首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Gene expression profiling is a powerful approach to identify genes that may be involved in a specific biological process on a global scale. For example, gene expression profiling of mutant animals that lack or contain an excess of certain cell types is a common way to identify genes that are important for the development and maintenance of given cell types. However, it is difficult for traditional computational methods, including unsupervised and supervised learning methods, to detect relevant genes from a large collection of expression profiles with high sensitivity and specificity. Unsupervised methods group similar gene expressions together while ignoring important prior biological knowledge. Supervised methods utilize training data from prior biological knowledge to classify gene expression. However, for many biological problems, little prior knowledge is available, which limits the prediction performance of most supervised methods. RESULTS: We present a Bayesian semi-supervised learning method, called BGEN, that improves upon supervised and unsupervised methods by both capturing relevant expression profiles and using prior biological knowledge from literature and experimental validation. Unlike currently available semi-supervised learning methods, this new method trains a kernel classifier based on labeled and unlabeled gene expression examples. The semi-supervised trained classifier can then be used to efficiently classify the remaining genes in the dataset. Moreover, we model the confidence of microarray probes and probabilistically combine multiple probe predictions into gene predictions. We apply BGEN to identify genes involved in the development of a specific cell lineage in the C. elegans embryo, and to further identify the tissues in which these genes are enriched. Compared to K-means clustering and SVM classification, BGEN achieves higher sensitivity and specificity. We confirm certain predictions by biological experiments. AVAILABILITY: The results are available at http://www.csail.mit.edu/~alanqi/projects/BGEN.html.  相似文献   

2.
3.
Fu LM  Fu-Liu CS 《FEBS letters》2004,561(1-3):186-190
Differential diagnosis among a group of histologically similar cancers poses a challenging problem in clinical medicine. Constructing a classifier based on gene expression signatures comprising multiple discriminatory molecular markers derived from microarray data analysis is an emerging trend for cancer diagnosis. To identify the best genes for classification using a small number of samples relative to the genome size remains the bottleneck of this approach, despite its promise. We have devised a new method of gene selection with reliability analysis, and demonstrated that this method can identify a more compact set of genes than other methods for constructing a classifier with optimum predictive performance for both small round blue cell tumors and leukemia. High consensus between our result and the results produced by methods based on artificial neural networks and statistical techniques confers additional evidence of the validity of our method. This study suggests a way for implementing a reliable molecular cancer classifier based on gene expression signatures.  相似文献   

4.
MOTIVATION: Two important questions for the analysis of gene expression measurements from different sample classes are (1) how to classify samples and (2) how to identify meaningful gene signatures (ranked gene lists) exhibiting the differences between classes and sample subsets. Solutions to both questions have immediate biological and biomedical applications. To achieve optimal classification performance, a suitable combination of classifier and gene selection method needs to be specifically selected for a given dataset. The selected gene signatures can be unstable and the resulting classification accuracy unreliable, particularly when considering different subsets of samples. Both unstable gene signatures and overestimated classification accuracy can impair biological conclusions. METHODS: We address these two issues by repeatedly evaluating the classification performance of all models, i.e. pairwise combinations of various gene selection and classification methods, for random subsets of arrays (sampling). A model score is used to select the most appropriate model for the given dataset. Consensus gene signatures are constructed by extracting those genes frequently selected over many samplings. Sampling additionally permits measurement of the stability of the classification performance for each model, which serves as a measure of model reliability. RESULTS: We analyzed a large gene expression dataset with 78 measurements of four different cartilage sample classes. Classifiers trained on subsets of measurements frequently produce models with highly variable performance. Our approach provides reliable classification performance estimates via sampling. In addition to reliable classification performance, we determined stable consensus signatures (i.e. gene lists) for sample classes. Manual literature screening showed that these genes are highly relevant to our gene expression experiment with osteoarthritic cartilage. We compared our approach to others based on a publicly available dataset on breast cancer. AVAILABILITY: R package at http://www.bio.ifi.lmu.de/~davis/edaprakt  相似文献   

5.
A new manifold learning method, called parameter-free semi-supervised local Fisher discriminant analysis (pSELF), is proposed to map the gene expression data into a low-dimensional space for tumor classification. Motivated by the fact that semi-supervised and parameter-free are two desirable and promising characteristics for dimension reduction, a new difference-based optimization objective function with unlabeled samples has been designed. The proposed method preserves the global structure of unlabeled samples in addition to separating labeled samples in different classes from each other. The semi-supervised method has an analytic form of the globally optimal solution, which can be computed efficiently by eigen decomposition. Experimental results on synthetic data and SRBCT, DLBCL, and Brain Tumor gene expression data sets demonstrate the effectiveness of the proposed method.  相似文献   

6.
MOTIVATION: Various studies have shown that cancer tissue samples can be successfully detected and classified by their gene expression patterns using machine learning approaches. One of the challenges in applying these techniques for classifying gene expression data is to extract accurate, readily interpretable rules providing biological insight as to how classification is performed. Current methods generate classifiers that are accurate but difficult to interpret. This is the trade-off between credibility and comprehensibility of the classifiers. Here, we introduce a new classifier in order to address these problems. It is referred to as k-TSP (k-Top Scoring Pairs) and is based on the concept of 'relative expression reversals'. This method generates simple and accurate decision rules that only involve a small number of gene-to-gene expression comparisons, thereby facilitating follow-up studies. RESULTS: In this study, we have compared our approach to other machine learning techniques for class prediction in 19 binary and multi-class gene expression datasets involving human cancers. The k-TSP classifier performs as efficiently as Prediction Analysis of Microarray and support vector machine, and outperforms other learning methods (decision trees, k-nearest neighbour and na?ve Bayes). Our approach is easy to interpret as the classifier involves only a small number of informative genes. For these reasons, we consider the k-TSP method to be a useful tool for cancer classification from microarray gene expression data. AVAILABILITY: The software and datasets are available at http://www.ccbm.jhu.edu CONTACT: actan@jhu.edu.  相似文献   

7.
MOTIVATION: Cancer diagnosis is one of the most important emerging clinical applications of gene expression microarray technology. We are seeking to develop a computer system for powerful and reliable cancer diagnostic model creation based on microarray data. To keep a realistic perspective on clinical applications we focus on multicategory diagnosis. To equip the system with the optimum combination of classifier, gene selection and cross-validation methods, we performed a systematic and comprehensive evaluation of several major algorithms for multicategory classification, several gene selection methods, multiple ensemble classifier methods and two cross-validation designs using 11 datasets spanning 74 diagnostic categories and 41 cancer types and 12 normal tissue types. RESULTS: Multicategory support vector machines (MC-SVMs) are the most effective classifiers in performing accurate cancer diagnosis from gene expression data. The MC-SVM techniques by Crammer and Singer, Weston and Watkins and one-versus-rest were found to be the best methods in this domain. MC-SVMs outperform other popular machine learning algorithms, such as k-nearest neighbors, backpropagation and probabilistic neural networks, often to a remarkable degree. Gene selection techniques can significantly improve the classification performance of both MC-SVMs and other non-SVM learning algorithms. Ensemble classifiers do not generally improve performance of the best non-ensemble models. These results guided the construction of a software system GEMS (Gene Expression Model Selector) that automates high-quality model construction and enforces sound optimization and performance estimation procedures. This is the first such system to be informed by a rigorous comparative analysis of the available algorithms and datasets. AVAILABILITY: The software system GEMS is available for download from http://www.gems-system.org for non-commercial use. CONTACT: alexander.statnikov@vanderbilt.edu.  相似文献   

8.
In recent years, the advent of experimental methods to probe gene expression profiles of cancer on a genome-wide scale has led to widespread use of supervised machine learning algorithms to characterize these profiles. The main applications of these analysis methods range from assigning functional classes of previously uncharacterized genes to classification and prediction of different cancer tissues. This article surveys the application of machine learning algorithms to classification and diagnosis of cancer based on expression profiles. To exemplify the important issues of the classification procedure, the emphasis of this article is on one such method, namely artificial neural networks. In addition, methods to extract genes that are important for the performance of a classifier, as well as the influence of sample selection on prediction results are discussed.  相似文献   

9.
Meta-analysis of gene expression has enabled numerous insights into biological systems, but current methods have several limitations. We developed a method to perform a meta-analysis using the elastic net, a powerful and versatile approach for classification and regression. To demonstrate the utility of our method, we conducted a meta-analysis of lung cancer gene expression based on publicly available data. Using 629 samples from five data sets, we trained a multinomial classifier to distinguish between four lung cancer subtypes. Our meta-analysis-derived classifier included 58 genes and achieved 91% accuracy on leave-one-study-out cross-validation and on three independent data sets. Our method makes meta-analysis of gene expression more systematic and expands the range of questions that a meta-analysis can be used to address. As the amount of publicly available gene expression data continues to grow, our method will be an effective tool to help distill these data into knowledge.  相似文献   

10.
Chen Y  Li Z  Wang X  Feng J  Hu X 《BMC genomics》2010,11(Z2):S11

Background

A large amount of functional genomic data have provided enough knowledge in predicting gene function computationally, which uses known functional annotations and relationship between unknown genes and known ones to map unknown genes to GO functional terms. The prediction procedure is usually formulated as binary classification problem. Training binary classifier needs both positive examples and negative ones that have almost the same size. However, from various annotation database, we can only obtain few positive genes annotation for most offunctional terms, that is, there are only few positive examples for training classifier, which makes predicting directly gene function infeasible.

Results

We propose a novel approach SPE_RNE to train classifier for each functional term. Firstly, positive examples set is enlarged by creating synthetic positive examples. Secondly, representative negative examples are selected by training SVM(support vector machine) iteratively to move classification hyperplane to a appropriate place. Lastly, an optimal SVM classifier are trained by using grid search technique. On combined kernel ofYeast protein sequence, microarray expression, protein-protein interaction and GO functional annotation data, we compare SPE_RNE with other three typical methods in three classical performance measures recall R, precise P and their combination F: twoclass considers all unlabeled genes as negative examples, twoclassbal selects randomly same number negative examples from unlabeled gene, PSoL selects a negative examples set that are far from positive examples and far from each other.

Conclusions

In test data and unknown genes data, we compute average and variant of measure F. The experiments showthat our approach has better generalized performance and practical prediction capacity. In addition, our method can also be used for other organisms such as human.
  相似文献   

11.
For current computational intelligence techniques, a major challenge is how to learn new concepts in changing environment. Traditional learning schemes could not adequately address this problem due to a lack of dynamic data selection mechanism. In this paper, inspired by human learning process, a novel classification algorithm based on incremental semi-supervised support vector machine (SVM) is proposed. Through the analysis of prediction confidence of samples and data distribution in a changing environment, a “soft-start” approach, a data selection mechanism and a data cleaning mechanism are designed, which complete the construction of our incremental semi-supervised learning system. Noticeably, with the ingenious design procedure of our proposed algorithm, the computation complexity is reduced effectively. In addition, for the possible appearance of some new labeled samples in the learning process, a detailed analysis is also carried out. The results show that our algorithm does not rely on the model of sample distribution, has an extremely low rate of introducing wrong semi-labeled samples and can effectively make use of the unlabeled samples to enrich the knowledge system of classifier and improve the accuracy rate. Moreover, our method also has outstanding generalization performance and the ability to overcome the concept drift in a changing environment.  相似文献   

12.
A major challenge in biomedical studies in recent years has been the classification of gene expression profiles into categories, such as cases and controls. This is done by first training a classifier by using a labeled training set containing labeled samples from the two populations, and then using that classifier to predict the labels of new samples. Such predictions have recently been shown to improve the diagnosis and treatment selection practices for several diseases. This procedure is complicated, however, by the high dimensionality if the data. While microarrays can measure the levels of thousands of genes per sample, case-control microarray studies usually involve no more than several dozen samples. Standard classifiers do not work well in these situations where the number of features (gene expression levels measured in these microarrays) far exceeds the number of samples. Selecting only the features that are most relevant for discriminating between the two categories can help construct better classifiers, in terms of both accuracy and efficiency. In this work we developed a novel method for multivariate feature selection based on the Partial Least Squares algorithm. We compared the method''s variants with common feature selection techniques across a large number of real case-control datasets, using several classifiers. We demonstrate the advantages of the method and the preferable combinations of classifier and feature selection technique.  相似文献   

13.
由于基因表达数据高属性维、低样本维的特点,Fisher分类器对该种数据分类性能不是很高。本文提出了Fisher的改进算法Fisher-List。该算法独特之处在于为每个类别确定一个决策阀值,每个阀值既包含总体样本信息,又含有某些对分类至关重要的个体样本信息。本文用实验证明新算法在基因表达数据分类方面比Fisher、LogitBoost、AdaBoost、k-近邻法、决策树和支持向量机具有更高的性能。  相似文献   

14.
Tissue classification with gene expression profiles.   总被引:29,自引:0,他引:29  
Constantly improving gene expression profiling technologies are expected to provide understanding and insight into cancer-related cellular processes. Gene expression data is also expected to significantly aid in the development of efficient cancer diagnosis and classification platforms. In this work we examine three sets of gene expression data measured across sets of tumor(s) and normal clinical samples: The first set consists of 2,000 genes, measured in 62 epithelial colon samples (Alon et al., 1999). The second consists of approximately equal to 100,000 clones, measured in 32 ovarian samples (unpublished extension of data set described in Schummer et al. (1999)). The third set consists of approximately equal to 7,100 genes, measured in 72 bone marrow and peripheral blood samples (Golub et al, 1999). We examine the use of scoring methods, measuring separation of tissue type (e.g., tumors from normals) using individual gene expression levels. These are then coupled with high-dimensional classification methods to assess the classification power of complete expression profiles. We present results of performing leave-one-out cross validation (LOOCV) experiments on the three data sets, employing nearest neighbor classifier, SVM (Cortes and Vapnik, 1995), AdaBoost (Freund and Schapire, 1997) and a novel clustering-based classification technique. As tumor samples can differ from normal samples in their cell-type composition, we also perform LOOCV experiments using appropriately modified sets of genes, attempting to eliminate the resulting bias. We demonstrate success rate of at least 90% in tumor versus normal classification, using sets of selected genes, with, as well as without, cellular-contamination-related members. These results are insensitive to the exact selection mechanism, over a certain range.  相似文献   

15.
Microarray techniques provide new insights into molecular classification of cancer types, which is critical for cancer treatments and diagnosis. Recently, an increasing number of supervised machine learning methods have been applied to cancer classification problems using gene expression data. Support vector machines (SVMs), in particular, have become one of the most effective and leading methods. However, there exist few studies on the application of other kernel methods in the literature. We apply a kernel subspace (KS) method to multiclass cancer classification problems, and assess its validity by comparing it with multiclass SVMs. Our comparative study using seven multiclass cancer datasets demonstrates that the KS method has high performance that is comparable to multiclass SVMs. Furthermore, we propose an effective criterion for kernel parameter selection, which is shown to be useful for the computation of the KS method.  相似文献   

16.
Breast cancer outcome can be predicted using models derived from gene expression data or clinical data. Only a few studies have created a single prediction model using both gene expression and clinical data. These studies often remain inconclusive regarding an obtained improvement in prediction performance. We rigorously compare three different integration strategies (early, intermediate, and late integration) as well as classifiers employing no integration (only one data type) using five classifiers of varying complexity. We perform our analysis on a set of 295 breast cancer samples, for which gene expression data and an extensive set of clinical parameters are available as well as four breast cancer datasets containing 521 samples that we used as independent validation.mOn the 295 samples, a nearest mean classifier employing a logical OR operation (late integration) on clinical and expression classifiers significantly outperforms all other classifiers. Moreover, regardless of the integration strategy, the nearest mean classifier achieves the best performance. All five classifiers achieve their best performance when integrating clinical and expression data. Repeating the experiments using the 521 samples from the four independent validation datasets also indicated a significant performance improvement when integrating clinical and gene expression data. Whether integration also improves performances on other datasets (e.g. other tumor types) has not been investigated, but seems worthwhile pursuing. Our work suggests that future models for predicting breast cancer outcome should exploit both data types by employing a late OR or intermediate integration strategy based on nearest mean classifiers.  相似文献   

17.
The classification of cancer subtypes, which is critical for successful treatment, has been studied extensively with the use of gene expression profiles from oligonucleotide chips or cDNA microarrays. Various pattern recognition methods have been successfully applied to gene expression data. However, these methods are not optimal, rather they are high-performance classifiers that emphasize only classification accuracy. In this paper, we propose an approach for the construction of the optimal linear classifier using gene expression data. Two linear classification methods, linear discriminant analysis (LDA) and discriminant partial least-squares (DPLS), are applied to distinguish acute leukemia subtypes. These methods are shown to give satisfactory accuracy. Moreover, we determined optimally the number of genes participating in the classification (a remarkably small number compared to previous results) on the basis of the statistical significance test. Thus, the proposed method constructs the optimal classifier that is composed of a small size predictor and provides high accuracy.  相似文献   

18.
We investigate the multiclass classification of cancer microarray samples. In contrast to classification of two cancer types from gene expression data, multiclass classification of more than two cancer types are relatively hard and less studied problem. We used class-wise optimized genes with corresponding one-versus-all support vector machine (OVA-SVM) classifier to maximize the utilization of selected genes. Final prediction was made by using probability scores from all classifiers. We used three different methods of estimating probability from decision value. Among the three probability methods, Platt's approach was more consistent, whereas, isotonic approach performed better for datasets with unequal proportion of samples in different classes. Probability based decision does not only gives true and fair comparison between different one-versus-all (OVA) classifiers but also gives the possibility of using them for any post analysis. Several ensemble experiments, an example of post analysis, of the three probability methods were implemented to study their effect in improving the classification accuracy. We observe that ensemble did help in improving the predictive accuracy of cancer data sets especially involving unbalanced samples. Four-fold external stratified cross-validation experiment was performed on the six multiclass cancer datasets to obtain unbiased estimates of prediction accuracies. Analysis of class-wise frequently selected genes on two cancer datasets demonstrated that the approach was able to select important and relevant genes consistent to literature. This study demonstrates successful implementation of the framework of class-wise feature selection and multiclass classification for prediction of cancer subtypes on six datasets.  相似文献   

19.
Discrete classification is common in Genomic Signal Processing applications, in particular in classification of discretized gene expression data, and in discrete gene expression prediction and the inference of boolean genomic regulatory networks. Once a discrete classifier is obtained from sample data, its performance must be evaluated through its classification error. In practice, error estimation methods must then be employed to obtain reliable estimates of the classification error based on the available data. Both classifier design and error estimation are complicated, in the case of Genomics, by the prevalence of small-sample data sets in such applications. This paper presents a broad review of the methodology of classification and error estimation for discrete data, in the context of Genomics, focusing on the study of performance in small sample scenarios, as well as asymptotic behavior.Key Words: Genomics, classification, error estimation, discrete histogram rule, sampling distribution, resubstitution, leave-one-out, ensemble methods, coefficient of determination.  相似文献   

20.
With the advancement of microarray technology, it is now possible to study the expression profiles of thousands of genes across different experimental conditions or tissue samples simultaneously. Microarray cancer datasets, organized as samples versus genes fashion, are being used for classification of tissue samples into benign and malignant or their subtypes. They are also useful for identifying potential gene markers for each cancer subtype, which helps in successful diagnosis of particular cancer types. In this article, we have presented an unsupervised cancer classification technique based on multiobjective genetic clustering of the tissue samples. In this regard, a real-coded encoding of the cluster centers is used and cluster compactness and separation are simultaneously optimized. The resultant set of near-Pareto-optimal solutions contains a number of non-dominated solutions. A novel approach to combine the clustering information possessed by the non-dominated solutions through Support Vector Machine (SVM) classifier has been proposed. Final clustering is obtained by consensus among the clusterings yielded by different kernel functions. The performance of the proposed multiobjective clustering method has been compared with that of several other microarray clustering algorithms for three publicly available benchmark cancer datasets. Moreover, statistical significance tests have been conducted to establish the statistical superiority of the proposed clustering method. Furthermore, relevant gene markers have been identified using the clustering result produced by the proposed clustering method and demonstrated visually. Biological relationships among the gene markers are also studied based on gene ontology. The results obtained are found to be promising and can possibly have important impact in the area of unsupervised cancer classification as well as gene marker identification for multiple cancer subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号