首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexually selected male ejaculate traits are expected to depend on the resource state of males. Theory predicts that males in good condition will produce larger ejaculates, but that ejaculate composition will depend on the relative production costs of ejaculate components and the risk of sperm competition experienced by low- and high-condition males. Under some conditions, when low condition leads to poorer performance in sperm competition, males in low condition may produce ejaculates with higher sperm content relative to their total ejaculate and may even transfer more sperm than high-condition males in an absolute sense. Previous studies in insects have shown that males in good condition transfer larger ejaculates or more sperm, but it has not been clear whether increased sperm content represents a shift in allocation or simply a larger ejaculate, and thus the condition dependence of ejaculate composition has been largely untested. We examined condition dependence in ejaculate by manipulating adult male condition in a ladybird beetle (Adalia bipunctata) in which males transfer three distinct ejaculate components during mating: sperm, non-sperm ejaculate retained within the female reproductive tract, and a spermatophore capsule that females eject and ingest following mating. We found that high condition males indeed transferred larger ejaculates, potentially achieved by an increased rate of ejaculate transfer, and allocated less to sperm compared with low-condition males. Low-condition males transferred ejaculates with absolutely and proportionally more sperm. This study provides the first experimental evidence for a condition-dependent shift in ejaculate composition.  相似文献   

2.
In internally fertilizing animals, seminal fluid is usually added to the spermatozoa, together forming the semen or ejaculate. Besides nourishing and activating sperm, the components in the seminal fluid can also influence female physiology to augment fertilization success of the sperm donor. While many studies have reported such effects in species with separate sexes, few studies have addressed this in simultaneously hermaphroditic animals. This video protocol presents a method to study effects of seminal fluid in gastropods, using a simultaneously hermaphroditic freshwater snail, the great pond snail Lymnaea stagnalis, as model organism. While the procedure is shown using complete prostate gland extracts, individual components (i.e., proteins, peptides, and other compounds) of the seminal fluid can be tested in the same way. Effects of the receipt of ejaculate components on egg laying can be quantified in terms of frequency of egg laying and more subtle estimates of female reproductive performance such as egg numbers within each egg masses. Results show that seminal fluid proteins affect female reproductive output in this simultaneous hermaphrodite, highlighting their importance for sexual selection.  相似文献   

3.
Within the mated reproductive tracts of females of many taxa, seminal fluid proteins (SFPs) coagulate into a structure known as the mating plug (MP). MPs have diverse roles, including preventing female remating, altering female receptivity postmating, and being necessary for mated females to successfully store sperm. The Drosophila melanogaster MP, which is maintained in the mated female for several hours postmating, is comprised of a posterior MP (PMP) that forms quickly after mating begins and an anterior MP (AMP) that forms later. The PMP is composed of seminal proteins from the ejaculatory bulb (EB) of the male reproductive tract. To examine the role of the PMP protein PEBme in D. melanogaster reproduction, we identified an EB GAL4 driver and used it to target PEBme for RNA interference (RNAi) knockdown. PEBme knockdown in males compromised PMP coagulation in their mates and resulted in a significant reduction in female fertility, adversely affecting postmating uterine conformation, sperm storage, mating refractoriness, egg laying, and progeny generation. These defects resulted from the inability of females to retain the ejaculate in their reproductive tracts after mating. The uncoagulated MP impaired uncoupling by the knockdown male, and when he ultimately uncoupled, the ejaculate was often pulled out of the female. Thus, PEBme and MP coagulation are required for optimal fertility in D. melanogaster. Given the importance of the PMP for fertility, we identified additional MP proteins by mass spectrometry and found fertility functions for two of them. Our results highlight the importance of the MP and the proteins that comprise it in reproduction and suggest that in Drosophila the PMP is required to retain the ejaculate within the female reproductive tract, ensuring the storage of sperm by mated females.  相似文献   

4.
Female sexual promiscuity can have significant effects on male mating decisions because it increases the intensity of competition between ejaculates for fertilization. Because sperm production is costly, males that can detect multiple matings by females and allocate sperm strategically will have an obvious fitness advantage. The presence of rival males is widely recognized as a cue used by males to assess sperm competition. However, for species in which males neither congregate around nor guard females, other more cryptic cues might be involved. Here, we demonstrate unprecedented levels of sperm competition assessment by males, which is mediated via the use of chemical cues. Using the cricket Teleogryllus oceanicus, we manipulated male perception of sperm competition by experimentally coating live unmated females with cuticular compounds extracted from males. We found that males adjusted their ejaculate allocation in response to these compounds: the viability of sperm contained within a male's ejaculate decreased as the number of male extracts applied to his virgin female partner was increased. We further show that males do not respond to the relative concentration of male compounds present on females, but rather to the number of distinct signature odours of individual males. Our results conform to sperm competition theory, and show for the first time, to our knowledge, that males can detect different intensities of sperm competition by using distinct chemical cues of individual males present on females.  相似文献   

5.
Multiple mating in females is widespread among insects in spite of the risk of predation, disease acquisition and/or physical injury that may occur. One common consequence of female polyandry is competition among sperm from two or more males within the female to fertilize the ova. This competition is an evolutionary driving force that determines a series of adaptations in both males and females. In this work, we examine some behavioral, morphological and physiological characteristics of males and females of two Heteropteran species that are related to their monoandrous/polyandrous mating behavior. Females of Macrolophus pygmaeus (Het. Miridae), the monoandrous species, were coy about accepting a male partner, spent a short time in copula, and received only a small volume of ejaculate. Even so, with only one mating event, they received enough sperm to fertilize most of their ova (21 days after mating all females were still fertile). In contrast, females of Nesidiocoris tenuis (Het. Miridae), the polyandrous species, readily accepted any mating partner, spent a long time in copula and received a large volume of ejaculate. However, these latter females soon ran out of sperm and needed to mate periodically in order to maintain a sufficient sperm supply to fertilize their eggs. As predicted, based on current theory (Simmons, 2001b), an increased investment in spermatogenesis was detected in N. tenuis with relation to M. pygmaeus. The males of the polyandrous species had larger accessory reproductive glands, seminal vesicles, testes and sperm cells than those of the monoandrous species.  相似文献   

6.
In the double fertilization of angiosperms, one sperm cell fertilizes an egg cell to produce a zygote, whereas the other sperm cell fertilizes a central cell to give rise to an endosperm. There is little information on gamete membrane dynamics during double fertilization even though the cell surface structure is critical for male and female gamete interactions. In a recent study, we analyzed gamete membrane behavior during double fertilization by live-cell imaging with Arabidopsis gamete membrane marker lines. We observed that the sperm membrane signals occasionally remained at the boundary of the female gametes after gamete fusion. In addition, sperm membrane signals entering the fertilized female gametes were detected. These findings suggested that plasma membrane fusion between male and female gametes occurred with the sperm internal membrane components entering the female gametes, and this was followed by plasmogamy.  相似文献   

7.
The inhibition of female receptivity after copulation is usually related to the quality of the first mating. Males are able to modulate female receptivity through various mechanisms. Among these is the transfer of the ejaculate composed mainly by sperm and accessory gland proteins (AGPs). Here we used the South American fruit fly Anastrepha fraterculus (where AGP injections inhibit female receptivity) and the Mexican fruit fly Anastrepha ludens (where injection of AGPs failed to inhibit receptivity) as study organisms to test which mechanisms are used by males to prevent remating. In both species, neither the act of copulation without ejaculate transfer nor sperm stored inhibited female receptivity. Moreover, using multiply mated sterile and wild males in Mex flies we showed that the number of sperm stored by females varied according to male fertility status and number of previous matings, while female remating did not. We suggest female receptivity in both flies is inhibited by the mechanical and/or physiological effect of the full ejaculate. This finding brings us closer to understanding the mechanisms through which female receptivity can be modulated.  相似文献   

8.
Aging in all organisms is inevitable. Male age can have profound effects on mating success and female reproduction, yet relatively little is known on the effects of male age on different components of the ejaculate. Furthermore, in mass‐reared insects used for the Sterile Insect Technique, there are often behavioral differences between mass‐reared and wild males, while differences in the ejaculate have been less studied. The ejaculate in insects is composed mainly of sperm and accessory gland proteins. Here, we studied how male age and strain affected (i) protein quantity of testes and accessory glands, (ii) the biological activity of accessory gland products injected into females, (iii) sperm viability, and (iv) sperm quantity stored by females in wild and mass‐reared Anastrepha ludens (Diptera: Tephritidae). We found lower protein content in testes of old wild males and lower sperm viability in females mated with old wild males. Females stored more sperm when mated to young wild males than with young mass‐reared males. Accessory gland injections of old or young males did not inhibit female remating. Knowledge of how male age affects different ejaculate components will aid our understanding on investment of the ejaculate and possible postcopulatory consequences on female behavior.  相似文献   

9.
Many studies demonstrate that ejaculate size may be influenced by male condition, female quality and the risk or intensity of sperm competition. In the present study, the effect of male and female conditions, male mating history and female mating status on ejaculate sperm numbers in the polyandrous moth Helicoverpa armigera is examined. A large variation in ejaculate size is found and, although female body size and male age influence ejaculate size, female age and copula duration do not. Both male and female mating histories have significant effects on ejaculate sperm numbers. Males reduce ejaculate expenditure in successive matings but deliver significantly more apyrene and eupyrene sperm to nonvirgin than to virgin females.  相似文献   

10.
Males of many insects eclose with their entire lifetime sperm supply and have to allocate their ejaculates at mating prudently. In polyandrous species, ejaculates of rival males overlap, creating sperm competition. Recent models suggest that males should increase their ejaculate expenditure when experiencing a high risk of sperm competition. Ejaculate expenditure is also predicted to vary in relation to sperm competition intensity. During high intensity, where several ejaculates compete for fertilization of the female''s eggs, ejaculate expenditure is expected to be reduced. This is because there are diminishing returns of providing more sperm. Additionally, sperm numbers will depend on males'' ability to assess female mating status. We investigate ejaculate allocation in the polyandrous small white butterfly Pieris rapae (Lepidoptera). Males have previously been found to ejaculate more sperm on their second mating when experiencing increased risk of sperm competition. Here we show that males also adjust the number of sperm ejaculated in relation to direct sperm competition. Mated males provide more sperm to females previously mated with mated males (i.e. when competing with many sperm) than to females previously mated to virgin males (competing with few sperm). Virgin males, on the other hand, do not adjust their ejaculate in relation to female mating history, but provide heavier females with more sperm. Although virgin males induce longer non-receptive periods in females than mated males, heavier females remate sooner. Virgin males may be responding to the higher risk of sperm competition by providing more sperm to heavier females. It is clear from this study that males are sensitive to factors affecting sperm competition risk, tailoring their ejaculates as predicted by recent theoretical models.  相似文献   

11.
Postcopulatory sexual selection favours males which are strong offensive and defensive sperm competitors. As a means of identifying component traits comprising each strategy, we used an experimental evolution approach. Separate populations of Drosophila melanogaster were selected for enhanced sperm offence and defence. Despite using a large outbred population and evidence of substantive genetic variation for each strategy, neither trait responded to selection in the two replicates of this experiment. Recent work with fixed chromosome lines of D. melanogaster suggests that complex genotypic interactions between females and competing males contribute to the maintenance of this variation. To determine whether such interactions could explain our lack of response to selection on sperm offence and defence, we quantified sperm precedence across multiple sperm competition bouts using an outbred D. melanogaster population exhibiting continuous genetic variation. Both offensive and defensive sperm competitive abilities were found to be significantly repeatable only across matings involving ejaculates of the same pair of males competing within the same female. These repeatabilities decreased when the rival male stayed the same but the female changed, and they disappeared when both the rival male and the female changed. Our results are discussed with a focus on the complex nature of sperm precedence and the maintenance of genetic variation in ejaculate characteristics.  相似文献   

12.
Avoiding water loss for insects is critical for survival. Selection for reduced water loss will depend on trade-offs between resources allocated for reproduction and those allocated for resisting desiccation. However, we lack knowledge on how selection for desiccation resistance can affect the male ejaculate. Furthermore, as male ejaculate composition is complex, desiccation resistant females could evolve traits that enable them to derive longevity benefits from mating. Here, we assessed how selection for desiccation resistance impacts male testes and accessory gland size, protein content of these organs, female sperm storage and male ability to inhibit female remating behavior, in the Mexican fruit fly Anastrepha ludens. Additionally, we tested if mating increased longevity and fecundity in desiccation resistant females. Males selected for resistance to desiccation stress had smaller accessory glands and seminal vesicles and females mating with these males stored less sperm compared to control males. Females mating with resistant males had lower fecundity compared to females mating with control males. Desiccation resistant females lived longer than control females, yet this was irrespective of mating. Rapid evolutionary responses to hydric stress can have correlated effects in reproductive capabilities, which are not restricted to pre-copulatory traits. Trade-offs between resistance to desiccation stress are reflected in decreased allocation of resources to reproductive organs. Thus, production of the ejaculate may be costly for A. ludens males. Knowledge on the evolution of ejaculate traits and reproductive organ size in response to directional selection for desiccation resistance, will aid our understanding of differential sex-specific responses to environmental stress.  相似文献   

13.
Influences of sex, size, and symmetry on ejaculate expenditure in a moth   总被引:9,自引:4,他引:5  
Although sperm fundamentally function to fertilize eggs, forcesarising from both sexes select for optimal ejaculate composition.Sperm competition is one recognized agent in the evolution ofsperm and ejaculate structure. Few studies, however, have examinedhow female factors influence ejaculate structure, despite somebehavioral evidence for male mate choice. Male Plodia interpunctella(Lepidoptera, Pyralidae) accrue all resources for reproductionas larvae. Adults emerge with a limited sperm complement andare therefore under intense selection to optimize gamete allocation.I detected no effect of male body weight on ejaculate size.However, female reproductive potential (ovary masses) was dictatedby body weight In addition, heavier females had greater spermathecalvolumes, but there was no such relationship with bursal size.Finally, heavier females showed a higher mating frequency. Ifound that mating males were sensitive to female size and producedlarger ejaculates when mating with heavier females. Males mayejaculate more sperm into larger females either because it paysthem to "spend" more reproductive resources on matings thatprovide greater reproductive potential, or because heavier (longerlived and more attractive) females mate more frequently andhave larger spermathecal volumes. Alternatively, females maycontrol spermatophore formation and "accept" an appropriateejaculate to maximize fertility. Males may therefore be alsoselected to ejaculate more sperm into larger females to counteractgreater risks of sperm competition associated with heavier females.There was no association between male or female femur asymmetryand ejaculate size. P.interpunctella may be selected to exercisemodulation of ejaculate size because males invest paternally,sperm for the single reproductive episode are limited, and femalefecundity and mating pattern vary between individuals and areassociated with body weight. More obvious variability in malereproductive behavior and choice may therefore be paralleledat the cryptic gametic level by plasticity in ejaculate allocation.  相似文献   

14.
In recent decades, the link between the exaggeration of male sexual ornaments and ejaculate quality has received much attention. When males with conspicuous sexual ornaments have high-quality ejaculate, females are believed to obtain benefits, such as high fertilization success and offspring with good genes, by choosing mates on the basis of male ornamentation. In this study, we examined the relationships among male body coloration, female mate preference, and sperm longevity in the sexually dichromatic fish Puntius titteya. Males of this species assume a bright red coloration over the entire body, and neither sex invests in the parental care of eggs. In the female preference test, females preferred males with redder body coloration over their counterpart males with duller coloration. In addition, the sperm longevity test indicated that redder males had sperm with greater longevity. These results suggest that the red coloration of males in this species may signal sperm longevity and that females can mate with males with higher quality sperm by choosing redder males.  相似文献   

15.
Most discussions of ‘sperm competition’ have ignored the potential for competition among the different sperm genotypes present in the ejaculate of a single male. Rivalry within ejaculates may limit cooperation among the members of an ejaculate when they compete with sperm produced by other males. A gene that gains an advantage in competition within an ejaculate (a segregation distorter) may increase in frequency even if it is associated with significant costs to organismal fitness. Therefore, selection will favor genes expressed in males that suppress competition within ejaculates. This may explain why sperm function is largely controlled by the diploid genotype of the male progenitor, rather than by the genotypes of individual haploid sperm. Females who mate with multiple males reduce the relative advantage of a segregation distorter whenever the distorter impairs the competitive effectiveness of the ejaculates in which it occurs. If the distorter is associated with costs to organismal fitness, selection will favor female mating behavior that reduces the distorter's equilibrium frequency. Competition within ejaculates may thus be one reason why females choose to mate with multiple males.  相似文献   

16.
Multiple mating or group spawning leads to post‐copulatory sexual selection, which generally favours ejaculates that are more competitive under sperm competition. In four meta‐analyses we quantify the evidence that sperm competition (SC) favours greater sperm number using data from studies of strategic ejaculation. Differential investment into each ejaculate emerges at the individual level if males exhibit phenotypic plasticity in ejaculate properties in response to the likely risk and/or intensity of sperm competition after a given mating. Over the last twenty years, a series of theoretical models have been developed that predict how ejaculate size will be strategically adjusted in relation to: (a) the number of immediate rival males, with a distinction made between 0 versus 1 rival (‘risk’ of SC) and 1 versus several rivals (‘intensity’ of SC); (b) female mating status (virgin or previously mated); and (c) female phenotypic quality (e.g. female size or condition). Some well‐known studies have reported large adjustments in ejaculate size depending on the relevant social context and this has led to widespread acceptance of the claim that strategic sperm allocation occurs in response to each of these factors. It is necessary, however, to test each claim separately because it is easy to overlook studies with weak or negative findings. Compiling information on the variation in outcomes among species is potentially informative about the relevance of these assumptions in different taxa or mating systems. We found strong evidence that, on average, males transfer larger ejaculates to higher quality females. The effect of female mating status was less straightforward and depended on how ejaculate size was measured (i.e. use of proxy or direct measure). There is strong evidence that ejaculate size increased when males were exposed to a single rival, which is often described as a response to the risk of SC. There is, however, no evidence for the general prediction that ejaculate size decreases as the number of rivals increases from one to several males (i.e. in response to a higher intensity of SC which lowers the rate of return per sperm released). Our results highlight how meta‐analysis can reveal unintentional biases in narrative literature reviews. We note that several assumptions of theoretical models can alter an outcome's predicted direction in a given species (e.g. the effect of female mating status depends on whether there is first‐ or last‐male sperm priority). Many studies do not provide this background information and fail to make strong a priori predictions about the expected response of ejaculate size to manipulation of the mating context. Researchers should be explicit about which model they are testing to ensure that future meta‐analyses can better partition studies into different categories, or control for continuous moderator variables.  相似文献   

17.
Sperm competition has been a major selective force acting on male and female behaviour. Theory predicts that when sperm compete numerically, selection will favour males that vary the number of sperm they transfer with sperm competition risk. This often leads to increased copula duration when sperm competition risk is high, the selective advantage of which is increased paternity. We investigated the copulatory behaviour of the common dung fly Sepsis cynipsea in relation to male and female size, female mating status, age, and presence or absence of dung. This fly is unusual in that males mate-guard before copula while females use the sperm of previous males for their current clutch. Body size had no effect on copula duration, but duration of first copulations depended on female age, with older females having longer copulations. For females that copulated twice, there was an interaction between female age and mating status influencing copula duration: old females had longer copulations than young females, but second copulas were longer for young females. Residual testis size of nonvirgin males was smaller than for virgins, and testis shrinkage was significantly associated with copula duration, which indicates that males transfer more ejaculate with longer copulations. We therefore conclude that copulation duration and ejaculate transfer vary in accordance with sperm competition theory.  相似文献   

18.
Strategic ejaculation is a behavioural strategy shown by many animals as a response to sperm competition and/or as a potential mechanism of cryptic male choice. Males invest more mating resources when the risk of sperm competition increases or they invest more in high quality females to maximize their reproductive output. We tested this hypothesis in the false garden mantid Pseudomantis albofimbriata, where females are capable of multiply mating and body condition is an indicator of potential reproductive fitness. We predicted male mantids would ejaculate strategically by allocating more sperm to high quality females. To determine if and how males alter their ejaculate in response to mate quality, we manipulated female food quantity so that females were either in good condition with many eggs (i.e. high quality) or poor condition with few eggs (i.e. low quality). Half of the females from each treatment were used in mating trials in which transferred sperm was counted before fertilisation occurred and the other half of females were used in mating trials where fertilisation occurred and ootheca mass and total eggs in the ootheca were recorded. Opposed to our predictions, the total number of sperm and the proportion of viable sperm transferred did not vary significantly between female treatments. Male reproductive success was entirely dependent on female quality/fecundity, rather than on the number of sperm transferred. These results suggest that female quality is not a major factor influencing postcopulatory male mating strategies in P. albofimbriata, and that sperm number has little effect on male reproductive success in a single mating scenario.  相似文献   

19.
The mass of the spermatophore transferred by a previously mated Choristoneura rosaceana male increases with time elapsed since the last mating but, even after 4 days, it never reaches the mass of the spermatophore of a virgin male. However, spermatophore mass is clearly not a good indicator of the male reproductive investment as the quantity of sperm in the second ejaculate of a previously mated male is the same as that of his first, if he is allowed a 2 (eupyrene sperm) to 3 day (apyrene sperm) recovery period. The interval between the first two matings had no influence on female fecundity or longevity but significantly affected fertility if the male had only 1 day to recover. The length of the post-copulatory refractory period was also shorter in females mated with previously mated males than in those mated with virgins, regardless of the male's remating interval. Furthermore, a significant variation in the eupyrene sperm content of the spermatophore transferred by virgin males had no influence on the length of the female refractory period. Globally, these results support the hypothesis that a factor, other than sperm numbers in the spermatheca, is responsible for maintaining the inhibition of pheromone production in this species.  相似文献   

20.
Sperm are a simple cell type with few components, yet they exhibit tremendous between-species morphological variation in those components thought to reflect selection in different fertilization environments. However, within a species, sperm components are expected to be selected to be functionally integrated for optimal fertilization of eggs. Here, we take advantage of within-species variation in sperm form and function to test whether sperm components are functionally and genetically integrated both within and between sperm morphologies using a quantitative genetics approach. Drosophila pseudoobscura males produce two sperm types with different functions but which positively interact together in the same fertilization environment; the long eusperm fertilizes eggs and the short parasperm appear to protect eusperm from a hostile female reproductive tract. Our analysis found that all sperm traits were heritable, but short sperm components exhibited evolvabilities 10 times that of long sperm components. Genetic correlations indicated functional integration within, but not between, sperm morphs. These results suggest that sperm, despite sharing a common developmental process, can become developmentally and functionally non-integrated, evolving into separate modules with the potential for rapid and independent responses to selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号