首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Nearly all eukaryotes are host to beneficial or benign bacteria in their gut lumen, either vertically inherited, or acquired from the environment. While bacteria core to the honey bee gut are becoming evident, the influence of the hive and pollination environment on honey bee microbial health is largely unexplored. Here we compare bacteria from floral nectar in the immediate pollination environment, different segments of the honey bee (Apis mellifera) alimentary tract, and food stored in the hive (honey and packed pollen or “beebread”). We used cultivation and sequencing to explore bacterial communities in all sample types, coupled with culture-independent analysis of beebread. We compare our results from the alimentary tract with both culture-dependent and culture-independent analyses from previous studies. Culturing the foregut (crop), midgut and hindgut with standard media produced many identical or highly similar 16S rDNA sequences found with 16S rDNA clone libraries and next generation sequencing of 16S rDNA amplicons. Despite extensive culturing with identical media, our results do not support the core crop bacterial community hypothesized by recent studies. We cultured a wide variety of bacterial strains from 6 of 7 phylogenetic groups considered core to the honey bee hindgut. Our results reveal that many bacteria prevalent in beebread and the crop are also found in floral nectar, suggesting frequent horizontal transmission. From beebread we uncovered a variety of bacterial phylotypes, including many possible pathogens and food spoilage organisms, and potentially beneficial bacteria including Lactobacillus kunkeei, Acetobacteraceae and many different groups of Actinobacteria. Contributions of these bacteria to colony health may include general hygiene, fungal and pathogen inhibition and beebread preservation. Our results are important for understanding the contribution to pollinator health of both environmentally vectored and core microbiota, and the identification of factors that may affect bacterial detection and transmission, colony food storage and disease susceptibility.  相似文献   

2.
The bacterial communities in the guts of the adults and larvae of the Asian honey bee Apis cerana and the European honey bee Apis mellifera were surveyed by pyrosequencing the 16S rRNA genes. Most of the gut bacterial 16S rRNA gene sequences were highly similar to the known honey bee-specific ones and affiliated with Pasteurellaceae or lactic acid bacteria (LAB). The numbers of operational taxonomic units (OTUs, defined at 97% similarity) were lower in the larval guts (6 or 9) than in the adult guts (18 or 20), and the frequencies of Pasteurellaceae-related OTUs were higher in the larval guts while those of LAB-related OTUs in the adult guts. The frequencies of Lactococcus, Bartonella, Spiroplasma, Enterobacteriaceae, and Flavobacteriaceae-related OTUs were much higher in A. cerana guts while Bifidobacterium and Lachnospiraceae-related OTUs were more abundant in A. mellfera guts. The bacterial community structures in the midguts and hindguts of the adult honey bees were not different for A. cerana, but significantly different for A. mellifera. The above results substantiated the previous observation that honey bee guts are dominated by several specific bacterial groups, and also showed that the relative abundances of OTUs could be markedly changed depending on the developmental stage, the location within the gut, and the honey bee species. The possibility of using the gut bacterial community as an indicator of honey bee health was discussed.  相似文献   

3.
Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME) and phospholipid-derived fatty acid (PLFA) analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components.  相似文献   

4.
Studies of newly emerged Apis mellifera worker bees have demonstrated that their guts are colonized by a consistent core microbiota within several days of eclosure. We conducted experiments aimed at illuminating the transmission routes and spatiotemporal colonization dynamics of this microbiota. Experimental groups of newly emerged workers were maintained in cup cages and exposed to different potential transmission sources. Colonization patterns were evaluated using quantitative real-time PCR (qPCR) to assess community sizes and using deep sequencing of 16S rRNA gene amplicons to assess community composition. In addition, we monitored the establishment of the ileum and rectum communities within workers sampled over time from natural hive conditions. The study verified that workers initially lack gut bacteria and gain large characteristic communities in the ileum and rectum within 4 to 6 days within hives. Typical communities, resembling those of workers within hives, were established in the presence of nurse workers or nurse worker fecal material, and atypical communities of noncore or highly skewed compositions were established when workers were exposed only to oral trophallaxis or hive components (comb, honey, bee bread). The core species of Gram-negative bacteria, Snodgrassella alvi, Gilliamella apicola, and Frischella perrara, were dependent on the presence of nurses or hindgut material, whereas some Gram-positive species were more often transferred through exposure to hive components. These results indicate aspects of the colony life cycle and behavior that are key to the propagation of the characteristic honey bee gut microbiota.  相似文献   

5.
Host-symbiont dynamics are known to influence host phenotype, but their role in social behavior has yet to be investigated. Variation in life history across honey bee (Apis mellifera) castes may influence community composition of gut symbionts, which may in turn influence caste phenotypes. We investigated the relationship between host-symbiont dynamics and social behavior by characterizing the hindgut microbiome among distinct honey bee castes: queens, males and two types of workers, nurses and foragers. Despite a shared hive environment and mouth-to-mouth food transfer among nestmates, we detected separation among gut microbiomes of queens, workers, and males. Gut microbiomes of nurses and foragers were similar to previously characterized honey bee worker microbiomes and to each other, despite differences in diet, activity, and exposure to the external environment. Queen microbiomes were enriched for bacteria that may enhance metabolic conversion of energy from food to egg production. We propose that the two types of workers, which have the highest diversity of operational taxonomic units (OTUs) of bacteria, are central to the maintenance of the colony microbiome. Foragers may introduce new strains of bacteria to the colony from the environment and transfer them to nurses, who filter and distribute them to the rest of the colony. Our results support the idea that host-symbiont dynamics influence microbiome composition and, reciprocally, host social behavior.  相似文献   

6.
The European honey bee (Apis mellifera) is used extensively to produce hive products and for crop pollination, but pervasive concerns about colony health and population decline have sparked an interest in the microbial communities that are associated with these important insects. Currently, only the microbiome of workers has been characterized, while little to nothing is known about the bacterial communities that are associated with queens, even though their health and proper function are central to colony productivity. Here, we provide a large-scale analysis of the gut microbiome of honey bee queens during their developmental trajectory and through the multiple colonies that host them as part of modern queen-rearing practices. We found that queen microbiomes underwent a dramatic shift in size and composition as they aged and encountered different worker populations and colony environments. Queen microbiomes were dominated by enteric bacteria in early life but were comprised primarily of alphaproteobacteria at maturity. Furthermore, queen gut microbiomes did not reflect those of the workers who tended them and, indeed, they lacked many of the bacteria that are considered vital to workers. While worker gut microbiotas were consistent across the unrelated colony populations sampled, the microbiotas of the related queens were highly variable. Bacterial communities in mature queen guts were similar in size to those of mature workers and were characterized by dominant and specific alphaproteobacterial strains known to be associated with worker hypopharyngeal glands. Our results suggest a model in which queen guts are colonized by bacteria from workers'' glands, in contrast to routes of maternal inoculation for other animal microbiomes.  相似文献   

7.
The honey bee is a key pollinator species in decline worldwide. As part of a commercial operation, bee colonies are exposed to a variety of agricultural ecosystems throughout the year and a multitude of environmental variables that may affect the microbial balance of individuals and the hive. While many recent studies support the idea of a core microbiota in guts of younger in-hive bees, it is unknown whether this core is present in forager bees or the pollen they carry back to the hive. Additionally, several studies hypothesize that the foregut (crop), a key interface between the pollination environment and hive food stores, contains a set of 13 lactic acid bacteria (LAB) that inoculate collected pollen and act in synergy to preserve pollen stores. Here, we used a combination of 454 based 16S rRNA gene sequencing of the microbial communities of forager guts, crops, and corbicular pollen and crop plate counts to show that (1) despite a very different diet, forager guts contain a core microbiota similar to that found in younger bees, (2) corbicular pollen contains a diverse community dominated by hive-specific, environmental or phyllosphere bacteria that are not prevalent in the gut or crop, and (3) the 13 LAB found in culture-based studies are not specific to the crop but are a small subset of midgut or hindgut specific bacteria identified in many recent 454 amplicon-based studies. The crop is dominated by Lactobacillus kunkeei, and Alpha 2.2 (Acetobacteraceae), highly osmotolerant and acid resistant bacteria found in stored pollen and honey. Crop taxa at low abundance include core hindgut bacteria in transit to their primary niche, and potential pathogens or food spoilage organisms seemingly vectored from the pollination environment. We conclude that the crop microbial environment is influenced by worker task, and may function in both decontamination and inoculation.  相似文献   

8.
《Journal of Asia》2020,23(2):504-508
The small hive beetle (Aethina tumida Murray) is an invasive pest affecting honey bee colonies. The beetles are known to be attracted to volatiles from hive products and honey bees like Apis mellifera L. Previously we reported the presence of five major compounds from the volatile extracts of hive materials; ethyl linolenate and ethyl palmitate from pollen dough, oleamide and tetracosane in fermenting honey, and oleamide and 5-methyl-2-phenyl-1H-indole from A. mellifera worker bees. This study tested the attractiveness of the aforementioned five volatile organic compounds to small hive beetles (SHB) by Y-tube olfactometric bioassay. Ethyl linolenate was highly attractive to both male and female adults of SHB. Ethyl palmitate was attractive to SHB only at higher concentration (0.01–01 mg/ml). Interestingly, tetracosane, 5-methyl-2-phenyl-1H-indole and oleamide were repellent for SHB of both sexes, but ethyl linolenate and ethyl palmitate as components of honey bee brood pheromone attracted SHB. The results highlight that SHB differentially utilizes volatile chemicals from hive materials and honey bees as cues to locate honey bee hives.  相似文献   

9.
Gut microbiota has been recognized to play a beneficial role in honey bees (Apis mellifera). Present study was designed to characterize the gut bacterial flora of honey bees in north-west Pakistan. Total 150 aerobic and facultative anaerobic bacteria from guts of 45 worker bees were characterized using biochemical assays and 16S rDNA sequencing followed by bioinformatics analysis. The gut isolates were classified into three bacterial phyla of Firmicutes (60%), Proteobacteria (26%) and Actinobacteria (14%). Most of the isolates belonged to genera and families of Staphylococcus, Bacillus, Enterococcus, Ochrobactrum, Sphingomonas, Ralstonia, Enterobacteriaceae, Corynebacterium and Micrococcineae. Many of these bacteria were tolerant to acidic environments and fermented sugars, hence considered beneficial gut inhabitants and involved the maintenance of a healthy microbiota. However, several opportunistic commensals that proliferate in the hive environment including members Staphylococcus haemolyticus group and Sphingomonas paucimobilis were also identified. This is the first report on bee gut microbiota from north-west Pakistan geographically situated at the crossroads of Indian subcontinent and central Asia.  相似文献   

10.
Bacterial symbionts of insects have received increasing attention due to their prominent role in nutrient acquisition and defense. In social bees, symbiotic bacteria can maintain colony homeostasis and fitness, and the loss or alteration of the bacterial community may be associated with the ongoing bee decline observed worldwide. However, analyses of microbiota associated with bees have been largely confined to the social honeybees (Apis mellifera) and bumblebees (Bombus spec.), revealing – among other taxa – host-specific lactic acid bacteria (LAB, genus Lactobacillus) that are not found in solitary bees. Here, we characterized the microbiota of three Australian stingless bee species (Apidae: Meliponini) of two phylogenetically distant genera (Tetragonula and Austroplebeia). Besides common plant bacteria, we find LAB in all three species, showing that LAB are shared by honeybees, bumblebees and stingless bees across geographical regions. However, while LAB of the honeybee-associated Firm4–5 clusters were present in Tetragonula, they were lacking in Austroplebeia. Instead, we found a novel clade of likely host-specific LAB in all three Australian stingless bee species which forms a sister clade to a large cluster of Halictidae-associated lactobacilli. Our findings indicate both a phylogenetic and geographical signal of host-specific LAB in stingless bees and highlight stingless bees as an interesting group to investigate the evolutionary history of the bee-LAB association.  相似文献   

11.
Temperate races of honey bees (Apis mellifera) are able to survive cold temperatures by forming thermoregulatory clusters. Small hive beetles (Aethina tumida), which inhabit honey bee colonies in their native range of sub-Saharan Africa and in their introduced ranges of the United States and Australia, are able to endure temperate climates by entering the bee cluster when cold temperatures persist. We conducted an experiment to address the temporal aspects of the cluster-entering behavior of small hive beetles. We did this by exposing beetle-infested observation bee hives to different ambient temperatures and counting the number of beetles remaining in confinement sites on the hive’s periphery at each temperature. The resulting regression analyses suggest that the beetles enter the cluster more rapidly than they exit it, a behavior possibly linked to a colony’s decision to form and dismantle a cluster.  相似文献   

12.
Honey bee hives are filled with stored pollen, honey, plant resins and wax, all antimicrobial to differing degrees. Stored pollen is the nutritionally rich currency used for colony growth and consists of 40–50% simple sugars. Many studies speculate that prior to consumption by bees, stored pollen undergoes long‐term nutrient conversion, becoming more nutritious ‘bee bread’ as microbes predigest the pollen. We quantified both structural and functional aspects associated with this hypothesis using behavioural assays, bacterial plate counts, microscopy and 454 amplicon sequencing of the 16S rRNA gene from both newly collected and hive‐stored pollen. We found that bees preferentially consume fresh pollen stored for <3 days. Newly collected pollen contained few bacteria, values which decreased significantly as pollen were stored >96 h. The estimated microbe to pollen grain surface area ratio was 1:1 000 000 indicating a negligible effect of microbial metabolism on hive‐stored pollen. Consistent with these findings, hive‐stored pollen grains did not appear compromised according to microscopy. Based on year round 454 amplicon sequencing, bacterial communities of newly collected and hive‐stored pollen did not differ, indicating the lack of an emergent microbial community co‐evolved to digest stored pollen. In accord with previous culturing and 16S cloning, acid resistant and osmotolerant bacteria like Lactobacillus kunkeei were found in greatest abundance in stored pollen, consistent with the harsh character of this microenvironment. We conclude that stored pollen is not evolved for microbially mediated nutrient conversion, but is a preservative environment due primarily to added honey, nectar, bee secretions and properties of pollen itself.  相似文献   

13.
Lactic Acid Bacteria (LAB) are a functional group of microorganisms comprising Gram-positive, catalase negative bacteria that produce lactic acid as the major metabolic end-product of carbohydrate fermentation. Among LAB, Lactobacillus is the genus including a high number of GRAS species (Generally Recognized As Safe) and many strains are among the most important bacteria in food microbiology and human nutrition, due to their contribution to fermented food production or their use as probiotics. From a taxonomic point of view, the genus Lactobacillus includes at present (October 2012), 152 validly described species, and it belongs to the family Lactobacillaceae together with genus Pediococcus, with whom it is phylogenetically intermixed. The updated phylogenetic analysis based on 16S rRNA gene sequence revealed that the family is divided into 15 groups of three or more species, 4 couples and 10 single lines of descents. In addition, other taxonomically relevant information for Lactobacillus species was collected. This study aims at updating the taxonomy of the genus Lactobacillus, presenting the phylogenetic structure of the Lactobacillaceae and discussing the clusters as possible nuclei of genera to be described in the future. It is expected that scientists and producers in the field of probiotics could benefit from information reported here about the correct identification procedures and nomenclature of beneficial strains of lactobacilli.  相似文献   

14.
The host‐associated microbiome plays a significant role in health. However, the roles of factors such as host genetics and microbial interactions in determining microbiome diversity remain unclear. We examined these factors using amplicon‐based sequencing of 175 Thoropa taophora frog skin swabs collected from a naturally fragmented landscape in southeastern Brazil. Specifically, we examined (1) the effects of geography and host genetics on microbiome diversity and structure; (2) the structure of microbial eukaryotic and bacterial co‐occurrence networks; and (3) co‐occurrence between microeukaryotes with bacterial OTUs known to affect growth of the fungal pathogen Batrachochytrium dendrobatidis (Bd). While bacterial alpha diversity varied by both site type and host MHC IIB genotype, microeukaryotic alpha diversity varied only by site type. However, bacteria and microeukaryote composition showed variation according to both site type and host MHC IIB genotype. Our network analysis showed the highest connectivity when both eukaryotes and bacteria were included, implying that ecological interactions may occur among domains. Lastly, anti‐Bd bacteria were not broadly negatively co‐associated with the fungal microbiome and were positively associated with potential amphibian parasites. Our findings emphasize the importance of considering both domains in microbiome research and suggest that for effective probiotic strategies for amphibian disease management, considering potential interactions among all members of the microbiome is crucial.  相似文献   

15.
The ectoparasitic mite Varroa destructor is a major honey bee pest, and its control using pathogen-based biopesticides would resolve many of the problems, such as contamination and pesticide resistance, experienced with chemical control. A biopesticide, formulated with commercially-prepared conidia of a strain of Beauveria bassiana isolated from V. destructor was tested against the mites in bee colonies in southern France. The impact of treatment on hive survivorship, weight and mite infestation levels were very different from those of previous experiments using laboratory-prepared conidia: bee hives treated with the biopesticide died at a higher rate, lost more weight, and had higher mite densities at the end of the study than control hives. The biopesticide was subsequently found to be contaminated with bacteria. Two strains of bacteria were identified, by biotyping and sequencing data of the 16S rRNA and rpoB regions, and while the strains were distinct both were Pseudomonas sp. belonging to the P. fluorescens group. In dual cultures B. bassiana growth was slowed or suppressed when bacterial cfu density was about equal or greater than that of B. bassiana. Experiments using caged adult bees showed that bees ingesting diet and sugar solution treated with B. bassiana and kept at 30 °C had significantly lower survival times than those treated with one of the bacterial strains, but the opposite was true at 33 °C. Because one arthropod (honey bees) was treated for infestation by another (V. destructor), the impact of bacterial contamination was likely more noticeable than in most uses of biopesticides, such as treating plants against phytophagous insects. To reduce such risk in biopesticide development, a systematic screening for bacterial contamination prior to field application is recommended.  相似文献   

16.
The European honey bee exploits floral resources efficiently and may therefore compete with solitary wild bees. Hence, conservationists and bee keepers are debating about the consequences of beekeeping for the conservation of wild bees in nature reserves. We observed flower-visiting bees on flowers of Calluna vulgaris in sites differing in the distance to the next honey-bee hive and in sites with hives present and absent in the Lüneburger Heath, Germany. Additionally, we counted wild bee ground nests in sites that differ in their distance to the next hive and wild bee stem nests and stem-nesting bee species in sites with hives present and absent. We did not observe fewer honey bees or higher wild bee flower visits in sites with different distances to the next hive (up to 1,229 m). However, wild bees visited fewer flowers and honey bee visits increased in sites containing honey-bee hives and in sites containing honey-bee hives we found fewer stem-nesting bee species. The reproductive success, measured as number of nests, was not affected by distance to honey-bee hives or their presence but by availability and characteristics of nesting resources. Our results suggest that beekeeping in the Lüneburg Heath can affect the conservation of stem-nesting bee species richness but not the overall reproduction either of stem-nesting or of ground-nesting bees. Future experiments need control sites with larger distances than 500 m to hives. Until more information is available, conservation efforts should forgo to enhance honey bee stocking rates but enhance the availability of nesting resources.  相似文献   

17.
Lactic acid bacteria (LAB) represent a functional group of bacteria that are fundamental in human nutrition because of their prominent role in fermented food production and their presence as commensals in the gut. LAB co-evolution and niche-adaptation have been analyzed in several phylogenomic studies due to the availability of complete genome sequences. The aim of this study was to provide novel insights into LAB evolution through the comparative analysis of the metabolic pathways related to carbohydrate metabolism. The analysis was based on 42 LAB genome sequences of representative strains belonging to Enterococcaceae, Lactobacillaceae, Leuconostocaceae and Streptococcaceae. A reference phylogenetic tree was inferred from concatenation of 42 ribosomal proteins; then 42 genes belonging to the Embden–Meyerhof–Parnas (or glycolysis; EMPP) and pentose phosphate (PPP) pathways were analyzed in terms of their distribution and organization in the genomes. Phylogenetic analyses confirmed the paraphyly of the Lactobacillaceae family, while the distribution and organization of the EMPP and PPP genes revealed the occurrence of lineage-specific trends of gene loss/gain within the two metabolic pathways examined. In addition, the investigation of the two pathways as structures resulting from different evolutionary processes provided new information concerning the genetic bases of heterofermentative/homofermentative metabolism.  相似文献   

18.
19.
We exposed honey bee workers and brood to four entomopathogenic nematode species under conditions normally encountered in the hive by spraying nematodes onto combs. Mortality of adult bees exposed to any of the nematode species was less than 10%, and there was no evidence of nematode infection when dead adults were dissected. To assess the impact of nematodes on brood, we used smaller-size honey combs placed in the second story (super) of a hive and large brood combs placed in the main section of the hive. Our results were inconsistent between these two experimental designs. The smaller honey combs sprayed with Steinernema carpocapsae contained the largest number of uncapped ceils, those sprayed with Heterorhabditis baeteriophora or S. riobravis contained an intermediate number of uncapped cells, and control combs and those sprayed with S. glaseri contained the fewest nmnber of uncapped cells. Large combs sprayed with S. riobravis contained more uncapped ceils than controls or those sprayed with S. carpocapsae, although the differences were not significant. Our results do not support the hypothesis that high-temperature-tolerant species of nematodes are necessarily more infective to honey bees.  相似文献   

20.
Microbial communities, associated with almost all metazoans, can be inherited from the environment. Although the honeybee (Apis mellifera L.) gut microbiome is well documented, studies of the gut focus on just a small component of the bee microbiome. Other key areas such as the comb, propolis, honey, and stored pollen (bee bread) are poorly understood. Furthermore, little is known about the relationship between the pollinator microbiome and its environment. Here we present a study of the bee bread microbiome and its relationship with land use. We estimated bacterial community composition using both Illumina MiSeq DNA sequencing and denaturing gradient gel electrophoresis (DGGE). Illumina was used to gain a deeper understanding of precise species diversity across samples. DGGE was used on a larger number of samples where the costs of MiSeq had become prohibitive and therefore allowed us to study a greater number of bee breads across broader geographical axes. The former demonstrates bee bread comprises, on average, 13 distinct bacterial phyla; Bacteroidetes, Firmicutes, Alpha‐proteobacteria, Beta‐proteobacteria, and Gamma‐proteobacteria were the five most abundant. The most common genera were Pseudomonas, Arsenophonus, Lactobacillus, Erwinia, and Acinetobacter. DGGE data show bacterial community composition and diversity varied spatially and temporally both within and between hives. Land use data were obtained from the 2007 Countryside Survey. Certain habitats, such as improved grasslands, are associated with low diversity bee breads, meaning that these environments may be poor sources of bee‐associated bacteria. Decreased bee bread bacterial diversity may result in reduced function within hives. Although the dispersal of microbes is ubiquitous, this study has demonstrated landscape‐level effects on microbial community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号