traits, or ontogeny. We investigated 1) whether abiotic stress caused individuals, maternal lines, and populations to exhibit trait convergence, 2) whether trait variation was primarily due to ecotypic differences or trait plasticity, and 3) whether traits varied with ontogeny. We sampled three populations of Hypochaeris radicata that differed significantly in rosette diameter and specific leaf area (SLA). We grew nine maternal lines from each population (27 lines total) under three greenhouse conditions: ambient conditions (control), 50% drought, or 80% shade. Plant diameter and relative chlorophyll content were measured throughout the experiment, and leaf shape, root∶shoot ratio, and SLA were measured after five weeks. We used hierarchical mixed-models and variance component analysis to quantify differences in treatment effects and the contributions of population of origin and maternal line to observed variation. Observed variation in plant traits was driven primarily by plasticity. Shade significantly influenced all measured traits. Plant diameter was the only trait that had a sizable proportion of trait variation (30%) explained by population of origin. There were significant ontogenetic differences for both plant diameter and relative chlorophyll content. When subjected to abiotic stress in the form of light or water limitation, Hypochaeris radicata exhibited significant trait variability. This variation was due primarily to trait plasticity, rather than to adaptation to local conditions, and also differed with ontogeny.  相似文献   

7.
Abstract: Fertility control is currently under development for the control of brushtail possums (Trichosurus vulpecula), one of New Zealand's most serious vertebrate pests. Despite intensive research into various methods for achieving infertility, including immunocon-traception and disrupting endocrine control of reproduction, researchers know little about the potential effects of these methods on the behavior of wild possums. We assessed the effects of surgically imposed sterility, either to block fertilization (tubal ligation) or to disrupt endocrine control of fertility (gonadectomy), by using radiotelemetry on the movement patterns and site fidelity of wild brushtail possums. In addition, we assessed the effect of gonadectomy on the transmission rate of a commonly occurring, directly transmitted pathogen in possums, Leptospira interrogans serovar balcanica (hereafter L. balcanica), to determine the effect of any behavioral changes on possum contact rates. Both tubal ligation and gonadectomy of females did not appear to have any appreciable effect on behavior, with sterilized females having space-use patterns and fidelity to seasonal breeding ranges similar to those of fertile females. However, gonadectomy of male possums resulted in a significant reduction of 42% and 47% in the 95% and 70% isopleth seasonal breeding ranges, respectively. Furthermore, the transmission rate of L. balcanica in gonadectomized male and female possums was reduced by 88% and 63%, respectively, compared with that in fertile male and female possums. Overall, these results suggest that fertility control, either by blocking fertilization (e.g., immunocontraception) or by disrupting endocrine control of reproduction (e.g., gonadotropin-releasing hormone vaccines), is unlikely to have an impact on social organization and behavior of brushtail possums in ways that may compromise the efficacy of fertility control for reducing population density. However, the reduction in the transmission rate of L. balcanica indicates that fertility control that interferes with endocrine control of reproduction is likely to reduce the contact rate between possums. This could have implications for the control of other wildlife diseases requiring direct contact for transmission.  相似文献   

8.
9.
Twelve populations of Heterodera glycines from the United States (8), China (2), Japan (1), and Colombia (1) were surveyed for phenotypic intraspecific variability in 42 enzyme systems. Activity of 20 enzymes was detected following isoelectric focusing in polyacrylamide gels of extracts from mass homogenates and single females. Five enzymes, aspartate aminotransferase, phosphoglucose isomerase, α- and β-esterases, and hexokinase were the most useful for detecting intraspecific variability. Phenotypic variability between single females was best demonstrated with α- and β-esterases and acid phosphatase enzyme systems. These results suggest that isoelectric focusing in conjunction with sensitive enzyme systems can be used to detect phenotypic variation between individual nematodes from the same population. The unusual phenotypic variability detected in the H. glycines population from Virginia indicates that the genetic diversity of this population is complex.  相似文献   

10.
RNA silencing, or RNA interference (RNAi) in metazoans mediates development, reduces viral infection and limits transposon mobility. RNA silencing involves 21–30 nucleotide RNAs classified into microRNA (miRNA), exogenous and endogenous small interfering RNAs (siRNA), and Piwi-interacting RNA (piRNA). Knock-out, silencing and mutagenesis of genes in the exogenous siRNA (exo-siRNA) regulatory network demonstrate the importance of this RNAi pathway in antiviral immunity in Drosophila and mosquitoes. In Drosophila, genes encoding components for processing exo-siRNAs are among the fastest evolving 3% of all genes, suggesting that infection with pathogenic RNA viruses may drive diversifying selection in their host. In contrast, paralogous miRNA pathway genes do not evolve more rapidly than the genome average. Silencing of exo-siRNA pathway genes in mosquitoes orally infected with arboviruses leads to increased viral replication, but little is known about the comparative patterns of molecular evolution among the exo-siRNA and miRNA pathways genes in mosquitoes. We generated nearly complete sequences of all exons of major miRNA and siRNA pathway genes dicer-1 and dicer-2, argonaute-1 and argonaute-2, and r3d1 and r2d2 in 104 Aedes aegypti mosquitoes collected from six distinct geographic populations and analyzed their genetic diversity. The ratio of replacement to silent amino acid substitutions was 1.4 fold higher in dicer-2 than in dicer-1, 27.4 fold higher in argonaute-2 than in argonaute-1 and similar in r2d2 and r3d1. Positive selection was supported in 32% of non-synonymous sites in dicer-1, in 47% of sites in dicer-2, in 30% of sites in argonaute-1, in all sites in argonaute-2, in 22% of sites in r3d1 and in 55% of sites in r2d2. Unlike Drosophila, in Ae. aegypti, both exo-siRNA and miRNA pathway genes appear to be undergoing rapid, positive, diversifying selection. Furthermore, refractoriness of mosquitoes to infection with dengue virus was significantly positively correlated for nucleotide diversity indices in dicer-2.  相似文献   

11.
Ten populations of Xiphinema americanum-group nematodes were reared from individual females to evaluate inter- and intraspecific variation under identical host and environmental conditions. Data indicated that morphometric variability of X. americanum was the result of genetic variation rather than phenotypic plasticity and that genetic heterogeneity was greater than previously thought. Morphometrics of single female derived (SFD) populations identified different genotypes present in the field populations. Stylet length was the least variable morphometric character of SFD populations, but collectively stylet measurements of all individuals formed an uninterrupted continuum ranging from 107-148 μm. Range and frequency of stylet measurements of field populations could be accounted for by the relative proportion of different genotypes in the population. Nine SFD populations were identified as X. americanum sensu stricto, and one SFD population was similar to X. californicum.  相似文献   

12.

Backgrounds

In insects, cholesterol is one of the membrane components in cells and a precursor of ecdysteroid biosynthesis. Because insects lack two key enzymes, squalene synthase and lanosterol synthase, in the cholesterol biosynthesis pathway, they cannot autonomously synthesize cholesterol de novo from simple compounds and therefore have to obtain sterols from their diet. Sterol carrier protein (SCP) is a cholesterol-binding protein responsible for cholesterol absorption and transport.

Results

In this study, a model of the three-dimensional structure of SlSCPx-2 in Spodoptera litura, a destructive polyphagous agricultural pest insect in tropical and subtropical areas, was constructed. Docking of sterol and fatty acid ligands to SlSCPx-2 and ANS fluorescent replacement assay showed that SlSCPx-2 was able to bind with relatively high affinities to cholesterol, stearic acid, linoleic acid, stigmasterol, oleic acid, palmitic acid and arachidonate, implying that SlSCPx may play an important role in absorption and transport of these cholesterol and fatty acids from host plants. Site-directed mutation assay of SlSCPx-2 suggests that amino acid residues F53, W66, F89, F110, I115, T128 and Q131 are critical for the ligand-binding activity of the SlSCPx-2 protein. Virtual ligand screening resulted in identification of several lead compounds which are potential inhibitors of SlSCPx-2. Bioassay for inhibitory effect of five selected compounds showed that AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 inhibited the growth of S. litura larvae.

Conclusions

Compounds AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 selected based on structural modeling showed binding affinity to SlSCPx-2 protein and inhibitory effect on the growth of S. litura larvae.  相似文献   

13.

Background

The new epidemiological scenario of orally transmitted Chagas disease that has emerged in Brazil, and mainly in the Amazon region, needs to be addressed with a new and systematic focus. Belém, the capital of Pará state, reports the highest number of acute Chagas disease (ACD) cases associated with the consumption of açaí juice.

Methodology/Principal Findings

The wild and domestic enzootic transmission cycles of Trypanosoma cruzi were evaluated in the two locations (Jurunas and Val-de Cães) that report the majority of the autochthonous cases of ACD in Belém city. Moreover, we evaluated the enzootic cycle on the three islands that provide most of the açaí fruit that is consumed in these localities. We employed parasitological and serological tests throughout to evaluate infectivity competence and exposure to T. cruzi. In Val-de-Cães, no wild mammal presented positive parasitological tests, and 56% seroprevalence was observed, with low serological titers. Three of 14 triatomines were found to be infected (TcI). This unexpected epidemiological picture does not explain the high number of autochthonous ACD cases. In Jurunas, the cases of ACD could not be autochthonous because of the absence of any enzootic cycle of T. cruzi. In contrast, in the 3 island areas from which the açaí fruit originates, 66.7% of wild mammals and two dogs displayed positive hemocultures, and 15.6% of triatomines were found to be infected by T. cruzi. Genotyping by mini-exon gene and PCR-RFLP (1f8/Akw21I) targeting revealed that the mammals and triatomines from the islands harbored TcI and Trypanosoma rangeli in single and mixed infections.

Conclusion/Significance

These findings show that cases of Chagas disease in the urban area of Belém may be derived from infected triatomines coming together with the açaí fruits from distant islands. We term this new epidemiological feature of Chagas disease as “Distantiae transmission”.  相似文献   

14.
The threats, both real and perceived, surrounding the development of new and emerging infectious diseases of humans are of critical concern to public health and well-being. Among these risks is the potential for zoonotic transmission to humans of species of the malaria parasite, Plasmodium, that have been considered historically to infect exclusively non-human hosts. Recently observed shifts in the mode, transmission, and presentation of malaria among several species studied are evidenced by shared vectors, atypical symptoms, and novel host-seeking behavior. Collectively, these changes indicate the presence of environmental and ecological pressures that are likely to influence the dynamics of these parasite life cycles and physiological make-up. These may be further affected and amplified by such factors as increased urban development and accelerated rate of climate change. In particular, the extended host-seeking behavior of what were once considered non-human malaria species indicates the specialist niche of human malaria parasites is not a limiting factor that drives the success of blood-borne parasites. While zoonotic transmission of non-human malaria parasites is generally considered to not be possible for the vast majority of Plasmodium species, failure to consider the feasibility of its occurrence may lead to the emergence of a potentially life-threatening blood-borne disease of humans. Here, we argue that recent trends in behavior among what were hitherto considered to be non-human malaria parasites to infect humans call for a cross-disciplinary, ecologically-focused approach to understanding the complexities of the vertebrate host/mosquito vector/malaria parasite triangular relationship. This highlights a pressing need to conduct a multi-species investigation for which we recommend the construction of a database to determine ecological differences among all known Plasmodium species, vectors, and hosts. Closing this knowledge gap may help to inform alternative means of malaria prevention and control.  相似文献   

15.
This work illustrates potential adverse effects linked with the expression of proteinase inhibitor (PI) in plants used as a strategy to enhance pest resistance. Tobacco (Nicotiana tabacum L. cv Xanthi) and Arabidopsis [Heynh.] ecotype Wassilewskija) transgenic plants expressing the mustard trypsin PI 2 (MTI-2) at different levels were obtained. First-instar larvae of the Egyptian cotton worm (Spodoptera littoralis Boisd.) were fed on detached leaves of these plants. The high level of MTI-2 expression in leaves had deleterious effects on larvae, causing mortality and decreasing mean larval weight, and was correlated with a decrease in the leaf surface eaten. However, larvae fed leaves from plants expressing MTI-2 at the low expression level did not show increased mortality, but a net gain in weight and a faster development compared with control larvae. The low MTI-2 expression level also resulted in increased leaf damage. These observations are correlated with the differential expression of digestive proteinases in the larval gut; overexpression of existing proteinases on low-MTI-2-expression level plants and induction of new proteinases on high-MTI-2-expression level plants. These results emphasize the critical need for the development of a PI-based defense strategy for plants obtaining the appropriate PI-expression level relative to the pest's sensitivity threshold to that PI.  相似文献   

16.
17.

Background

Recent reports suggest that community-associated Clostridium difficile infection (CDI) (i.e., no healthcare facility admission within 90 days) may be increasing in frequency. We hypothesized that outpatient clinics could be an important source for acquisition of community-associated CDI.

Methods

We performed a 6-month prospective study of CDI patients to determine frequency of and risk factors for skin and environmental shedding during outpatient visits and to derive a prediction rule for positive cultures. We performed a point–prevalence culture survey to assess the frequency of C. difficile contamination in outpatient settings and evaluated the frequency of prior outpatient visits in patients with community-associated CDI.

Results

Of 67 CDI patients studied, 54 (81%) had 1 or more outpatient visits within 12 weeks after diagnosis. Of 44 patients cultured during outpatient visits, 14 (32%) had skin contamination and 12 (27%) contaminated environmental surfaces. Decreased mobility, fecal incontinence, and treatment with non-CDI antibiotics were associated with positive cultures, whereas vancomycin taper therapy was protective. In patients not on CDI therapy, a prediction rule including incontinence or decreased mobility was 90% sensitive and 79% specific for detection of spore shedding. Of 84 clinic and emergency department rooms cultured, 12 (14%) had 1 or more contaminated environmental sites. For 33 community-associated CDI cases, 31 (94%) had an outpatient visit during the 12 weeks prior to onset of diarrhea.

Conclusions

Patients with recent CDI present a significant risk for transmission of spores during outpatient visits. The outpatient setting may be an underappreciated source of community-associated CDI cases.  相似文献   

18.
The cosmopolitan solitary deep-water scleractinian coral Desmophyllum dianthus (Esper, 1794) was selected as a representative model species of the polyphyletic Caryophylliidae family to (1) examine phylogenetic relationships with respect to the principal Scleractinia taxa, (2) check population structure, (3) test the widespread connectivity hypothesis and (4) assess the utility of different nuclear and mitochondrial markers currently in use. To carry out these goals, DNA sequence data from nuclear (ITS and 28S) and mitochondrial (16S and COI) markers were analyzed for several coral species and for Mediterranean populations of D. dianthus. Three phylogenetic methodologies (ML, MP and BI), based on data from the four molecular markers, all supported D. dianthus as clearly belonging to the “robust” clade, in which the species Lophelia pertusa and D. dianthus not only grouped together, but also shared haplotypes for some DNA markers. Molecular results also showed shared haplotypes among D. dianthus populations distributed in regions separated by several thousands of kilometers and by clear geographic barriers. These results could reflect limited molecular and morphological taxonomic resolution rather than real widespread connectivity. Additional studies are needed in order to find molecular markers and morphological features able to disentangle the complex phylogenetic relationship in the Order Scleractinia and to differentiate isolated populations, thus avoiding the homoplasy found in some morphological characters that are still considered in the literature.  相似文献   

19.
We consider the problem of estimating the basic reproduction number R 0 from data on prevalence dynamics at the beginning of a disease outbreak. We derive discrete and continuous time models, some coefficients of which are to be fitted from data. We show that prevalence of the disease is sufficient to determine R 0. We apply this method to chronic wasting disease spread in Alberta determining a range of possible R 0 and their sensitivity to the probability of deer annual survival.  相似文献   

20.
The accumulation of mutant protein in intracellular aggregates is a common feature of neurodegenerative disease. In Huntington disease, mutant huntingtin leads to inclusion body (IB) formation and neuronal toxicity. Impairment of the ubiquitin-proteasome system (UPS) has been implicated in IB formation and Huntington disease pathogenesis. However, IBs form asynchronously in only a subset of cells with mutant huntingtin, and the relationship between IB formation and UPS function has been difficult to elucidate. Here, we applied single-cell longitudinal acquisition and analysis to monitor mutant huntingtin IB formation, UPS function, and neuronal toxicity. We found that proteasome inhibition is toxic to striatal neurons in a dose-dependent fashion. Before IB formation, the UPS is more impaired in neurons that go on to form IBs than in those that do not. After forming IBs, impairment is lower in neurons with IBs than in those without. These findings suggest IBs are a protective cellular response to mutant protein mediated in part by improving intracellular protein degradation.Huntington disease (HD)4 is a progressive incurable neurodegenerative disorder caused by the expansion of a polyglutamine (polyQ) stretch in the N-terminal end of the huntingtin (htt) protein above a threshold length of ∼36 (1). The deposition of polyQ-expanded aggregated mutant htt in inclusion bodies (IBs) is a hallmark of HD, and IBs are found in human post-mortem samples, transgenic mouse brain, and cell-culture models (2). The accumulation of ubiquitinated proteins in IBs has implicated the ubiquitin-proteasome system (UPS) in the pathogenesis of HD, amyotrophic lateral sclerosis, Parkinson disease, and polyQ-mediated disorders (3).The UPS is a major pathway of intracellular protein degradation. After a series of three reactions, each catalyzed by a different set of enzymes, ubiquitin, a 76-amino acid polypeptide, forms an isopeptide bond with the amino group of lysine residues on substrate proteins. Several lysine residues within ubiquitin are sites for more ubiquitin additions. Once a protein accumulates four or more ubiquitins, it is efficiently targeted to the proteasome for degradation. The proteasome binds polyubiquitinated substrates and hydrolyzes ubiquitin isopeptide bonds, releasing ubiquitin moieties before degrading substrate proteins through chymotrypsin-like, trypsin-like, and post-glutamyl peptidase activities (3).Increased polyubiquitin levels and changes in ubiquitin linkages accompany the accumulation of UPS substrates in the brains of HD patients and transgenic mice and in cellular HD models (4). UPS substrates accumulate throughout the cell in polyQ models, even before IB formation (5, 6). This has added to the confusion over whether polyQ expansion leads to toxicity through direct impairment of proteasomal degradation. Proteasomes have been reported to cleave polyQ stretches efficiently (7), inefficiently (8), or essentially not at all (9). In vivo, polyQ-dependent degeneration occurs with no detectable proteasome inhibition (10, 11) or is tightly linked to it (12, 13). The inability of some studies to detect UPS impairment in HD models may be due to the limited sensitivity of conventional approaches to identify cell-to-cell variations in UPS function.The relationship between IB formation and UPS function has been difficult to determine. Protein turnover in cells with IBs is evidently reduced and accompanied by the accumulation of cellular proteins (1416); HEK293 cells containing mutant htt IBs have a greater degree of UPS impairment than those without IBs (5). Proteasome subunits and heat shock proteins colocalize with IBs, but it is unclear if this colocalization facilitates protein delivery or unfolding at the mouth of active proteasomes, or if it harms proteasome function by sequestering essential cellular machinery (18). Some IBs are relatively static (8, 25), but the proteins in others are dynamically exchanged with cytoplasmic and nuclear pools (19, 20).UPS function is critical to cellular homeostasis. Deletion of one of the two inducible polyubiquitin genes in mice leads to lower intracellular ubiquitin levels in germ cells and hypothalamic neurons. These same populations undergo cell-cycle arrest and hypothalamic neurodegeneration, respectively (22, 23). Cell lines expressing mutant huntingtin accumulate ubiquitinated proteins and undergo cell-cycle arrest in G2/M (5). In neurons, UPS impairment may lead to cell death through an accumulation of signals for apoptosis, a decrease in NF-κB signaling, sensitization to other toxic stimuli, remodeling of synapses, retraction of neurites, or other unidentified mechanisms (24). The effect of UPS impairment depends on cell type and cell cycle, and the relationship between UPS impairment and striatal neuronal survival is largely unknown.Diffuse species of mutant htt induce IB formation and neuronal death in a protein concentration-dependent manner (2). IB formation delays neuronal death, suggesting that IB formation helps neurons cope with toxic diffuse mutant htt. Whether the effect of IB formation on survival is mediated through UPS function has been difficult to determine. IB formation and neuronal death occur asynchronously in overlapping but distinct subsets of neurons that express mutant htt. The observation that IB formation is not required for UPS impairment also complicates population analysis (6, 26).To explore this problem, we applied single-cell analysis. We tracked single neurons over their entire lifetimes, gaining spatial and temporal resolution while simultaneously monitoring IB formation, UPS inhibition, and neuronal toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号