首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dube MG  Kalra SP  Kalra PS 《Peptides》2006,27(9):2239-2248
Bilateral electrolytic lesions of the paraventricular nucleus of the hypothalamus (PVN) produce hyperphagia with excess weight gain. The orexigenic neuropeptide Y (NPY) system and the anorexigenic melanocortin system act in the PVN to regulate food intake, and participate in mediating the anorexic effects of leptin. We hypothesized that changes in the responsiveness of these systems may contribute to the hyperphagia observed in PVN-lesioned rats. Adult female Sprague-Dawley rats received either sham or electrolytic lesions in the PVN immediately followed by implantation of a guide cannula into the third cerebroventricle. Twenty-five days following surgery groups of sham and hyperphagic PVN-lesioned rats were injected intracerebroventricularly (i.c.v.) with either 118 pmole or 470 pmole of NPY and food intake was measured for 3 h. Food intake in response to NPY was nearly three-fold higher in PVN-lesioned rats as compared to sham rats. However, the response to 5 microg leptin i.c.v. was not different in lesioned versus sham rats. The effect of the melanocortin agonist MTII on food intake was tested in additional rats beginning either 7-14 days or 30-40 days following surgery. Doses of 0.1 nmole or 1.0 nmole of MTII were injected immediately before lights-off and food intake was measured at 2 h, 24 h and 48 h post-injection. Suppression of food intake in PVN-lesioned rats was not different from that in sham-lesioned rats. These data suggest that hyper-responsiveness to NPY may account in part for the hyperphagia observed in PVN-lesioned rats. Furthermore, based on the similarities of responses of PVN-lesioned and sham control rats to the anorexigenic agents MTII and leptin and the hypersensitivity of lesioned rats to NPY, we conclude that the PVN is not essential for NPY stimulation of food intake or for melanocortin suppression of food intake and that NPY and melanocortin receptors outside of the PVN are sufficient to produce these effects.  相似文献   

2.
To examine the neural mechanism by which hypothalamic neuropeptide Y (NPY) regulates energy homeostasis and feeding behavior in commercial broilers, we measured NPY content in several hypothalamic regions of birds that were fasted and then refed. After fasting for 48 and 72 h, body weight significantly decreased, and food intake significantly increased during the subsequent refeeding. The lost body weight was not restored to ad libitum feeding levels even after 3 days of refeeding. Plasma glucose concentration and body fat content significantly decreased and plasma non-esterified fatty acid (NEFA) concentration significantly increased after 48- and 72-h fasting. Refeeding for 24 h restored plasma metabolites and body fat content to pre-fasting levels. NPY content in the paraventricular nucleus (PVN) and infundibular nucleus significantly increased during fasting, and NPY content of the PVN was restored to pre-fasting levels after 24-h refeeding. However, there was no significant change in the NPY content of the lateral hypothalamic area during fasting or refeeding. The present results of changes in the hypothalamic NPY content during fasting and refeeding support the hypothesis that NPY plays a central role in regulation of energy homeostasis, with especially important effect on feeding behavior and body weight in broiler chickens.  相似文献   

3.
Ye ZY  Li DP 《Regulatory peptides》2011,166(1-3):112-120
Sympathetic nerve activity is increased in obesity-related hypertension. However, the central mechanisms involved in the increased sympathetic outflow remain unclear. The hypothalamic melanocortin system is important for regulating energy balance and sympathetic outflow. To understand the mechanisms by which the melanocortin systems regulates sympathetic outflow, we investigated the role of melanocortin 4 receptors (MC4R) in regulating presympathetic paraventricular nucleus (PVN) neurons. We performed whole-cell patch-clamp recordings on retrogradely labeled PVN neurons projecting to the rostral ventrolateral medulla in brain slices from obese zucker rats (OZRs) and lean zucker rats (LZRs). The MC4R agonists melanotan II (MTII) and α-melanocyte-stimulating hormone (α-MSH) increased the firing activity and depolarized the labeled PVN neurons from both LZRs and OZRs in a concentration-dependent manner. MTII produced significant greater increase in the firing activity in OZRs than in LZRs. Blocking MC4R with the specific antagonist SHU9119 had no effect on the basal firing rate but abolished the MTII-induced increase in the firing rate in both OZRs and LZRs. Furthermore, intracellular dialysis of guanosine 5'-O-(2-thodiphosphate), but not bath application of kynurenic acid and bicuculline, eliminated the MTII-induced increase in firing activity. In addition, MTII had no effect on the frequency and amplitude of glutamatergic excitatory postsynaptic currents and GABAergic inhibitory postsynaptic currents in labeled PVN neurons. Collectively, our findings suggest that MC4R contributes to the elevated excitability of PVN presympathetic neurons, which may be involved in obesity-related hypertension.  相似文献   

4.
To evaluate whether MTII, a melanocortin receptor 3/4 agonist, is working in hypophagic and hypothermogenic obese model, we measured food intake, body weight, oxygen consumption, and fat mass following intracerebroventricular (i.c.v.) infusion of MTII in monosodium glutamate (MSG)-induced obese rats. MTII, or artificial cerebrospinal fluid (aCSF), was infused into i.c.v. with an osmotic minipump for 1 week. MSG-obese rats were induced by neonatal injection of MSG. Five-month-old MSG rats were characterized by hypophagia, lower oxygen consumption, hyperleptinemia, and obesity compared to age-matched control rats. The infusion of MTII decreased their food intake, visceral fat, and body weight in MSG-obese rats compared with aCSF-infused rats. The oxygen consumption was increased by MTII treatment in MSG-obese rats compared with aCSF as well as pair fed (PF) rats. Interestingly, these leptin-like effects of MTII were greater in MSG-obese rats than in controls, which might be related to the increased expression of melanocortin receptor 4 (MC4R) in the hypothalamus of MSG-obese rats. Our results suggested that both anorexic and thermogenic mechanisms were activated by MTII in the MSG-obese rats and contributed to the decrease in body weight and fat mass. Moreover, there was a sensitization to MTII caused by upregulation of the melanocortin receptor in the MSG-obese rats.  相似文献   

5.
The central pathways and mediators involved in sympathoexcitatory responses to circulating leptin are not well understood, although the arcuate-paraventricular nucleus (ARC-PVN) pathway likely plays a critical role. In urethane-anesthetized rats, ipsilateral intracarotid artery (ICA) injection of murine leptin (100 microg/kg) activated most PVN neurons tested. These responses were reduced by intracerebroventricular injection of the melanocortin subtype 3 and 4 receptor (MC3/4-R) antagonist SHU-9119 (0.6 nmol). The MC3/4-R agonist MTII (0.6 nmol icv) activated PVN neurons. Some PVN neurons that were excited by ICA leptin were inhibited by local application of neuropeptide Y (NPY, 2.5 ng). ICA leptin (100 microg/kg) excited presympathetic rostral ventrolateral medulla neurons and renal sympathetic nerve activity without significant change in blood pressure or heart rate; these effects were mimicked by intracerebroventricular injection of MTII (0.6 nmol). These data provide in vivo electrophysiological evidence to support the hypothesis that circulating leptin activates the sympathetic nervous system by stimulating the release of alpha-melanocyte-stimulating hormone in the vicinity of PVN neurons that are inhibited by the orexogenic peptide NPY.  相似文献   

6.
Objective: To model how consuming a low‐carbohydrate (LC) diet influences food intake and body weight. Research Methods and Procedures: Food intake and body weight were monitored in rats with access to chow (CH), LC‐high‐fat (HF), or HF diets. After 8 weeks, rats received intracerebroventricular injections of a melanocortin agonist (melanotan‐II) and antagonist (SHU9119), and feeding responses were measured. At sacrifice, plasma hormones and hypothalamic expression of mRNA for proopiomelanocortin (POMC), melanocortin‐4 receptor, neuropeptide Y (NPY), and agouti related protein (AgRP) were assessed. A second set of rats had access to diet (chow or LC‐HF) for 4 weeks followed by 24 h food deprivation on two occasions, after which food intake and hypothalamic POMC, NPY, and AgRP mRNA expression were measured. Results: HF rats consumed more food and gained more weight than rats on CH or LC‐HF diets. Despite similar intakes and weight gains, LC‐HF rats had increased adiposity relative to CH rats. LC‐HF rats were more sensitive to melanotan‐II and less sensitive to SHU9119. LC‐HF rats had increased plasma leptin and ghrelin levels and decreased insulin levels, and patterns of NPY and POMC mRNA expression were consistent with those of food‐deprived rats. LC‐HF rats did not show rebound hyperphagia after food deprivation, and levels NPY, POMC, and AgRP mRNA expression were not affected by deprivation. Discussion: Our results demonstrate that an LC diet influences multiple systems involved in the controls of food intake and body weight. These data also suggest that maintenance on an LC‐HF diet affects food intake by reducing compensatory responses to food deprivation.  相似文献   

7.
8.
The adipocyte-derived hormone leptin acts in the brain to reduce body weight and fat mass. Recent studies suggest that parvocellular oxytocin (OXT) neurons of the hypothalamic paraventricular nucleus (PVN) can mediate body weight reduction through inhibition of food intake and increased energy expenditure. However, the role of OXT neurons of the PVN as a primary target of leptin has not been investigated. Here, we studied the potential role of OXT neurons of the PVN in leptin-mediated effects on body weight regulation in fasted rats. We demonstrated that intracerebroventricular (ICV) leptin activates STAT3 phosphorylation in OXT neurons of the PVN, showed that this occurs in a subpopulation of OXT neurons that innervate the nucleus of the solitary tract (NTS), and provided further evidence suggesting a role of OXT to mediate leptin’s actions on body weight. In addition, our results indicated that OXT neurons are responsive to ICV leptin and mediate leptin effects on body weight in diet induced obese (DIO) rats, which are resistant to the anorectic effects of the hormone. Thus, we conclude that leptin targets a specific subpopulation of parvocellular OXT neurons of the PVN, and that this action may be important for leptin’s ability to reduce body weight in both control and obese rats.  相似文献   

9.
Many mammals experience spontaneous declines in their food intake and body weight near the end of life, a stage we refer to as senescence. We have previously demonstrated that senescent rats have blunted food intake responses to intracerebroventricular injections of neuropeptide Y (NPY). In the present study, we tested the hypothesis that responsiveness to GABA, a putative potentiator of NPY's effect, is also diminished. Young and old male F344 rats received injections of NPY, muscimol, (MUS, a GABA-A receptor agonist), combinations of these two agents, and vehicle [artificial cerebrospinal fluid (aCSF)] into the hypothalamic paraventricular nucleus (PVN). Both young and old presenescent rats increased their food intake in response to NPY, MUS, and the combination of the two (in comparison to injections of aCSF). The combination treatment was generally more effective than either NPY or MUS alone. These data are consistent with suggestions that both NPY and GABA play a role in the regulation of feeding behavior. Senescent rats exhibited an attenuated NPY-induced food intake, no increase in response to MUS, and a response to NPY + MUS that was no larger than that of NPY alone. We conclude that PVN injections of GABA, as well as NPY, are less effective in stimulating feeding in senescent rats and suggest that alterations in their signaling pathways play a role in the involuntary feeding decrease seen near the end of life.  相似文献   

10.
In this study, we examined the effects of intracerebroventricular administration of melanotan II (MTII), a melanocortin agonist, on insulin sensitivity in diet-induced obese (DIO) rats. Although MTII treatment significantly decreased food intake and body weight for 10 days, there was no significant difference in body weight between MTII and pair-fed groups. The insulin tolerance test showed that insulin sensitivity was significantly improved in the MTII group compared to the pair-fed group. Furthermore, MTII treatment increased the number of small-sized adipocytes in epididymal white adipose tissues, suggesting that MTII increased insulin sensitivity through action on the white adipose tissues in DIO rats.  相似文献   

11.
Neuropeptide Y strongly stimulates food intake when it is injected in the hypothalamic paraventricular (PVN) and ventromedian (VMN) nuclei. In Sprague-Dawley (SD) rats, NPY synthesis in the arcuate nucleus (ARC) is increased by food deprivation and is normalized by refeeding. We have previously shown that the obese hyperphagic Zucker rat is characterized by higher NPY concentrations in this nucleus. NPY might therefore play an important role in the development of hyperphagia. The aim of the present study was to determine if the regulation by the feeding state works in the obese Zucker rat. For this purpose, 10 weeks-old male lean (n = 30) and obese (n = 30) Zucker rats were either fed ad libitum, either food-deprived (FD) for 48 hours or food-deprived for 48 h and refed (RF) for 6 hours. NPY was measured in several microdissected brain areas involved in the regulation of feeding behavior. NPY concentrations in the ARC was about 50% greater in obese rats than in lean rats (p less than 0.02) whatever the feeding state. In the VMN, NPY concentrations were higher in the lean FD rats than in the obese FD rat (p less than 0.001). Food deprivation or refeeding did not modify NPY in the ARC, in the VMN or in the dorsomedian nucleus whatever the genotype considered. On the other hand, food deprivation induced a significant decrease in NPY concentrations in the PVN of lean rats. This decrease was localized in the parvocellular part of this nucleus (43.0 +/- 1.9 (FD) vs 54.2 +/- 2.1 (Ad lib) ng/mg protein; p less than 0.005). Ad lib levels were restored by 6 hours of refeeding. These variations were not observed in the obese rat. The regulation of NPY by the feeding state in the Zucker rat was therefore very different from that described in the SD rats. Strain or age of the animals used might explain these differences. High NPY levels and absence of regulation in obese Zucker rats could contribute to the abnormal feeding behavior of these rats.  相似文献   

12.
In rats selectively bred to develop diet-induced obesity (DIO) or to be diet-resistant (DR), DIO maternal obesity selectively enhances the development of obesity and insulin resistance in their adult offspring. We postulated that the interaction between genetic predisposition and factors in the maternal environment alter the development of hypothalamic peptide systems involved in energy homeostasis regulation. Maternal obesity in the current studies led to increased body and fat pad weights and higher leptin and insulin levels in postnatal day 16 offspring of both DIO and DR dams. However, by 6 wk of age, most of these intergroup differences disappeared and offspring of obese DIO dams had unexpected increases in arcuate nucleus leptin receptor mRNA, peripheral insulin sensitivity, diet- and leptin-induced brown adipose temperature increase and 24-h anorectic response compared with offspring of lean DIO, but not lean DR dams. On the other hand, while offspring of obese DIO dams did have the highest ventromedial nucleus melanocortin-4 receptor expression, their anorectic and brown adipose thermogenic responses to the melanocortin agonist, Melanotan II (MTII), did not differ from those of offspring of lean DR or DIO dams. Thus, during their rapid growth phase, juvenile offspring of obese DIO dams have alterations in their hypothalamic systems regulating energy homeostasis, which ameliorates their genetic and perinatally determined predisposition toward leptin resistance. Because they later go onto become more obese, it is possible that interventions during this time period might prevent the subsequent development of obesity.  相似文献   

13.
We investigated the role of the hypothalamic melanocortin system in the regulation of food intake in the Siberian hamster, which shows a profound seasonal decrease in food intake and body weight in short photoperiod (SP). In male hamsters maintained in long photoperiod (LP), intracerebroventricular injection of melanotan II (MTII) just before lights off significantly decreased food intake relative to vehicle treatment over the 6-h observation period. Similar effects were observed in age-matched hamsters after exposure to a short daylength for 9 wk, when body weight had significantly decreased. There was no clear difference in either the magnitude of response or the dose required for half-maximal inhibition of food intake in hamsters in SP compared with those in LP. MTII significantly increased grooming in both LP and SP. Our results indicate that the melanocortin system is a potent short-term regulator of food intake. However, the lack of differential response or sensitivity to MTII treatment in the obese (LP) vs. lean (SP) states does not support the hypothesis that changes in this melanocortin pathway underlie the long-term decrease in food intake that occurs in this seasonal model.  相似文献   

14.
The effects of running wheel exercise and caloric restriction on the regulation of body weight, adiposity, and hypothalamic neuropeptide expression were compared in diet-induced obese male rats over 6 wk. Compared with sedentary controls, exercising rats had reduced body weight gain (24%), visceral (4 fat pads; 36%) and carcass (leptin; 35%) adiposity but not insulin levels. Hypothalamic arcuate nucleus (ARC) proopiomelanocortin (POMC) mRNA expression was 25% lower, but ARC neuropeptide Y (NPY), agouti- related peptide, dorsomedial nucleus (DMN) NPY, and paraventricular nucleus (PVN) corticotropin- releasing hormone (CRH) expression was comparable to controls. Sedentary rats calorically restricted to 85% of control body weight reduced their visceral adiposity (24%), leptin (64%), and insulin (21%) levels. ARC NPY (23%) and DMN NPY (60%) were increased, while ARC POMC (40%) and PVN CRH (14%) were decreased. Calorically restricted exercising rats an half as much as ad libitum-fed exercising rats and had less visceral obesity than comparably restricted sedentary rats. When sedentary restricted rats were refed after 4 wk, they increased intake and regained the weight gain and adiposity of sedentary controls. While refed exercising rats and sedentary rats ate comparable amounts, refed exercising rats regained weight and adiposity only to the level of ad libitum-fed exercising rats. Thus exercise lowers the defended level of weight gain and adiposity without a compensatory increase in intake and with a very different profile of hypothalamic neuropeptide expression from calorically restricted rats. This may be due to exercise-related factors other than plasma insulin and leptin.  相似文献   

15.
Many mammals, nearing the end of life, spontaneously decrease their food intake and body weight, a stage we refer to as senescence. The spontaneous decrease in food intake and body weight is associated with attenuated responses to intracerebroventricular injections of neuropeptide Y (NPY) compared with old presenescent or with young adult rats. In the present study, we tested the hypothesis that this blunted responsiveness involves the number and expression of hypothalamic paraventricular nucleus (PVN) Y(1) and/or Y(5) NPY receptors, both of which are thought to mediate NPY-induced food intake. We found no significant difference in mRNA levels, via quantitative PCR, for Y(1) and Y(5) receptors in the PVN of senescent vs. presenescent rats. In contrast, immunohistochemistry indicated that the number of PVN neurons staining for Y(1) receptor protein was greater in presenescent compared with senescent rats. We conclude that a decreased expression and number of Y(1) or Y(5) receptors in the PVN cannot explain the attenuated responsiveness of the senescent rats to exogenous NPY.  相似文献   

16.
Recent studies show that brain-derived neurotrophic factor (BDNF) decreases feeding and body weight after peripheral and ventricular administration. BDNF mRNA and protein, and its receptor tyrosine kinase B (TrkB) are widely distributed in the hypothalamus and other brain regions. However, there are few reports on specific brain sites of actions for BDNF. We evaluated the effect of BDNF in the hypothalamic paraventricular nucleus (PVN) on feeding. BDNF injected unilaterally or bilaterally into the PVN of food-deprived and nondeprived rats significantly decreased feeding and body weight gain within the 0- to 24-h and 24- to 48-h postinjection intervals. Effective doses producing inhibition of feeding behavior did not establish a conditioned taste aversion. PVN BDNF significantly decreased PVN neuropeptide Y (NPY)-induced feeding at 1, 2, and 4 h following injection. BDNF administration in the PVN abolished food-restriction-induced NPY gene expression in the hypothalamic arcuate nucleus. In conclusion, BDNF in the PVN significantly decreases food intake and body weight gain, suggesting that the PVN is an important site of action for BDNF in its effects on energy metabolism. Furthermore, BDNF appears to interact with NPY in its anorectic actions, although a direct effect on NPY remains to be established.  相似文献   

17.
The impact of maternal obesity on brain monoamine function in adult offspring of dams selectively bred to express diet-induced obesity (DIO) or diet resistance (DR) was assessed by making dams obese or lean during gestation and lactation. After 12 wk on chow and 4 wk on a 31% fat diet, offspring hypothalamic nucleus size and [(3)H]nisoxetine binding to norepinephrine transporters (NET) and [(3)H]paroxetine binding to serotonin transporters (SET) were measured. Offspring of obese DIO dams became more obese than all other groups, but maternal obesity did not alter weight gain in DR offspring (25). Maternal obesity was associated with 10-17% enlargement of ventromedial nuclei (VMN) and dorsomedial nuclei in both DIO and DR offspring. Offspring of obese DIO dams had 25-88% lower NET binding in the paraventricular nuclei (PVN), arcuate nuclei, VMN, and the central amygdalar nuclei, while offspring of obese DR dams had 43-67% higher PVN and 90% lower VMN NET binding and a generalized increase in SET binding across all hypothalamic areas compared with other groups. Thus maternal obesity was associated with alterations in offspring brain monoamine metabolism, which varied as a function of genotype and the development of offspring obesity.  相似文献   

18.
Reduced central leptin sensitivity in rats with diet-induced obesity   总被引:1,自引:0,他引:1  
On low-fat chow diet, rats prone to diet-induced obesity (DIO) have increased arcuate nucleus neuropeptide Y (NPY) expression but similar leptin levels compared with diet-resistant (DR) rats (19). Here, body weight and leptin levels rose in DIO rats, and they defended their higher body weight after only 1 wk on a 31% fat high-energy (HE) diet. However, DIO NPY expression did not fall to DR levels until 4 wk when plasma leptin was 168% of DR levels. When switched to chow, DIO rats lost carcass fat (18). By 10 wk, leptin levels fell to 148% and NPY expression again rose to 150% of DR levels. During 4 wk of food restriction, DIO leptin fell by approximately 50% while NPY increased by 30%. While both returned to control levels by 8 wk, DIO rats still regained all lost weight when fed ad libitum. Finally, the anorexic effect of intracerebroventricular leptin (10 microg) was inversely correlated with subsequent 3-wk weight gain on HE diet. Thus NPY expression and food intake are less sensitive to the leptin's suppressive effects in DIO rats. While this may predispose them to develop DIO, it does not fully explain their defense of a higher body weight on HE diet.  相似文献   

19.
Olszewski PK  Bomberg EM  Grace MK  Levine AS 《Peptides》2007,28(10):2084-2089
Alpha-melanocyte stimulating hormone (alpha-MSH) and ghrelin play significant yet opposite roles in the regulation of feeding: alpha-MSH inhibits, whereas ghrelin stimulates consumption. The two peptidergic systems may interact in the process of food intake control. A single report published thus far has shown that a synthetic agonist of the melanocortin receptors, MTII, injected in the hypothalamic paraventricular nucleus (PVN) decreases feeding generated by ghrelin. We found that very low doses of alpha-MSH and MTII administered ICV significantly reduced ghrelin-dependent hyperphagia. However, an endogenous molecule, alpha-MSH, infused in the PVN did not exert an inhibitory effect on ghrelin-induced consumption, whereas the effective dose of PVN MTII exceeded that necessary to decrease short-term deprivation-induced feeding. We conclude that it is likely that in feeding regulation alpha-MSH and ghrelin "interact" at the central nervous system level, but the involvement of the PVN in this interaction appears questionable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号