首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
Bauxite residue disposal areas may be amended and re‐vegetated to facilitate the ecosystem restoration process. However, the development of the belowground system during restoration is frequently overlooked. In turn, although vegetation establishment on bauxite residue is well studied, virtually nothing is known about concurrent changes in the soil biota. In order to understand how different amendments and re‐vegetation influence the belowground community, we compared nematode assemblages from bauxite residues that differed in their treatment history (compost addition, gypsum addition, and time since re‐vegetation), and examined whether any differences were related to changes in soil properties. No nematodes were present in the unamended treatment, thus indicating a need for amelioration of substrate properties. However, there were differences in the nematode assemblage between the other amended treatments. The quantity of gypsum reduced nematode density, but had no effect on taxa richness or the Maturity Index in treatments amended in the same year. Nematode taxa richness and the Maturity Index were greatest in the treatment re‐vegetated earliest. Moreover, the Maturity Index was negatively correlated to soil pH and percentage Na. These findings indicate that sufficient amendment and re‐vegetation are crucial to address inhibitory characteristics of the residue and aid restoration of the belowground system in bauxite residues.  相似文献   

2.
食真菌线虫与真菌的相互作用及其对土壤氮素矿化的影响   总被引:10,自引:4,他引:6  
采用悉生培养微缩体系,探讨了食真菌线虫(燕麦真滑刃线虫)与两种真菌(真菌Ⅰ:外皮毛霉和真菌Ⅱ:丛梗孢科的一种)间的相互作用及其对土壤氮素矿化的影响.结果表明,燕麦真滑刃线虫在取食两种真菌时表现为在真菌Ⅱ上的生长优于真菌Ⅰ,两个处理的线虫数达到显著差异.食真菌线虫对真菌的取食活动促进了真菌的增殖:接种真菌Ⅱ加线虫处理中真菌Ⅱ的数量是仅接种真菌Ⅱ处理的2.5~3.5倍,增幅在整个培养期基本稳定;而接种真菌Ⅰ加线虫处理中真菌Ⅰ的数量在培养前期(10d)是仅接种真菌Ⅰ处理的1.1~2.0倍。之后增幅达5.0~5.7倍.线虫和真菌的生长及增殖基本保持同步.食真菌线虫与真菌的相互作用显著提高了土壤铵态氮和矿质态氮含量,促进了土壤氮的矿化,其中线虫与真菌Ⅰ的相互作用对提高矿质态氮含量的贡献显著大于线虫与真菌Ⅱ的相互作用。  相似文献   

3.
Summary The influence of various potassium concentration and of nitrate or ammonium was evaluated on non inoculated muskmelon plants and on plants inoculated with theFusarium wilt pathogen (F), the root-knot nematode (Meloidogyne javanica) (Nem), or a combination of both pathogens (F+Nem). Increasing potassium concentrations raised top fresh weights (TFW) in all four groups. Nitrate fertilized plants weighed more than plants receiving ammonium, independent of the K+ level in the medium. In the Nem+F infected plants TFW values were one and half to two times greater in those receiving the nitrate than in those receiving the ammonium. Number of nematodes in the roots were not affected by nutritional difference. In the ammonium fertilized F and Nem+F plants 30% more wilting was found than after nitrate application. Irrespective of the form of nitrogen that was applied accumulation of N, P and K was found in the roots of the Nem+F and/or Nem plants, while in the shoots Ca, Mg, Na and P accumulated and K was depleted.Contribution from the Agricultural Research Organization, (ARO), No. 944-E, 1983 series.  相似文献   

4.
[Carbonyl-14C] methabenzthiazuron (MBT) was applied to an arid region soil at a rate of 5mg kg−1 soil to give a14C content of 2400 KB kg−1 soil. After 15 weeks of incubation at 22°C and 50% of the maximum water holding capacity of the soil, 7.2% of the applied14C was mineralized to14CO2. Where the soil was amended with wheat straw, total mineralization increased to 17.3%. Soil disturbance caused a significant increase while chloroform fumigation caused a significant decrease in the rate of14CO2 production, both from amended and unamended soils. These results suggest that MBT is degraded mainly through microbial co-metabolism. Wheat straw amendment resulted in increased transformation of MBT into soil humus. In unamended soil, a major portion of14C was recovered in fulvic acid and in fractions extracted with organic solvents. Recovery of14C in non-extractable bound residues (humins) increased as incubation progressed and seemed to be derived from the fulvic acid fraction, which showed a concomitant decrease. More than 99% of the residual14C in unamended soil consisted of unaltered MBT; the remainder occurred as 1-methyl-1 (benzthiazolyl) urea. In amended soil, a relatively higher percentage of the extractable14C was found in the metabolite. Small amounts of three unidentified14C-labelled compounds were also observed. In amended soil, disturbance caused a decrease in extractable-14C whereas fumigation caused a significant increase, as compared to the untreated control. The effects were more pronounced when the soils were reated at an early stage of incubation. In general, soil disturbance increased the availability of MBT for further transformations while chloroform fumigation decreased the process.  相似文献   

5.
Global climate warming is one of the key forces driving plant community shifts, such as range shifts of temperate species into boreal forests. As plant community shifts are slow to observe, ecotones, boundaries between two ecosystems, are target areas for providing early evidence of ecological responses to warming. The role of soil fauna is poorly explored in ecotones, although their positive and negative effects on plant species can influence plant community structure. We studied nematode communities in response to experimental warming (ambient, +1.7, +3.4 °C) in soils of closed and open canopy forest in the temperate-boreal ecotone of Minnesota, USA and calculated various established nematode indices. We estimated species-specific coverage of understory herbaceous and shrub plant species from the same experimental plots and tested if changes in the nematode community are associated with plant cover and composition. Individual nematode trophic groups did not differ among warming treatments, but the ratio between microbial-feeding and plant-feeding nematodes increased significantly and consistently with warming in both closed and open canopy areas and at both experimental field sites. The increase in this ratio was positively correlated with total cover of understory plant species, perhaps due to increased predation pressure on soil microorganisms causing higher nutrient availability for plants. Multivariate analyses revealed that temperature treatment, canopy conditions and nematode density consistently shaped understory plant communities across experimental sites. Our findings suggest that warming-induced changes in nematode community structure are associated with shifts in plant community composition and productivity in the temperate-boreal forest ecotones.  相似文献   

6.
Tu C  Koenning SR  Hu S 《Microbial ecology》2003,46(1):134-144
Obligate root-parasitic nematodes can affect soil microbes positively by enhancing C and nutrient leakage from roots but negatively by restricting total root growth. However, it is unclear how the resulting changes in C availability affect soil microbial activities and N cycling. In a microplot experiment, effects of root-parasitic reniform nematodes (Rotylenchulus reniformis) on soil microbial biomass and activities were examined in six different soils planted with cotton. Rotylenchulus reniformis was introduced at 900 nematodes kg–1 soil in May 2000 prior to seeding cotton. In 2001, soil samples were collected in May before cotton was seeded and in November at the final harvest. Extractable C and N were consistently higher in the R. reniformis treatments than in the non-nematode controls across the six different soils. Nematode inoculation significantly reduced microbial biomass C, but increased microbial biomass N, leading to marked decreases in microbial biomass C:N ratios. Soil microbial respiration and net N mineralization rates were also consistently higher in the nematode treatments than in the controls. However, soil types did not have a significant impact on the effects of nematodes on these microbial parameters. These findings indicate that nematode infection of plant roots may enhance microbial activities and the turnover of soil microbial biomass, facilitating soil N cycling. The present study provides the first evidence about the direct role of root-feeding nematodes in enhancing soil N mineralization.  相似文献   

7.
Impacts of sustainable soil-borne pest management strategies on the soil ecosystem were compared to that of methyl bromide fumigation using nematode community analysis. A field experiment was conducted in 2003 and repeated in 2004. Soil treatments carried out in summer months included methyl bromide (MB) fumigation, solarization (S) for 6 weeks, cowpea (Vigna unguiculata) cover cropping for 3 months (CP), combination of solarization and cowpea cover cropping (S + CP), and a weedy fallow throughout the summer used as a control (C). All treated plots were planted to pepper (Capsicum annuum) after the application of the treatments at the end of the summer. In general, responses of nematode communities to soil treatments were more obvious at pepper planting than at 4 months after planting. In 2003, initial population densities of bacterivores and fungivores at pepper planting followed a hypothesized pattern of MB > S > S + CP > CP > C. However, this perturbation did not persist after a cycle of vigorous growth of a pepper crop. Omnivorous nematodes were the most sensitive nematode trophic group, with impact from soil treatment lasting until the end of the pepper crop. Nematode community indices such as ratio of fungivores to fungivores plus bacterivores, richness, and structure index were especially useful in detecting impacts by the various soil treatments. While disturbance from MB on the nematode communities lasted at least until the end of the pepper crop, that from the solarization often reduced or disappeared at the end of the experiment. The CP treatment enhanced many of the beneficial nematodes but failed to suppress the final population densities of herbivorous nematodes at pepper harvest (Pf). However, CP + S consistently reduced the Pf of herbivores to levels equivalent to MB in both years, whereas, this level of suppression could not be achieved by either CP or solarization alone.  相似文献   

8.
In an outside pot experiment, dry pig manure processed on pine sawdust litter and fermented for seven days by house fly larvae (fermented manure), and pine sawdust applied alone, and in combination with a spring application of inorganic nitrogen fertilizer were used to determine their effects on plant parasitic and free-living soil nematodes on sugar beets (cv. Antek). Non amended soil was used as a control. All treatments with fermented pig manure and sawdust with nitrogen fertilizer decreased number of plant parasitic nematodes and also root-fungal feeding nematodes compared to the untreated control. Sawdust applied alone had no effect on plant parasitic and root-fungal feeding nematode suppression. Free-living nematodes which were mainly bacteriovores and fungivores were significantly more abundant in soil amended with fermented pig manure, while the sawdust had no effect on these nematodes. The effect of all tested treatments on omnivores-predators was rather random, and in general, the number of these nematodes decreased after soil amendment applications compared to the untreated control.  相似文献   

9.
Restoration of a weathered crude oil contaminated site undergoing phytoremediation was evaluated using nematodes as bioindicators. Samples were collected twice per year equating to spring and fall/winter. Mean annual total abundances ranged from 18–130 in the non-fertilized non-vegetated control (CTR) to 69–728 in tall fescue-ryegrass (FES) to 147–749 (100 g?1) in the fertilized bermudagrass-fescue (BER) treatment. Proportions of plant-parasitic (PP) and free-living (FL) nematodes were significantly impacted by treatment, but not year, with PP nematodes accounting for 27, 59, and 68% of CTR, FES, and BER communities, respectively. There was no significant year by season by treatment or treatment by year effect for total, PP, or FL nematode abundances. Diversity did not increase over time. The BER and FES treatments had more mature communities as indicated by higher plant-parasitic index (PPI) values. Phytoremediation accelerates petroleum degradation and alters the soil habitat which is reflected in the nematode community. However, low numbers and inconsistent presence of persister strategist omnivores and predators, and the lack in improvement over time in treatment effects for total and PP nematode abundances, PP and FL proportions, or PPI indicate the system is being rehabilitated but has not been restored after 69 months of phytoremediation.  相似文献   

10.
Effect of sunn hemp (Crotalaria juncea) hay amendment on nematode community structure in the soil surrounding roots of yellow squash (Cucurbita pepo) infected with root-knot nematodes was examined in two greenhouse experiments. Soils were from field plots treated long-term (LT) with yard-waste compost or no yard-waste compost in LT experiment, and from a short-term (ST) agricultural site in ST experiment. Soils collected were either amended or not amended with C. juncea hay. Nematode communities were examined 2 months after squash was inoculated with Meloidogyne incognita. Amendment increased (P < 0.05) omnivorous nematodes in both experiments but increased only bacterivorous nematodes in ST experiment (P < 0.05), where the soil had relatively low organic matter (<2%). This effect of C. juncea amendment did not occur in LT experiment, in which bacterivores were already abundant. Fungivorous nematodes were not increased by C. juncea amendment in either experiment, but predatory nematodes were increased when present. Although most nematode faunal indices, including enrichment index, structure index, and channel index, were not affected by C. juncea amendment, structure index values were affected by previous soil organic matter content. Results illustrate the importance of considering soil history (organic matter, nutrient level, free-living nematode number) in anticipating changes following amendment with C. juncea hay.  相似文献   

11.
Liu M Q  Chen X Y  Chen S  Li H X  Hu F 《农业工程》2011,31(6):347-352
The interface between decaying plant residues and soil is a focus for soil ecological processes because of resources from the residues diffusing into the soil, and microfauna that proliferate in the adjacent soil. Given that the recovery of soil function following disturbance depends on immigration, colonization and establishment of exotic organisms from adjacent un-disturbed habitats, and the availability of bio-available resources, we hypothesized that the soil–litter interface could contribute to soil functional stability. In laboratory pot trials, soil was separated into two parts by a mesh bag with the inner section amended, or not amended, with rice straw; an outer layer of unamended soil, adjacent to the litter (1.5 cm thick, either heated or not), provided a soil–litter interface. This enabled us to examine the dynamics of dissolved organic carbon (DOC), mineral nitrogen, microbial biomass carbon (MBC), nematode assemblages and functional stability during 35 days incubation. Either 1 mm or 5 μm meshes were used, which allowed nematodes to migrate (SR1) or not (SR5) through the mesh to the soil–litter interface; thus also enabling us to evaluate the role of nematodes in soil functional stability. Higher DOC and MBC but lower mineral nitrogen concentrations were found at the soil–litter interface. Heating increased the availability of soil resources such as mineral nitrogen and DOC, but decreased the MBC and total nematode abundance in the soil. The soil–litter interface was characterized by a higher abundance of nematodes, particularly microbivores, regardless of mesh aperture or disturbance. The difference in nematode abundance between SR1 and SR5 indicated that nematode propagation, due to resource diffusion and nematode migration through the mesh, contributed to the changing numbers of microbivorous nematodes depending on incubation time. The soil functional stability was calculated as a relative change in the functioning of short-term barley decomposition. Soil functional resistance, defined as the instantaneous effect of disturbance on decomposition measured on the first day, was highest in the SR5 treatment. However, soil functional resilience, defined as the recovery of soil function over the whole incubation period (35d), was highest in the SR1 treatment, which is most probably attributed to the functioning of microbivorous nematodes. Our results suggest that small-scale spatial heterogeneity, due to organic residue decomposition, can help maintain soil functions following disturbance.  相似文献   

12.
Degradation of organic matter (OM) from organic amendments used in the remediation of metal contaminated soils leads to changes in soil chemical properties shortly after their addition, which may affect the soil metal distribution. The effects of two differing organic amendments on OM mineralisation and fractionation of heavy metals in a contaminated soil were investigated in an incubation experiment. The treatments were: control unamended soil, soil amended with fresh cow manure, and soil amended with a compost having a high maturity degree. The soil used was characteristic of the mining area at La Unión (Murcia, Spain) with 28% CaCO(3) and sandy-loam texture (pH 7.7; 2602 mg kg(-1)Zn; 1572 mg kg(-1)Pb). Manure and compost C-mineralisation after 56 days (24% and 3.8%, respectively) were below values reported previously for uncontaminated soils. Both amendments favoured Zn and Pb fixation, particularly the manure. Mn solubility increased at the beginning of the experiment due to a pH effect, and only Cu solubility increased through organic matter chelation in both amended soils.  相似文献   

13.
While biochar soil amendment has been widely proposed as a soil organic carbon (SOC) sequestration strategy to mitigate detrimental climate changes in global agriculture, the SOC sequestration was still not clearly understood for the different effects of fresh and aged biochar on SOC mineralization. In the present study of a two‐factorial experiment, topsoil samples from a rice paddy were laboratory‐incubated with and without fresh or aged biochar pyrolyzed of wheat residue and with and without crop residue‐derived dissolved organic matter (CRM) for monitoring soil organic matter decomposition under controlled conditions. The six treatments included soil with no biochar, with fresh biochar and with aged biochar treated with CRM, respectively. For fresh biochar treatment, the topsoil of a same rice paddy was amended with wheat biochar directly from a pyrolysis wheat straw, the soil with aged biochar was collected from the same soil 6 years following a single amendment of same biochar. Total CO2 emission from the soil was monitored over a 64 day time span of laboratory incubation, while microbial biomass carbon and phospholipid fatty acid (PLFA) were determined at the end of incubation period. Without CRM, total organic carbon mineralization was significantly decreased by 38.8% with aged biochar but increased by 28.9% with fresh biochar, compared to no biochar. With CRM, however, the significantly highest net carbon mineralization occurred in the soil without biochar compared to the biochar‐amended soil. Compared to aged biochar, fresh biochar addition significantly increased the total PLFA concentration by 20.3%–33.8% and altered the microbial community structure by increasing 17:1ω8c (Gram‐negative bacteria) and i17:0 (Gram‐positive bacteria) mole percentages and by decreasing the ratio of fungi/bacteria. Furthermore, biochar amendment significantly lowered the metabolic quotient of SOC decomposition, thereby becoming greater with aged biochar than with fresh biochar. The finding here suggests that biochar amendment could improve carbon utilization efficiency by soil microbial community and SOC sequestration potential in paddy soil can be enhanced by the presence of biochar in soil over the long run.  相似文献   

14.
土壤线虫在农田生态系统中数量丰富且对土壤环境变化敏感, 可用于评估不同田间管理条件下的土壤健康。本文探究了紫色土区长期不同施肥措施及土壤团聚体粒径对线虫群落的分布及其生态功能多样性的影响。试验设置了5个施肥处理: 不施肥(对照, CK)、单施化肥(NPK)、生物炭 + 化肥(BCNPK)、商品猪粪 + 化肥(OMNPK)和秸秆 + 化肥(RSDNPK)。团聚体粒径分为: 原状土(BS)、大团聚体(> 2 mm; LA)和小团聚体(0.25-2 mm; SA)。结果表明, 与对照相比, 施肥可促进线虫数量增长, 其中单施化肥处理下增幅最小(66%); 有机物料与化肥配施对线虫数量的提升更为显著, 秸秆 + 化肥处理下增幅达206%。不同施肥处理间线虫类群相对丰度差异显著, 大小均表现为: 食细菌线虫(BA) > 杂食/捕食线虫(OP) > 植食线虫(PP) > 食真菌线虫(FU)。小团聚体较其他土壤团聚体的杂食/捕食线虫丰度更低, 食细菌线虫丰度较高。秸秆与化肥配施处理下线虫群落结构指数和富集指数显著增加, 且各施肥处理下线虫功能足迹呈现明显差异。有机肥与化肥配施(尤其是秸秆 + 化肥)可提高土壤养分供应且有利于形成稳定健康的土壤生态系统, 助推区域农业的可持续发展。  相似文献   

15.
Aims Nitrogen (N) fertilization and lime addition may affect soil microbial and nematode communities and ecosystem functions through changing environmental conditions, such as soil pH and soil organic carbon. The objectives of this experiment were to examine the impact of N input and liming on soil microbial and nematode communities and to identify the key environmental determinant of community composition in a century-old fertilization and crop rotation experiment.Methods The field experiment consisting of a 3-year crop rotation regime was established in 1911 in southeastern USA. Four treatments, (i) no-input control, (ii) NPK with winter legume, (iii) PK with legume and lime and (iv) NPK with legume and lime, were included in this study. Soil samples collected at the 0–5cm depth were used to determine the bacterial growth rate by the 3 H-thymidine incorporation technique. Incorporation of 13 C into neutral lipids, glycolipids and phospholipid fatty acids (PLFAs) was measured after incubation of soil with 13 C-labeled acetate for 24h. Free-living nematodes in fresh soil were extracted using a density sucrose centrifugal flotation method and identified to trophic group level.Important findings Liming resulted in a 10-fold increase in bacterial growth rates compared with the no-input control, whereas N fertilization had no significant effect. Multivariate analysis of PLFA profiles showed that soil microbial community composition was different among the four treatments; the difference was primarily driven by soil pH. PLFAs indicative of Gram-negative bacteria covaried with soil pH, but not those of fungi and actinobacteria. Liming enhanced 13 C incorporation into neutral lipids, glycolipids and phospholipids by 2–15 times. In addition, 13 C incorporation into 16:0, 16:1ω9, 18:1ω9, 18:1ω7 and 18:2ω6 were greater than other PLFAs, suggesting that Gram-negative bacteria and fungi were more active and sensitive to simple C input. Bacterivorous nematodes were the dominant trophic group in the soil, but no significant differences in nematode communities were found among the treatments. Our results suggest that soil pH had a greater impact than N fertilization on soil microbial community composition and activity in a crop rotation system including legumes.  相似文献   

16.
采用悉生培养微缩体系,探讨了不同食细菌线虫取食密度下线虫(Caenorhabditis elegans) 对细菌(Bacillus subtilis)数量和活性及土壤氮素矿化的影响.结果表明,线虫对细菌的取食,促进了细菌的增殖,并在不同线虫取食密度下对细菌的增殖促进作用总体表现为:接种20条·g-1>10条·g-1>40条线虫·g-1处理.线虫在促进细菌增殖的同时,明显提高了土壤呼吸强度和土壤蔗糖酶、脲酶和磷酸酶的活性,但不同取食密度处理间差异不明显.线虫与细菌之间的相互作用显著提高了土壤铵态氮和矿质态氮含量,促进了土壤氮的矿化.不同取食密度处理间,线虫对土壤氮素矿化的促进作用与对细菌的增殖促进作用趋势一致.  相似文献   

17.
The porous soil environment constrains grazing of microorganisms by microbivorous nematodes. In particular, at matric potentials at which water-filled pore spaces have capillary diameters less than nematode body diameters the effect of grazing, e.g. enhanced mineralization, should be reduced ('exclusion hypothesis') because nematodes cannot access their microbial forage. We examined C and N mineralization, microbial biomass C (by fumigation-extraction), the metabolic quotient (C mineralization per unit biomass C), nematode abundance, and soil water content in intact soil cores from an old field as a function of soil matric potential (−3 to −50 kPa). We expected, in accordance with the exclusion hypothesis, that nematode abundance, N and C mineralization would be reduced as matric potential decreased, i.e. as soils became drier. N mineralization was significantly greater than zero for −3 kPa but not for −10, −20 and −50 kPa. Microbial biomass C was less at −50 kPa than at −10 kPa, but not significantly different from biomass C at −3 and −20 kPa. The metabolic quotient was greatest at −50 kPa than any of the other matric potentials. From the exclusion hypothesis we expected significantly fewer nematodes to be present at −50 and −20 kPa representing water-filled capillary pore sizes less than 6 and 15 μm, respectively, than at −3 and −10 kPa. Microbivorous (fungivorous+bacterivorous) nematode abundance per unit mass of soil was not significantly different among matric potentials. Body diameters of nematodes ranged from 9 μm to 40 μm. We discuss several alternatives to the exclusion hypothesis, such as the 'enclosure hypothesis' which states that nematodes may become trapped in large water-filled pore spaces even when capillary pore diameters (as computed from matric potential) are smaller than body diameters. One of the expected outcomes of grazing in enclosures is the acceleration of nutrient cycling. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The influence of grazing by a mixed assemblage of soil protozoa (seven flagellates and one amoeba) on bacterial community structure was studied in soil microcosms amended with a particulate resource (sterile wheat roots) or a soluble resource (a solution of various organic compounds). Sterilized soil was reinoculated with mixed soil bacteria (obtained by filtering and dilution) or with bacteria and protozoa. Denaturing gradient gel electrophoresis (DGGE) of PCR amplifications of 16S rRNA gene fragments, as well as community level physiological profiling (Biolog plates), suggested that the mixed protozoan community had significant effects on the bacterial community structure. Excising and sequencing of bands from the DGGE gels indicated that high-G+C gram-positive bacteria closely related to Arthrobacter spp. were favored by grazing, whereas the excised bands that decreased in intensity were related to gram-negative bacteria. The percentages of intensity found in bands related to high G+C gram positives increased from 4.5 and 12.6% in the ungrazed microcosms amended with roots and nutrient solution, respectively, to 19.3 and 32.9% in the grazed microcosms. Protozoa reduced the average bacterial cell size in microcosms amended with nutrient solution but not in the treatment amended with roots. Hence, size-selective feeding may explain some but not all of the changes in bacterial community structure. Five different protozoan isolates (Acanthamoeba sp., two species of Cercomonas, Thaumatomonas sp., and Spumella sp.) had different effects on the bacterial communities. This suggests that the composition of protozoan communities is important for the effect of protozoan grazing on bacterial communities.  相似文献   

19.
The effects of nutrient amendment and alginate encapsulation on survival of and phenanthrene mineralization by the bioluminescentPseudomonas sp. UG14Lr in creosote-contaminated soil slurries were examined. UG14Lr was inoculated into creosote-contaminated soil slurries either as a free cell suspension or encapsulated in alginate beads prepared with montmorillonite clay and skim milk. Additional treatments were free-cell-inoculated slurries amended with sterile alginate beads, free-cell-inoculated and uninoculated slurries amended with skim milk only, and uninoculated, unamended slurries. Mineralization was determined by measuring14CO2 released from radiolabelled phenanthrene. Survival was measured by selective plating and bioluminescence. Inclusion of skim milk was found to enhance both survival of and phenanthrene mineralization by free and encapsulated UG14Lr cells.  相似文献   

20.
1 引  言在农业生态系统中 ,农业管理 (如化肥、农药等农用化学品的施用等 )对土壤线虫群落组成及多样性产生了显著影响[2~ 4,7] .线虫是农田土壤中的生物因子 ,对植物的生长可以产生直接或间接的影响 .植物寄生线虫对植物的影响主要包括 3种方式 :1)通过在植物的根部取食 ,直接影响植物的营养状况 ,造成植物营养不良 ;2 )通过其口针的穿刺过程 ,传播植物病毒 ,引起植物病毒病 ;3)通过线虫取食植物根部造成的伤口 ,引起与其它植物病原物的复合侵染 .非植物寄生线虫多数是自由生活的线虫 ,在有人为影响的农田中主要是腐生线虫参与土壤中…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号