首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron overload is associated with acquired and genetic conditions, the most common being hereditary hemochromatosis (HH) type-I, caused by HFE mutations. Here, we conducted a hospital-based case-control study of 41 patients from the São Miguel Island (Azores, Portugal), six belonging to a family with HH type-I pseudodominant inheritance, and 35 unrelated individuals fulfilling the biochemical criteria of iron overload compatible with HH type-I. For this purpose, we analyzed the most common HFE mutations– c.845G>A [p.Cys282Tyr], c.187C>G [p.His63Asp], and c.193A>T [p.Ser65Cys]. Results revealed that the family’s HH pseudodominant pattern is due to consanguineous marriage of HFE-c.845G>A carriers, and to marriage with a genetically unrelated spouse that is a -c.187G carrier. Regarding unrelated patients, six were homozygous for c.845A, and three were c.845A/c.187G compound heterozygous. We then performed sequencing of HFE exons 2, 4, 5 and their intron-flanking regions. No other mutations were observed, but we identified the -c.340+4C [IVS2+4C] splice variant in 26 (74.3%) patients. Functionally, the c.340+4C may generate alternative splicing by HFE exon 2 skipping and consequently, a protein missing the α1-domain essential for HFE/ transferrin receptor-1 interactions. Finally, we investigated HFE mutations configuration with iron overload by determining haplotypes and genotypic profiles. Results evidenced that carriers of HFE-c.187G allele also carry -c.340+4C, suggesting in-cis configuration. This data is corroborated by the association analysis where carriers of the complex allele HFE-c.[187C>G;340+4T>C] have an increased iron overload risk (RR = 2.08, 95% CI = 1.40−2.94, p<0.001). Therefore, homozygous for this complex allele are at risk of having iron overload because they will produce two altered proteins—the p.63Asp [c.187G], and the protein lacking 88 amino acids encoded by exon 2. In summary, we provide evidence that the complex allele HFE-c.[187C>G;340+4T>C] has a role, as genetic predisposition factor, on iron overload in the São Miguel population. Independent replication studies in other populations are needed to confirm this association.  相似文献   

2.

Objective

Arthropathy that mimics osteoarthritis (OA) and osteoporosis (OP) is considered a complication of hereditary hemochromatosis (HH). We have limited data comparing OA and OP prevalence among HH patients with different hemochromatosis type 1 (HFE) genotypes. We investigated the prevalence of OA and OP in patients with HH by C282Y homozygosity and compound heterozygosity (C282Y/H63D) genotype.

Methods

A total of 306 patients with HH completed a questionnaire. Clinical and demographic characteristics and presence of OA, OP and related complications were compared by genotype, adjusting for age, sex, body mass index (BMI), current smoking and menopausal status.

Results

In total, 266 of the 306 patients (87%) were homozygous for C282Y, and 40 (13%) were compound heterozygous. The 2 groups did not differ by median age [60 (interquartile range [IQR] 53 to 68) vs. 61 (55 to 67) years, P=0.8], sex (female: 48.8% vs. 37.5%, P=0.18) or current smoking habits (12.4% vs. 10%, P=0.3). As compared with compound heterozygous patients, C282Y homozygous patients had higher median serum ferritin concentration at diagnosis [1090 (IQR 610 to 2210) vs. 603 (362 to 950) µg/L, P<0.001], higher median transferrin saturation [80% (IQR 66 to 91%) vs. 63% (55 to 72%), P<0.001]) and lower median BMI [24.8 (22.1 to 26.9) vs. 26.2 (23.5 to 30.3) kg/m2, P<0.003]. The overall prevalence of self-reported OA was significantly higher with C282Y homozygosity than compound heterozygosity (53.4% vs. 32.5%; adjusted odds ratio [aOR] 2.4 [95% confidence interval 1.2–5.0]), as was self-reported OP (25.6% vs. 7.5%; aOR 3.5 [1.1–12.1]).

Conclusion

Patients with C282Y homozygosity may be at increased risk of musculoskeletal complications of HH.  相似文献   

3.
Despite type I haemochromatosis (HC) is mainly associated with the HFE C282Y/C282Y genotype, a second genotype -C282Y/H63D- has mostly been described in other patients. Its association with HC, apart from any associated co-morbid factors, remains unclear and complex to interpret for physicians. This study assesses the weight of this genotype and the role of co-morbid factors in the occurrence of iron overload. This prospective study included the C282Y/C282Y (n = 172) and C282Y/H63D (n = 58) patients enrolled in a phlebotomy program between 2004 and 2007 in a blood centre of western Brittany (Brest, France), where HC is frequent. We compared prevalence of these two genotypes, as well as patients’ profile regarding degree of iron overload and prevalence of co-morbid factors. First, we confirmed the obvious deficit of C282Y/H63D compound heterozygotes among patients cared by phlebotomies. This genotype was 3.0 times less frequent than the C282Y/C282Y genotype among those patients (18.9% vs. 56.0%) whereas it was 4.9 times more frequent in the general population (4.3% vs. 0.9%; p<0.0001). Despite a similar level of hyperferritinaemia, the C282Y/H63D patients who came to medical attention had a milder plasma iron overload, reflected by a lower transferrin saturation median (52.0% vs. 84.0%; p<0.0001). They also exhibited more frequently co-morbid factors, as heavy drinking (26.0% vs. 13.9%; p = 0.0454), overweight (66.7% vs. 39.4%; p = 0.0005) or both (21.3% vs. 2.6%; p<0.0001). Ultimately, they required a lower amount of iron removed to reach depletion (2.1 vs. 3.4 g; p<0.0001), clearly reflecting their lower tissue iron. This study confirms that H63D is a discrete genetic susceptibility factor whose expression is most visible in association with other co-factors. It highlights the importance of searching for co-morbidities in these diagnostic situations and of providing lifestyle and dietary advice.  相似文献   

4.
Classical hereditary hemochromatosis involves the HFE-gene and diagnostic analysis of the DNA variants HFE p.C282Y (c.845G > A; rs1800562) and HFE p.H63D (c.187C > G; rs1799945). The affected protein alters the iron homeostasis resulting in iron overload in various tissues. The aim of this study was to validate the TaqMan-based Sample-to-SNP protocol for the analysis of the HFE-p.C282Y and p.H63D variants with regard to accuracy, usefulness and reproducibility compared to an existing SNP protocol. The Sample-to-SNP protocol uses an approach where the DNA template is made accessible from a cell lysate followed by TaqMan analysis. Besides the HFE-SNPs other eight SNPs were used as well. These SNPs were: Coagulation factor II-gene F2 c.20210G > A, Coagulation factor V-gene F5 p.R506Q (c.1517G > A; rs121917732), Mitochondria SNP: mt7028 G > A, Mitochondria SNP: mt12308 A > G, Proprotein convertase subtilisin/kexin type 9-gene PCSK9 p.R46L (c.137G > T), Plutathione S-transferase pi 1-gene GSTP1 p.I105V (c313A > G; rs1695), LXR g.-171 A > G, ZNF202 g.-118 G > T. In conclusion the Sample-to-SNP kit proved to be an accurate, reliable, robust, easy to use and rapid TaqMan-based SNP detection protocol, which could be quickly implemented in a routine diagnostic or research facility.  相似文献   

5.
Two single nucleotide polymorphisms (SNPs) in the Human Hemochromatosis (HFE) gene, C282Y and H63D, are the major variants associated to altered iron status and it is well known that these mutations are in linkage disequilibrium with certain Human Leukocyte Antigen (HLA)-A alleles. In addition, the C282Y SNP has been previously suggested to confer susceptibility to acute lymphoblastic leukemia (ALL). We have aimed to assess the diagnosis utility of these polymorphisms in a population of Spanish subjects with suspicion of hereditary iron overload and to evaluate the effect of their associations with HLA-A alleles on the susceptibility to ALL. Both the 63DD [OR = 4.31 (1.7–11.2)] and 282YY (p for trend = 0.02) genotypes were more frequently found among subjects with suspicion of iron overload than among controls. 282YY carriers displayed significantly higher transferrin saturation index (TSI) values (p < 0.001) as well as serum iron (p = 0.01) and ferritin (p = 0.01) levels. In addition, transferrin levels were lower in these subjects (p = 0.01). Likewise, patients who were carriers of the compound heterozygous diplotype (282CY/63HD) showed significantly higher TSI and serum iron and ferritin concentrations. The H63D SNP did not significantly affect the analytical parameters measured. All 282YY carriers and 69.2% of compound heterozygotes showed an altered biochemical index. The frequencies of the HFE SNPs in ALL pediatric patients were lower than those found in controls, whereas the HLA-A*24 allele was significantly overrepresented in the patients group [OR = 3.76 (1.9–7.3)]. No HFE-HLA-A associations were found to modulate the ALL risk. These results suggest that it may be useful to test for both HFE H63D and C282Y polymorphisms in patients with iron overload, as opposed to just genotyping for the C282Y SNP, which is customary in some healthcare centers. These HFE variants and their associations with HLA-A alleles were not observed to be relevant for the susceptibility to ALL in our population.  相似文献   

6.
Currently two mutations in the HFE gene are known to be associated with the manifestation of the autosomal recessive disorder hereditary hemochromatosis (HH). A single-base mutation resulting in Cys282Tyr appears to have a causative role in the development of the disease, and a point mutation resulting in His63Asp may also be involved. Recent observations with a fully automated capillary electrophoresis (CE) system (ABI Prism 310) suggested that this instrument could be used for the precise identification of known mutations based on single-strand conformation polymorphism (SSCP). Two DNA fragments, each specific for one of the HFE mutation sites and labeled with a different fluorophor, were coamplified and without further manipulation simultaneously analyzed by CE-SSCP. Wild-type samples showed a mobility pattern that was clearly distinguishable from homozygous Cys282Tyr, homozygous His63Asp, or a compound heterozygous sample. To evaluate the reliability of this system for the detection of both mutations, 20 samples were analyzed blind. All genotypes, which were called automatically, were in concordance with those obtained by a previously validated restriction fragment length polymorphism method. Thus, SSCP in combination with CE provides a fast and precise research tool for the simultaneous identification of the two common mutations implicated in HH. Received: 9 September 1998 / Accepted: 5 November 1998  相似文献   

7.
 A Celtic origin for hemochromatosis, a common genetic iron metabolism disorder, has been postulated for a long time. To check whether the two mutations recently identified in the HLA-class I candidate gene for this disease were found only in Caucasians, we examined their frequencies in individuals originating from Algeria, Ethiopia, and Senegal. The presumably disease-causing mutation, responsible for the Cys282Tyr substitution, was not found in any member of these ethnic groups, although it was shown to be highly prevalent in populations of European ancestry. This geographic distribution supports the previously suggested Celtic origin for the disease. In contrast, the mutation responsible for the His63Asp substitution is not restricted to European populations. Although absent in the Senegalese, it was found on about 9% of the chromosomes of the Central Ethiopians and Algerians (Mzab) genotyped for this study. This second mutation, which probably represents a common variant unrelated to hemochromatosis, thus appears to have occurred earlier than that responsible for the Cys282Tyr substitution. More detailed population studies are needed to provide information on the age of these two mutations and eventually show how the hemochromatosis-causing mutation chronologically spread throughout Europe. Received: 24 December 1996 / Revised: 11 February 1997  相似文献   

8.
To evaluate functional and compositional properties of HDL in subjects from a kindred of genetic apoA-I deficiency, two homozygotes and six heterozygotes, with a nonsense mutation at APOA1 codon -2, Q[-2]X, were recruited together with age- and sex-matched healthy controls (n = 11). Homozygotes displayed undetectable plasma levels of apoA-I and reduced levels of HDL-cholesterol (HDL-C) and apoC-III (5.4% and 42.6% of controls, respectively). Heterozygotes displayed low HDL-C (21 ± 9 mg/dl), low apoA-I (79 ± 24 mg/dl), normal LDL-cholesterol (132 ± 25 mg/dl), and elevated TG (130 ± 45 mg/dl) levels. Cholesterol efflux capacity of ultracentrifugally isolated HDL subpopulations was reduced (up to −25%, P < 0.01, on a glycerophospholipid [GP] basis) in heterozygotes versus controls. Small, dense HDL3 and total HDL from heterozygotes exhibited diminished antioxidative activity (up to −48%, P < 0.001 on a total mass basis) versus controls. HDL subpopulations from both homozygotes and heterozygotes displayed altered chemical composition, with depletion in apoA-I, GP, and cholesteryl ester; enrichment in apoA-II, free cholesterol, and TG; and altered phosphosphingolipidome. The defective atheroprotective activities of HDL were correlated with altered lipid and apo composition. These data reveal that atheroprotective activities of HDL particles are impaired in homozygous and heterozygous apoA-I deficiency and are intimately related to marked alterations in protein and lipid composition.  相似文献   

9.
Most cases of genetic hemochromatosis (GH) are associated with the HFE C282Y/C282Y (p.Cys282Tyr/p.Cys282Tyr) genotype in white populations. The symptoms expressed by C282Y homozygotes are extremely variable. Only a few suffer from an overt disease. Several studies have suggested that, in addition to environmental factors, a genetic component could explain a substantial part of this phenotypic variation, although very few genetic factors have been identified so far. In the present study, we tested the association between common variants in candidate genes and hemochromatosis penetrance, in a large sample of C282Y homozygotes, using pretherapeutic serum ferritin level as marker of hemochromatosis penetrance. We focused on two biologically relevant gene categories: genes involved in non-HFE GH (TFR2, HAMP, and SLC40A1) and genes involved in the regulation of hepcidin expression, including genes from the bone morphogenetic protein (BMP) regulatory pathway (BMP2, BMP4, HJV, SMAD1, SMAD4, and SMAD5) and the IL6 gene from the inflammation-mediated regulation pathway. A significant association was detected between serum ferritin level and rs235756, a common single-nucleotide polymorphism (SNP) in the BMP2 genic region (P=4.42x10-5). Mean ferritin level, adjusted for age and sex, is 655 ng/ml among TT genotypes, 516 ng/ml in TC genotypes, and 349 ng/ml in CC genotypes. Our results further suggest an interactive effect on serum ferritin level of rs235756 in BMP2 and a SNP in HJV, with a small additive effect of a SNP in BMP4. This first reported association between common variants in the BMP pathway and iron burden suggests that full expression of HFE hemochromatosis is linked to abnormal liver expression of hepcidin, not only through impairment in the HFE function but also through functional modulation in the BMP pathway. Our results also highlight the BMP regulation pathway as a good candidate for identification of new modifier genes.  相似文献   

10.
The present study aimed at assessing the frequency ofHFE mutations (C282Y, H63D and S65C) in western Romanian patients with liver disease of diverse aetiologies suspected of iron overload. A total of 21 patients, all Romanian residents hospitalized with clinical suspicion of iron overload and liver disease, were assayed for C282Y, H63D and S65C mutations, serum ferritin and viral hepatitis markers. Overall, 9 out of the 21 patients (42.86%) were found to harbour mutations in theHFE gene: 4 homozygotes C282Y (19.0%), 1 compound heterozygote C282Y/H63D (4.8%), 1 single heterozygote C282Y (4.8%), 2 single heterozygotes H63D (9.5%), 1 single heterozygote S65C (4.8%), and 12 wild-type cases (57.1%). Among the subgroup of 10 patients with the most prominent signs of iron overload (hyperferritinaemia and/or hepatocyte iron score ≥ 1), without hepatocellular carcinoma, theHFE genotypes were conclusive in 5 cases (50%). They had significantly increased ferritin levels compared to wild-type cases (P = 0.029). The inclusion of iron studies during routine clinical visits, coupled with the availability ofHFE genotyping for family and population studies, should facilitate the early detection of hereditary haemochromatosis in Romania.  相似文献   

11.
The identification of variants of unknown clinical significance (VUS) in the BRCA1 gene complicates genetic counselling and causes additional anxiety to carriers. In silico approaches currently used for VUS pathogenicity assessment are predictive and often produce conflicting data. Furthermore, functional assays are either domain or function specific, thus they do not examine the entire spectrum of BRCA1 functions and interpretation of individual assay results can be misleading. PolyPhen algorithm predicted that the BRCA1 p.Ser36Tyr VUS identified in the Cypriot population was damaging, whereas Align-GVGD predicted that it was possibly of no significance. In addition the BRCA1 p.Ser36Tyr variant was found to be associated with increased risk (OR = 3.47, 95% CI 1.13-10.67, P = 0.02) in a single case-control series of 1174 cases and 1109 controls. We describe a cellular system for examining the function of exogenous full-length BRCA1 and for classifying VUS. We achieved strong protein expression of full-length BRCA1 in transiently transfected HEK293T cells. The p.Ser36Tyr VUS exhibited low protein expression similar to the known pathogenic variant p.Cys61Gly. Co-precipitation analysis further demonstrated that it has a reduced ability to interact with BARD1. Further, co-precipitation analysis of nuclear and cytosolic extracts as well as immunofluorescence studies showed that a high proportion of the p.Ser36Tyr variant is withheld in the cytoplasm contrary to wild type protein. In addition the ability of p.Ser36Tyr to co-localize with conjugated ubiquitin foci in the nuclei of S-phase synchronized cells following genotoxic stress with hydroxyurea is impaired at more pronounced levels than that of the p.Cys61Gly pathogenic variant. The p.Ser36Tyr variant demonstrates abrogated function, and based on epidemiological, genetic, and clinical data we conclude that the p.Ser36Tyr variant is probably associated with a moderate breast cancer risk.  相似文献   

12.
The development of next generation sequencing techniques has facilitated the detection of mutations at an unprecedented rate. These efficient tools have been particularly beneficial for extremely heterogeneous disorders such as autosomal recessive non-syndromic hearing loss, the most common form of genetic deafness. GJB2 mutations are the most common cause of hereditary hearing loss. Amongst them the NM_004004.5: c.506G > A (p.Cys169Tyr) mutation has been associated with varying severity of hearing loss with unclear segregation patterns. In this study, we report a large consanguineous Emirati family with severe to profound hearing loss fully segregating the GJB2 missense mutation p.Cys169Tyr. Whole exome sequencing (WES), in silico, splicing and expression analyses ruled out the implication of any other variants and confirmed the implication of the p.Cys169Tyr mutation in this deafness family. We also show preliminary murine expression analysis that suggests a link between the TMEM59 gene and the hearing process. The present study improves our understanding of the molecular pathogenesis of hearing loss. It also emphasizes the significance of combining next generation sequencing approaches and segregation analyses especially in the diagnosis of disorders characterized by complex genetic heterogeneity.  相似文献   

13.
Acephalic spermatozoa syndrome is a rare and severe form of teratozoospermia characterized by a predominance of headless spermatozoa in the ejaculate. Family clustering and consanguinity suggest a genetic origin; however, causative mutations have yet to be identified. We performed whole-exome sequencing in two unrelated infertile men and subsequent variant filtering identified one homozygous (c.824C>T [p.Thr275Met]) and one compound heterozygous (c.1006C>T [p.Arg356Cys] and c.485T>A [p.Met162Lys]) SUN5 (also named TSARG4) variants. Sanger sequencing of SUN5 in 15 additional unrelated infertile men revealed four compound heterozygous (c.381delA [p.Val128Serfs7] and c.824C>T [p.Thr275Met]; c.381delA [p.Val128Serfs7] and c.781G>A [p.Val261Met]; c.216G>A [p.Trp72] and c.1043A>T [p.Asn348Ile]; c.425+1G>A/c.1043A>T [p.Asn348Ile]) and two homozygous (c.851C>G [p.Ser284]; c.350G>A [p.Gly114Arg]) variants in six individuals. These 10 SUN5 variants were found in 8 of 17 unrelated men, explaining the genetic defect in 47.06% of the affected individuals in our cohort. These variants were absent in 100 fertile population-matched control individuals. SUN5 variants lead to absent, significantly reduced, or truncated SUN5, and certain variants altered SUN5 distribution in the head-tail junction of the sperm. In summary, these results demonstrate that biallelic SUN5 mutations cause male infertility due to autosomal-recessive acephalic spermatozoa syndrome.  相似文献   

14.
Only a small proportion of genetic variation in complex traits has been explained by SNPs from genome-wide association studies (GWASs). We report the results from two GWASs for serum markers of iron status (serum iron, serum transferrin, transferrin saturation with iron, and serum ferritin), which are important in iron overload (e.g., hemochromatosis) and deficiency (e.g., anemia) conditions. We performed two GWASs on samples of Australians of European descent. In the first GWAS, 411 adolescent twins and their siblings were genotyped with 100K SNPs. rs1830084, 10.8 kb 3′ of TF, was significantly associated with serum transferrin (p total association test = 1.0 × 10−9; p within-family test = 2.2 × 10−5). In the second GWAS on an independent sample of 459 female monozygotic (MZ) twin pairs genotyped with 300K SNPs, we found rs3811647 (within intron 11 of TF, HapMap CEU r2 with rs1830084 = 0.86) was significantly associated with serum transferrin (p = 3.0 × 10−15). In the second GWAS, we found two additional and independent SNPs on TF (rs1799852 and rs2280673) and confirmed the known C282Y mutation in HFE to be independently associated with serum transferrin. The three variants in TF (rs3811647, rs1799852 and rs2280673) plus the HFE C282Y mutation explained ~40% of genetic variation in serum transferrin (p = 7.8 × 10−25). These findings are potentially important for our understanding of iron metabolism and of regulation of hepatic protein secretion, and also strongly support the hypothesis that the genetic architecture of some endophenotypes may be simpler than that of disease.  相似文献   

15.
Mutations in Gap Junction Beta 2 (GJB2) have been reported to be a major cause of non-syndromic hearing loss in many populations worldwide. The spectrums and frequencies of GJB2 variants vary substantially among different ethnic groups, and the genotypes among these populations remain poorly understood. In the present study, we carried out a systematic and extended mutational screening of GJB2 gene in 1067 Han Chinese subjects with non-syndromic hearing loss, and the resultant GJB2 variants were evaluated by phylogenetic, structural and bioinformatic analysis. A total of 25 (23 known and 2 novel) GJB2 variants were identified, including 6 frameshift mutations, 1 nonsense mutation, 16 missense mutations and 2 silent mutations. In this cohort, c.235delC is the most frequently observed pathogenic mutation. The phylogenetic, structural and bioinformatic analysis showed that 2 novel variants c.127G>T (p.V43L), c.293G>C (p.R98P) and 2 known variants c. 107T>C (p.L36P) and c.187G>T (p.V63L) are localized at highly conserved amino acids. In addition, these 4 mutations are absent in 203 healthy individuals, therefore, they are probably the most likely candidate pathogenic mutations. In addition, 66 (24 novel and 42 known) genotypes were identified, including 6 homozygotes, 20 compound heterozygotes, 18 single heterozygotes, 21 genotypes harboring only polymorphism(s) and the wild type genotype. Among these, 153 (14.34%) subjects were homozygous for pathogenic mutations, 63 (5.91%) were compound heterozygotes, and 157 (14.71%) carried single heterozygous mutation. Furthermore, 65.28% (141/216) of these cases with two pathogenic mutations exhibited profound hearing loss. These data suggested that mutations in GJB2 gene are responsible for approximately 34.96% of non-syndromic hearing loss in Han Chinese population from Zhejiang Province in eastern China. In addition, our results also strongly supported the idea that other factors such as alterations in regulatory regions, additional genes, and environmental factors may contribute to the clinical manifestation of deafness.  相似文献   

16.
Hereditary hemochromatosis (HH) is the most common genetic disease among individuals of European descent. Two mutations (845G-->A, C282Y and 187C-->G, H63D) in the hemochromatosis gene (HFE gene) are associated with HH. About 85-90% of patients of northern European descent with HH are C282Y homozygous. The prevalence of HH in the Brazilian population, which has a very high level of racial admixture, is unknown. The aims of the present study were to identify individuals with diagnostic criteria for HH among patients with a body iron overload attended at the university hospital of the Faculty of Medicine of Ribeirao Preto from 1990 to 2000, and to evaluate the prevalence of HFE mutations. We screened first-degree relatives for HFE mutations. Four of 72 patients (three men and one woman, mean age 47 years) fulfilled the criteria for HH. HFE mutations were studied in three patients [two C282Y homozygotes (patients 1 and 2) and one H63D heterozygote]. Patient 1 had four children (all C282Y heterozygotes with no iron overload) and seven brothers and sisters: two sisters (66 and 76 years old) were C282Y homozygotes and both had an iron overload (a liver biopsy in one showed severe iron deposits), one sister (79 years old) was a compound heterozygote with no iron overload, one brother (78 years old) was a C282Y heterozygote with no iron overload, two individuals were H63D heterozygotes (one brother, 49 years old, obese, with a body iron overload and abnormal liver enzymes - a biopsy showed non-alcoholic steatohepatitis, and one 70-year-old sister with no iron overload). Patient 2 had two children (22 and 24 years old who were C282Y heterozygotes with no iron overload) but no brothers or sisters. These results showed that HH was uncommon among individuals attended at our hospital, although HFE mutations were found in all patients. Familial screening is valuable for the early diagnosis of individuals at risk since it allows treatment to be initiated before the onset of the clinical manifestations of organ damage associated with HH.  相似文献   

17.
Notch signaling determines and reinforces cell fate in bilaterally symmetric multicellular eukaryotes. Despite the involvement of Notch in many key developmental systems, human mutations in Notch signaling components have mainly been described in disorders with vascular and bone effects. Here, we report five heterozygous NOTCH1 variants in unrelated individuals with Adams-Oliver syndrome (AOS), a rare disease with major features of aplasia cutis of the scalp and terminal transverse limb defects. Using whole-genome sequencing in a cohort of 11 families lacking mutations in the four genes with known roles in AOS pathology (ARHGAP31, RBPJ, DOCK6, and EOGT), we found a heterozygous de novo 85 kb deletion spanning the NOTCH1 5′ region and three coding variants (c.1285T>C [p.Cys429Arg], c.4487G>A [p.Cys1496Tyr], and c.5965G>A [p.Asp1989Asn]), two of which are de novo, in four unrelated probands. In a fifth family, we identified a heterozygous canonical splice-site variant (c.743−1 G>T) in an affected father and daughter. These variants were not present in 5,077 in-house control genomes or in public databases. In keeping with the prominent developmental role described for Notch1 in mouse vasculature, we observed cardiac and multiple vascular defects in four of the five families. We propose that the limb and scalp defects might also be due to a vasculopathy in NOTCH1-related AOS. Our results suggest that mutations in NOTCH1 are the most common cause of AOS and add to a growing list of human diseases that have a vascular and/or bony component and are caused by alterations in the Notch signaling pathway.  相似文献   

18.
A significant association between HFE gene mutations and the HLA-A*03-B*07 and HLA-A*29-B*44 haplotypes has been reported in the Spanish population. It has been proposed that these mutations are probably connected with Celtic and North African ancestry, respectively. We aimed to find the possible ancestral association between HLA alleles and haplotypes associated with the HFE gene (C282Y and H63D) mutations in 214 subjects from Antioquia, Colombia. These were 18 individuals with presumed hereditary hemochromatosis (“HH”) and 196 controls. The HLA-B*07 allele was in linkage disequilibrium (LD) with C282Y, while HLA-A*23, A*29, HLA-B*44, and B*49 were in LD with H63D. Altogether, our results show that, although the H63D mutation is more common in the Antioquia population, it is not associated with any particular HLA haplotype, whereas the C282Y mutation is associated with HLA-A*03-B*07, this supporting a northern Spaniard ancestry.  相似文献   

19.
Genetic epidemiology studies of hereditary hemochromatosis (HHC) have shown a high prevalence of the C282Y mutation in individuals of the North Western European origin, whereas lower prevalence of HFE gene mutations was detected in the populations from southern European countries. However, no HFE mutation prevalence data have been provided for the population of Bosnia-Herzegovina so far. Therefore, the aim of this study was to determine the frequency of the C282Y and H63D HFE gene mutations in the population of Bosnia-Herzegovina. Among 200 analysed subjects 8 (4%) were C282Y heterozygotes; no C282Y homozygotes were found. The frequency of the H63D allele was 11.5%. There were 33 (16.5%) heterozygotes and 6 (3%) homozygotes for the H63D mutation. One (0.5%) compound heterozygote C282Y/H63D was identified. The observed C282Y and H63D allele frequency was 2.25% (95% confidence interval: 1.2-4.2) and 11.5% (95% confidence interval: 8.7-14.9), respectively. The prevalence of the C282Y and H63D mutations was estimated in Bosnia-Herzegovina, which fit well in the European northwest-to-southeast gradient of the C282Y mutation distribution. In addition, these results have an important implication for clinical evaluation of HHC in Bosnia-Herzegovina.  相似文献   

20.

Background  

Hereditary Hemochromatosis (HH) is a genetic disease associated with iron overload, in which individuals homozygous for the mutant C282Y HFE associated allele are at risk for the development of a range of disorders particularly liver disease. Conformational diseases are a class of disorders associated with the expression of misfolded protein. HFE C282Y is a mutant protein that does not fold correctly and consequently is retained in the Endoplasmic Reticulum (ER). In this context, we sought to identify ER stress signals associated with mutant C282Y HFE protein expression, which may have a role in the molecular pathogenesis of HH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号