首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The cumulative movements of large mammals are expressed in many areas as semi-permanent wildlife trails. The mapping of semi-permanent trail networks offers a direct approach to assess habitat selection of high-use movement routes at relatively fine spatial scales across a landscape. Here we examine an ungulate trail network in north-central Utah created and maintained by the repeated movements of mule deer (Odocoileus hemionus) and elk (Cervus elaphus). In a resource selection analysis using multivariable spatial regression analysis, we show that at a spatial scale of 70 m open and low cover and distance to water are important predictors of movement pathway density. We also demonstrate at a scale of 10 m that elk and deer movement pathways are less steep than adjacent terrain. The mapping of trail networks should be a particularly useful technique for examining functional connectivity among resource patches across a landscape and identifying important high-use movement routes.  相似文献   

2.
Animal movement paths are often thought of as a confluence of behavioral processes and landscape patterns. Yet it has proven difficult to develop frameworks for analyzing animal movement that can test these interactions. Here we describe a novel method for fitting movement models to data that can incorporate diverse aspects of landscapes and behavior. Using data from five elk (Cervus canadensis) reintroduced to central Ontario, we employed artificial neural networks to estimate movement probability kernels as functions of three landscape-behavioral processes. These consisted of measures of the animals' response to the physical spatial structure of the landscape, the spatial variability in resources, and memory of previously visited locations. The results support the view that animal movement results from interactions among elements of landscape structure and behavior, motivating context-dependent movement probabilities, rather than from successive realizations of static distributions, as some traditional models of movement and resource selection assume. Flexible, nonlinear models may thus prove useful in understanding the mechanisms controlling animal movement patterns.  相似文献   

3.
Taking in sufficient quantities of nutrients is vital for all living beings and in doing so, individuals interact with the local resource environment. Here, we focus explicitly on the interactions between feeding individuals and the resource landscape. In particular, we are interested in the emergent movement dynamics resulting from these interactions. We present an individual-based simulation model for the movement of populations in a resource landscape that allows us to vary the strength of the interactions mentioned above. The key assumption and novelty of our model is that individuals can cause the release of additional nutrients, as well as consuming them. Our model produces clear predictions. For example, we expect more tortuous individual movement paths and higher levels of aggregation in populations occupying homogeneous environments where individual movement makes more nutrients available. We also show how observed movement dynamics could change when local nutrient sources are depleted or when the population density increases. Our predictions are testable and qualitatively reproduce the different feeding behaviours observed in filter-feeding ducks, for example. We suggest that considering two-way interactions between feeding individuals and resource landscapes could help to explain fine-scale movement dynamics.  相似文献   

4.
From fine‐scale foraging to broad‐scale migration, animal movement is shaped by the distribution of resources. There is mounting evidence, however, that learning and memory also guide movement. Although migratory mammals commonly track resource waves, how resource tracking and memory guide long‐distance migration has not been reconciled. We examined these hypotheses using movement data from four populations of migratory mule deer (n = 91). Spatial memory had an extraordinary influence on migration, affecting movement 2–28 times more strongly than tracking spring green‐up or autumn snow depth. Importantly, with only an ability to track resources, simulated deer were unable to recreate empirical migratory routes. In contrast, simulated deer with memory of empirical routes used those routes and obtained higher foraging benefits. For migratory terrestrial mammals, spatial memory provides knowledge of where seasonal ranges and migratory routes exist, whereas resource tracking determines when to beneficially move within those areas.  相似文献   

5.
Landscape changes can alter pollinator movement and foraging patterns which can in turn influence the demographic processes of plant populations. We leveraged social network models and four fixed arrays of five hummingbird feeders equipped with radio frequency identification (RFID) data loggers to study rufous hummingbird (Selasphorus rufus) foraging patterns in a heterogeneous landscape. Using a space-for-time approach, we asked whether forest encroachment on alpine meadows could restrict hummingbird foraging movements and impede resource discovery. We fit social network models to data on 2221 movements between feeders made by 29 hummingbirds. Movements were made primarily by females, likely due to male territoriality and early migration dates. Distance was the driving factor in determining the rate of movements among feeders. The posterior mean effects of forest landscape variables (local canopy cover and intervening forest cover) were negative, but with considerable uncertainty. Finally, we found strong reciprocity in hummingbird movements, indicative of frequent out and back movements between resources. Together, these findings suggest that reciprocal movements by female hummingbirds could help maintain bidirectional gene flow among nearby subpopulations of ornithophilous plants; however, if the distance among meadows increases with further forest encroachment, this may limit foraging among progressively isolated meadows.  相似文献   

6.
Connectivity is a key concept of landscape ecology as it relates to flows and movements of organisms as driven by landscape structure. More and more aspects of landscape heterogeneity are considered in measuring connectivity, as the diversity of crops in agricultural landscapes. In this paper, we explored the value of considering changes and cumulated effects of connectivity over time. As an example, we analysed connectivity among patches influenced by maize over 7 years in an agricultural landscape in Brittany, France.Clear temporal patterns appeared: maize is concentrated in certain parts of the landscape, but over the period the whole area, 70% of the landscape, used for maize was connected. Instead of discrete patches, maize may produce large clusters allowing movement from patch to patch from year to year. This reinforces the importance of understanding land use allocation rules within farms and landscapes to evaluate the ecological effects of agriculture.  相似文献   

7.
Few studies address how resources and predation risk affect movement patterns and the overall spatial use of prey species. Although movement is generally considered to be dangerous, at large scales, movement may be important for predator avoidance and the predictability of such movement may be key. We examine the movement patterns of a small bird (Junco hyemalis) in winter to better understand how these birds might respond to the trade‐off of unpredictable movements for predator avoidance with the foraging benefits of visiting large, predictable food sources. We manipulated resources by adding feeders to junco home ranges and compared the movement patterns of these flocks to those without access to feeders. Juncos with access to feeders were more spatially and temporally predictable, had reduced movement rates and smaller home range sizes. Our results suggest that the influence of resource distribution on junco movements is high. Juncos with highly productive and predictable resource hotspots may place more value on resources than remaining unpredictable. Consequently, they may be employing non‐movement methods of anti‐predator behavior, such as vigilance, at feeders, although this requires further investigation.  相似文献   

8.
Abstract Relationships with climate and local resources are developed for soils, vegetation and tree foliage as well as levels of herbivory for the dominant eucalypts at sites representing a regional gradient in climate and local contrasts in landscape position. Indicators of site productivity such as soil nitrogen and phosphorus, canopy height and cover, foliar nitrogen and water, and average leaf area tended to increase as climate became more favourable. Many were also higher in locally richer parts of the landscape. In contrast, specific leaf weight, an indication of sclerophylly, decreased as climate and local resources became more favourable. Rates of herbivory tended to increase with increasing site productivity and the associated changes in soil, vegetation and foliar properties, in broad agreement with models relating herbivory to resource availability and plant vigour. We found no evidence to support models relating high herbivory to low-resource environments and plant stress. The apparent level of herbivore damage on mature leaves was highest at intermediate levels of resources; this could reflect interactions between resource availability, rates of herbivory and rates of leaf replacement. Implications of these findings are discussed with respect to ways of measuring herbivory, regional patterns in rates and levels of herbivory, and the regional distribution of rural dieback associated with high herbivory.  相似文献   

9.
Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world’s most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS) collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI). Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities.  相似文献   

10.
Roshier DA  Doerr VA  Doerr ED 《Oecologia》2008,156(2):465-477
Most ecological and evolutionary processes are thought to critically depend on dispersal and individual movement but there is little empirical information on the movement strategies used by animals to find resources. In particular, it is unclear whether behavioural variation exists at all scales, or whether behavioural decisions are primarily made at small spatial scales and thus broad-scale patterns of movement simply reflect underlying resource distributions. We evaluated animal movement responses to variable resource distributions using the grey teal (Anas gracilis) in agricultural and desert landscapes in Australia as a model system. Birds in the two landscapes differed in the fractal dimension of their movement paths, with teal in the desert landscape moving less tortuously overall than their counterparts in the agricultural landscape. However, the most striking result was the high levels of individual variability in movement strategies, with different animals exhibiting different responses to the same resources. Teal in the agricultural basin moved with both high and low tortuosity, while teal in the desert basin primarily moved using low levels of tortuosity. These results call into question the idea that broad-scale movement patterns simply reflect underlying resource distributions, and suggest that movement responses in some animals may be behaviourally complex regardless of the spatial scale over which movement occurs.  相似文献   

11.
Animal movement is a fundamental process shaping ecosystems at multiple levels, from the fate of individuals to global patterns of biodiversity. The spatio‐temporal dynamic of food resources is a major driver of animal movement and generates patterns ranging from range residency to migration and nomadism. Arctic tundra predators face a strongly fluctuating environment marked by cyclic microtine populations, high seasonality, and the potential availability of sea ice, which gives access to marine resources in winter. This type of relatively poor and highly variable environment can promote long‐distance movements and resource tracking in mobile species. Here, we investigated the winter movements of the arctic fox, a major tundra predator often described as a seasonal migrant or nomad. We used six years of Argos satellite telemetry data collected on 66 adults from Bylot Island (Nunavut, Canada) tracked during the sea ice period. We hypothesized that long‐distance movements would be influenced by spatio‐temporal changes in resource availability and individual characteristics. Despite strong annual and seasonal changes in resource abundance and distribution, we found that a majority of individuals remained resident, especially those located in an area characterized by highly predictable pulse resources (goose nesting colony) and abundant cached food items (eggs). Foxes compensated terrestrial food shortage by commuting to the sea ice rather than using long‐distance tracking or moving completely onto the sea ice for winter. Individual characteristics also influenced movement patterns: age positively influenced the propensity to engage in nomadism, suggesting older foxes may be driven out of their territories. Our results show how these mammalian predators can adjust their movement patterns to favor range residency despite strong spatio‐temporal fluctuations in food resources. Understanding the movement responses of predators to prey dynamics helps identifying the scales at which they work, which is a critical aspect of the functioning and connectivity among meta‐ecosystems.  相似文献   

12.
Balancing trade-offs between foraging and risk factors is a fundamental behavior that structures the spatial distribution of species. For African elephants Loxodonta africana, human pressures from poaching and conflict are primary drivers of species decline, but little is known about how elephants structure their spatial behavior in the face of human occupancy and predation. We seek to understand how elephants balance trade-offs between resource access, human presence and human predatory risk factors (poaching and conflict killing) in an unfenced, dynamic ecosystem where elephants persist primarily outside protected areas in community rangelands. We used tracking data from 101 elephants collected between 2001 and 2016. We investigated elephant behavior in response to landcover, topography, productivity, water, human features and human predation risk using third-order resource selection functions. We extended this analysis by employing a mixed-effects multinomial regression to identify temporal shifts in habitat use, and evaluated temporal shifts in movement patterns by estimating mean squared displacement across different productivity periods. Across periods, elephants displayed strong selection for productive areas and areas near water. Temporal shifts in habitat use showed that, during the dry period, elephants were clustered around permanent water sources where humans also congregated. At the onset of the wet period, a shift occurred where elephants moved away from permanent water and from permanent settlements towards seasonal water sources and seasonal settlements. Our findings indicate that foraging and water access are important limiting factors affecting elephants that potentially restrain their spatial responses to humans at the scale of our analysis. Given that pastoralists and elephants rely on the same resources, increasing human and livestock populations enhance pressure on shared resources and space in Africa's drylands. The long-term conservation of elephants will require approaches that reduce poaching as well as landscape level planning to prevent negative impacts from increasing competition for preferred resources.  相似文献   

13.
Patterns of space-use by individuals are fundamental to the ecology of animal populations influencing their social organization, mating systems, demography and the spatial distribution of prey and competitors. To date, the principal method used to analyse the underlying determinants of animal home range patterns has been resource selection analysis (RSA), a spatially implicit approach that examines the relative frequencies of animal relocations in relation to landscape attributes. In this analysis, we adopt an alternative approach, using a series of mechanistic home range models to analyse observed patterns of territorial space-use by coyote packs in the heterogeneous landscape of Yellowstone National Park. Unlike RSAs, mechanistic home range models are derived from underlying correlated random walk models of individual movement behaviour, and yield spatially explicit predictions for patterns of space-use by individuals. As we show here, mechanistic home range models can be used to determine the underlying determinants of animal home range patterns, incorporating both movement responses to underlying landscape heterogeneities and the effects of behavioural interactions between individuals. Our analysis indicates that the spatial arrangement of coyote territories in Yellowstone is determined by the spatial distribution of prey resources and an avoidance response to the presence of neighbouring packs. We then show how the fitted mechanistic home range model can be used to correctly predict observed shifts in the patterns of coyote space-use in response to perturbation.  相似文献   

14.
Increased awareness of spatiotemporal variation in species interactions has motivated the study of temporally-resolved food web dynamics at the landscape level. Empiricists have focused attention on cross-habitat flows of materials, nutrients, and prey, largely ignoring the movement of predators between habitats that differ in productivity (and how predators integrate pulses in resource availability over time). We set out to study seasonal variation in food web interactions between mammalian carnivores and their rodent prey along a riparian–upland gradient in semi-arid southeastern Arizona which features both spatial and temporal heterogeneity in resource availability. Specifically, we tested whether mammalian carnivores spill over from productive, near-river habitats into adjacent, desert-scrub habitats; and if they do, to document the effects of this spillover on rodent communities. Furthermore, we examined seasonal variation in top-down effects by measuring changes in carnivore diet and distribution patterns and rodent populations over time. The results indicate that carnivores track seasonally-abundant resources across the landscape, varying both their diet and movement patterns. In turn, desert-scrub rodent population dynamics track seasonal shifts in carnivore habitat use but not resource availability, suggesting that predation plays a role in structuring rodent communities along the San Pedro River. Further evidence comes from data on rodent community composition, which differs between desert-scrub habitats near and far from the river, despite similarities in resource availability. Our data also suggest that seasonal omnivory helps predators survive lean times, increasing their effects on prey populations. Taken together, these results underscore the importance of spatiotemporal variation in species interactions, highlighting the complexity of natural systems and the need for further detailed studies of food web dynamics.  相似文献   

15.
For the first time in human history, the majority of the world''s population resides in urban areas. Therefore, city managers are faced with new challenges related to the efficiency, equity and quality of the supply of resources, such as water, food and energy. Infrastructure in a city can be viewed as service points providing resources. These service points function together as a spatially collaborative system to serve an increasing population. To study the spatial collaboration among service points, we propose a shared network according to human''s collective movement and resource usage based on data usage detail records (UDRs) from the cellular network in a city in western China. This network is shown to be not scale-free, but exhibits an interesting triangular property governed by two types of nodes with very different link patterns. Surprisingly, this feature is consistent with the urban-rural dualistic context of the city. Another feature of the shared network is that it consists of several spatially separated communities that characterize local people''s active zones but do not completely overlap with administrative areas. According to these features, we propose the incorporation of human movement into infrastructure classification. The presence of well-defined spatially separated clusters confirms the effectiveness of this approach. In this paper, our findings reveal the spatial structure inside a city, and the proposed approach provides a new perspective on integrating human movement into the study of a spatially distributed system.  相似文献   

16.
Animals access resources such as food and shelter, and acquiring these resources has varying risks and benefits, depending on the suitability of the landscape. Some animals change their patterns of resource selection in space and time to optimize the trade‐off between risks and benefits. We examine the circadian variation in resource selection of swamp wallabies (Wallabia bicolor) within a human‐modified landscape, an environment of varying suitability. We used GPS data from 48 swamp wallabies to compare the use of landscape features such as woodland and scrub, housing estates, farmland, coastal areas, wetlands, waterbodies, and roads to their availability using generalized linear mixed models. We investigated which features were selected by wallabies and determined whether the distance to different landscape features changed, depending on the time of the day. During the day, wallabies were more likely to be found within or near natural landscape features such as woodlands and scrub, wetlands, and coastal vegetation, while avoiding landscape features that may be perceived as more risky (roads, housing, waterbodies, and farmland), but those features were selected more at night. Finally, we mapped our results to predict habitat suitability for swamp wallabies in human‐modified landscapes. We showed that wallabies living in a human‐modified landscape selected different landscape features during day or night. Changing circadian patterns of resource selection might enhance the persistence of species in landscapes where resources are fragmented and disturbed.  相似文献   

17.
Climate connectivity, the ability of a landscape to promote or hinder the movement of organisms in response to a changing climate, is contingent on multiple factors including the distance organisms need to move to track suitable climate over time (i.e. climate velocity) and the resistance they experience along such routes. An additional consideration which has received less attention is that human land uses increase resistance to movement or alter movement routes and thus influence climate connectivity. Here we evaluate the influence of human land uses on climate connectivity across North America by comparing two climate connectivity scenarios, one considering climate change in isolation and the other considering climate change and human land uses. In doing so, we introduce a novel metric of climate connectivity, ‘human exposure’, that quantifies the cumulative exposure to human activities that organisms may encounter as they shift their ranges in response to climate change. We also delineate potential movement routes and evaluate whether the protected area network supports movement corridors better than non‐protected lands. We found that when incorporating human land uses, climate connectivity decreased; climate velocity increased on average by 0.3 km/year and cumulative climatic resistance increased for ~83% of the continent. Moreover, ~96% of movement routes in North America must contend with human land uses to some degree. In the scenario that evaluated climate change in isolation, we found that protected areas do not support climate corridors at a higher rate than non‐protected lands across North America. However, variability is evident, as many ecoregions contain protected areas that exhibit both more and less representation of climate corridors compared to non‐protected lands. Overall, our study indicates that previous evaluations of climate connectivity underestimate climate change exposure because they do not account for human impacts.  相似文献   

18.
1. Organisms respond to the abundance and spatial distribution of resources at both individual and population scales but there have been relatively few attempts to link insights from studies of these different phenomena, especially for wide-ranging vertebrates.
2. Deer Mice ( Peromyscus maniculatus ) were live-trapped and tracked across a gradient of shrub cover in shortgrass prairie to determine patterns of abundance, microhabitat use and movements.
3. In areas with few shrubs, mice preferred shrub microhabitats and their movement trails were relatively straight. Both trail tortuosity and population density increased with increasing shrub cover, so that mice tended to accumulate in areas where their trails were most convoluted. However, movements were also linear where shrubs were dense, presumably because mice could achieve the benefits of association with shrubs without travelling directly beneath them. Areas with dense shrubs also had high but variable population densities, suggesting that other factors such as intraspecific interactions may have affected movements on a larger, home-range scale.
4. Apparent thresholds in the selective vs random use of shrubs, movement patterns and abundance occurred over a narrow range of shrub cover where shrubs were most aggregated, underscoring the importance of both shrub density and dispersion. Non-linear relationships in the response to resources at both behavioural and population scales thus may complicate our ability to predict abundance from individual movements across a broad range of resource distributions.  相似文献   

19.
Human activity and associated landscape modifications alter the movements of animals with consequences for populations and ecosystems worldwide. Species performing long-distance movements are thought to be particularly sensitive to human impact. Despite the increasing anthropogenic pressure, it remains challenging to understand and predict animals' responses to human activity. Here we address this knowledge gap using 1206 Global Positioning System movement trajectories of 815 individuals from 14 red deer (Cervus elaphus) and 14 elk (Cervus canadensis) populations spanning wide environmental gradients, namely the latitudinal range from the Alps to Scandinavia in Europe, and the Greater Yellowstone Ecosystem in North America. We measured individual-level movements relative to the environmental context, or movement expression, using the standardized metric Intensity of Use, reflecting both the directionality and extent of movements. We expected movement expression to be affected by resource (Normalized Difference Vegetation Index, NDVI) predictability and topography, but those factors to be superseded by human impact. Red deer and elk movement expression varied along a continuum, from highly segmented trajectories over relatively small areas (high intensity of use), to directed transitions through restricted corridors (low intensity of use). Human activity (Human Footprint Index, HFI) was the strongest driver of movement expression, with a steep increase in Intensity of Use as HFI increased, but only until a threshold was reached. After exceeding this level of impact, the Intensity of Use remained unchanged. These results indicate the overall sensitivity of Cervus movement expression to human activity and suggest a limitation of plastic responses under high human pressure, despite the species also occurring in human-dominated landscapes. Our work represents the first comparison of metric-based movement expression across widely distributed populations of a deer genus, contributing to the understanding and prediction of animals' responses to human activity.  相似文献   

20.
Spatial point pattern analysis of available and exploited resources   总被引:7,自引:0,他引:7  
A patchy spatial distribution of resources underpins many models of population regulation and species coexistence, so ecologists require methods to analyse spatially‐explicit data of resource distribution and use. We describe a method for analysing maps of resources and testing hypotheses about species' distributions and selectivity. The method uses point pattern analysis based on the L‐function, the linearised form of Ripley's K‐function. Monte Carlo permutations are used for statistical tests. We estimate the difference between observed and expected values of L(t), an approach with several advantages: 1) The results are easy to interpret ecologically. 2) It obviates the need for edge correction, which has largely precluded the use of L‐functions where plot boundaries are “real”. Including edge corrections may lead to erroneous conclusions if the underlying assumptions are invalid. 3) The null expectation can take many forms, we illustrate two models: complete spatial randomness (to describe the spatial pattern of resources in the landscape) and the underlying pattern of resource patches in the landscape (akin to a neutral landscape approach). The second null is particularly useful to test whether spatial patterns of exploited resource points simply reflect the spatial patterns of all resource points. We tested this method using over 100 simulated point patterns encompassing a range of patterns that might occur in ecological systems, and some very extreme patterns. The approach is generally robust, but Type II decision errors might arise where spatial patterns are weak and when trying to detect a clumped pattern of exploited points against a clumped pattern of all points. An empirical example of an intertidal lichen growing on barnacle shells illustrates how this technique might be used to test hypotheses about dispersal mechanisms. This approach can increase the value of survey data, by permitting quantification of natural resource patch distribution in the landscape as well as patterns of resource use by species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号