首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Rhodococcus strains, R. opacus strain AS2 and R. erythropolis strain AS3, that were able to use 4-nitroanisole as the sole source of carbon and energy, were isolated from environmental samples. The first step of the degradation involved the O-demethylation of 4-nitroanisole to 4-nitrophenol which accumulated transiently in the medium during growth. Oxygen uptake experiments indicated the transformation of 4-nitrophenol to 4-nitrocatechol and 1,2,4-trihydroxybenzene prior to ring cleavage and then subsequent mineralization. The nitro group was removed as nitrite, which accumulated in the medium in stoichiometric amounts. In R. opacus strain AS2 small amounts of hydroquinone were produced by a side reaction, but were not further degraded.  相似文献   

2.
3.
The noncellulolytic actinomycete Rhodococcus opacus strain PD630 is the model oleaginous prokaryote with regard to the accumulation and biosynthesis of lipids, which serve as carbon and energy storage compounds and can account for as much as 87% of the dry mass of the cell in this strain. In order to establish cellulose degradation in R. opacus PD630, we engineered strains that episomally expressed six different cellulase genes from Cellulomonas fimi ATCC 484 (cenABC, cex, cbhA) and Thermobifida fusca DSM43792 (cel6A), thereby enabling R. opacus PD630 to degrade cellulosic substrates to cellobiose. Of all the enzymes tested, five exhibited a cellulase activity toward carboxymethyl cellulose (CMC) and/or microcrystalline cellulose (MCC) as high as 0.313 ± 0.01 U · ml−1, but recombinant strains also hydrolyzed cotton, birch cellulose, copy paper, and wheat straw. Cocultivations of recombinant strains expressing different cellulase genes with MCC as the substrate were carried out to identify an appropriate set of cellulases for efficient hydrolysis of cellulose by R. opacus. Based on these experiments, the multicellulase gene expression plasmid pCellulose was constructed, which enabled R. opacus PD630 to hydrolyze as much as 9.3% ± 0.6% (wt/vol) of the cellulose provided. For the direct production of lipids from birch cellulose, a two-step cocultivation experiment was carried out. In the first step, 20% (wt/vol) of the substrate was hydrolyzed by recombinant strains expressing the whole set of cellulase genes. The second step was performed by a recombinant cellobiose-utilizing strain of R. opacus PD630, which accumulated 15.1% (wt/wt) fatty acids from the cellobiose formed in the first step.  相似文献   

4.
Two Rhodococcus strains, R. opacus strain AS2 and R. erythropolis strain AS3, that were able to use 4-nitroanisole as the sole source of carbon and energy, were isolated from environmental samples. The first step of the degradation involved the O-demethylation of 4-nitroanisole to 4-nitrophenol which accumulated transiently in the medium during growth. Oxygen uptake experiments indicated the transformation of 4-nitrophenol to 4-nitrocatechol and 1,2,4-trihydroxybenzene prior to ring cleavage and then subsequent mineralization. The nitro group was removed as nitrite, which accumulated in the medium in stoichiometric amounts. In R. opacus strain AS2 small amounts of hydroquinone were produced by a side reaction, but were not further degraded.  相似文献   

5.
In general, members of Rhodococcus genus are highly resistant to desiccation. Desiccation is a complex process which includes the formation of reactive oxygen species that results in significant damage to cells. In this study, we demonstrate that extremophile actinobacterial strains isolated from diverse environments, mainly belonging to Rhodococcus genus, exhibited high tolerance to the pro-oxidants hydrogen peroxide (H2O2) and methyl viologen (MV). In addition, we investigated the possible interconnections between the responses of the oleaginous Rhodococcus opacus PD630 to oxidative stress and lipid metabolism, since both processes demand a metabolic reorganization of cells. Experiments with metabolic inhibitors showed differential effects of both pro-oxidants on lipid metabolism in PD630 cells. The inhibition of carotenoid biosynthesis by the addition of diphenylamine to the media negatively affected the tolerance of cells to H2O2, but not to MV. The inhibition of triacylglycerol (TAG) biosynthesis and accumulation in PD630 did not affect the tolerance of cells to H2O2 and MV; whereas, the blockage of lipolysis decreased the tolerance of cells to H2O2 (but not MV) under carbon-starvation conditions. Interestingly, the addition of MV to the media (but not H2O2) induced a reduction of TAG accumulation by cells. Resuming, results of this study revealed metabolic connections between lipid metabolism and oxidative stress responses in R. opacus PD630, and probably in other extremophile TAG-accumulating rhodococci.  相似文献   

6.
The strains Rhodococcus sp. 400, R. rhodochrous 172, and R. opacus 6a utilize 4-methylbenzoate as the only carbon and energy source. 4-Methylcatechol is a key intermediate of biodegradation. Its further conversion by all the strains proceeds via ortho-cleavage. The specific activity of catechol 1,2-dioxygenase assayed in crude extracts of Rhodococcus sp. 400 and R. rhodochrous 172 with 3- and 4-methylcatechols does not exceed the enzyme activity assayed with catechol. Two catechol 1,2-dioxygenases have been purified from the biomass of R. opacus strain 6a grown with 4-methylbenzoate. These enzymes differed in molecular mass and physicochemical and catalytic properties. One of these enzymes belongs to the type of enzymes cleaving the catechol ring and known as methylcatechol 1,2-dioxygenases. In bacteria of the Rhodococcus genus, such an enzyme is described here for the first time.  相似文献   

7.
Of the four investigated Rhodococcus strains (R. rhodochrous172, R. opacus 4a and 557, and R. rhodnii 135), the first three strains were found to be able to completely transform fluorene when it was present in the medium as the sole source of carbon at a concentration of 12–25 mg/l. At a fluorene concentration of 50–100 mg/l in the medium, the rhodococci transformed 50% of the substrate in 14 days. The addition of casamino acids and sucrose (1–5 g/l) stimulated fluorene transformation, so that R. rhodochrous 172 could completely transform it in 2–5 days. Nine intermediates of fluorene transformation were isolated, purified, and structurally characterized. It was found that R. rhodnii 135 and R. opacus strains 4a and 557 hydroxylated fluorene with the formation of 2-hydroxyfluorene and 2,7-dihydroxyfluorene. R. rhodochrous 172 transformed fluorene via two independent pathways to a greater degree than the other rhodococci studied.  相似文献   

8.
9.
《Process Biochemistry》2007,42(5):889-894
Rhodococcus sp. ML-0004, a novel strain for producing epoxide hydrolase, was isolated from soil in this study. The epoxide hydrolase can catalyze the stereo-specific hydrolysis of cis-epoxysuccinic acid to generate l(+)-tartaric acid. By examining physiological, biochemical characteristics and comparing its 16S rDNA gene sequence, it was identified as Rhodococcus opacus, and named R. opacus ML-0004. The optimal conditions for epoxide hydrolase production from R. opacus ML-0004 were also investigated. Propanediol and (NH4)2SO4 were selected as carbon source and nitrogen source, respectively, for the production of R. opacus ML-0004 epoxide hydrolase. The optimal conditions for epoxide hydrolase production were fermentation temperature = 28 °C, pH 7.0, and cultivation time = 26 h. Under these conditions, the maximum epoxide hydrolase activity reached 10.5 U mL−1.  相似文献   

10.
Two Rhodococcus strains which were isolated from a trichloroethylene (TCE)-degrading bacterial mixture and Rhodococcus rhodochrous ATCC 21197 mineralized vinyl chloride (VC) and TCE. Greater than 99.9% of a 1-mg/liter concentration of VC was degraded by cell suspensions. [1,2-14C]VC was degraded by cell suspensions, with the production of greater than 66% 14CO2 and 20% 14C-aqueous phase products and incorporation of 10% of the 14C into the biomass. Cultures that utilized propane as a substrate were able to mineralize greater than 28% of [1,2-14C]TCE to 14CO2, with approximately 40% appearing in 14C-aqueous phase products and another 10% of 14C incorporated into the biomass. VC degradation was oxygen dependent and occurred at a pH range of 5 to 10 and temperatures of 4 to 35°C. Cell suspensions degraded up to 5 mg of TCE per liter and up to 40 mg of VC per liter. Propane competitively inhibited TCE degradation. Resting cell suspensions also degraded other chlorinated aliphatic hydrocarbons, such as chloroform, 1,1-dichloroethylene, and 1,1,1-trichloroethane. The isolates degraded a mixture of aromatic and chlorinated aliphatic solvents and utilized benzene, toluene, sodium benzoate, naphthalene, biphenyl, and n-alkanes ranging in size from propane to hexadecane as carbon and energy sources. The environmental isolates appeared more catabolically versatile than R. rhodochrous ATCC 21197. The data report that environmental isolates of Rhodococcus species and R. rhodochrous ATCC 21197 have the potential to degrade TCE and VC in addition to a variety of aromatic and chlorinated aliphatic compounds either individually or in mixtures.  相似文献   

11.
A possible adaptation of the association of Rhodococcus ruber and Rhodococcus opacus strains immobilized on modified sawdust to oil hydrocarbons in a column bioreactor was investigated. In the bioreactor, the bacterial population showed higher hydrocarbon and antibiotic resistance accompanied by the changes in cell surface properties (hydrophobicity, electrokinetic potential) and in the content of cellular lipids and biosurfactants. The possibility of using adapted Rhodococcus strains for the purification of oil-polluted water in the bioreactor was demonstrated.  相似文献   

12.
Dioxygenases induced during benzoate degradation by the actinobacterium Rhodococcus wratislaviensis G10 strain degrading haloaromatic compounds were studied. Rhodococcus wratislaviensis G10 completely degraded 2 g/liter benzoate during 30 h and 10 g/liter during 200 h. Washed cells grown on benzoate retained respiration activity for more than 90 days, and a high activity of benzoate dioxygenase was recorded for 10 days. Compared to the enzyme activities with benzoate, the activity of benzoate dioxygenases was 10-30% with 13 of 35 substituted benzoate analogs. Two dioxygenases capable of cleaving the aromatic ring were isolated and characterized: protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase. Catechol inhibited the activity of protocatechuate 3,4-dioxygenase. Protocatechuate did not affect the activity of catechol 1,2-dioxygenase. A high degree of identity was shown by MALDI-TOF mass spectrometry for protein peaks of the R. wratislaviensis G10 and Rhodococcus opacus 1CP cells grown on benzoate or LB. DNA from the R. wratislaviensis G10 strain was specifically amplified using specific primers to variable regions of genes coding αand β-subunits of protocatechuate 3,4-dioxygenase and to two genes of theR. opacus 1CP coding catechol 1,2-dioxygenase. The products were 99% identical with the corresponding regions of the R. opacus 1CP genes. This high identity (99%) between the genes coding degradation of aromatic compounds in the R. wratislaviensis G10 and R. opacus 1CP strains isolated from sites of remote location (1400 km) and at different time (20-year difference) indicates a common origin of biodegradation genes of these strains and a wide distribution of these genes among rhodococci.  相似文献   

13.
Bioremediation is a possible mechanism for clean-up of hydrocarbon-contaminated soils in the Antarctic. Microbes indigenous to the Antarctic are required that degrade the hydrocarbon contaminants found in the soil, and that are able to survive and maintain activity under in situ conditions. Alkane- degrading bacteria previously isolated from oil-contaminated soil from around Scott Base, Antarctica, grew on a number of n-alkanes from hexane (C6) through to eicosane (C20) and the branched alkane pristane. Mineralization of 14C-dodecane was demonstrated with four strains. Representative isolates were identified as Rhodococcus species using 16S rDNA sequence analysis. Rhodococcus spp. strains 5/14 and 7/1 grew at −2°C but numbers of viable cells declined when incubated at 37°C. Both strains appear to have the major cold-shock gene cspA. Partial nucleotide sequence analyses of the PCR-amplified cspA open reading frame from Rhodococcus spp. strains 5/14 and 7/1 were approximately 60% identical to cspA from Escherichia coli. Accepted: 6 September 1999  相似文献   

14.
The psychrotroph Rhodococcus sp. strain Q15 was examined for its ability to degrade individual n-alkanes and diesel fuel at low temperatures, and its alkane catabolic pathway was investigated by biochemical and genetic techniques. At 0 and 5°C, Q15 mineralized the short-chain alkanes dodecane and hexadecane to a greater extent than that observed for the long-chain alkanes octacosane and dotriacontane. Q15 utilized a broad range of aliphatics (C10 to C21 alkanes, branched alkanes, and a substituted cyclohexane) present in diesel fuel at 5°C. Mineralization of hexadecane at 5°C was significantly greater in both hydrocarbon-contaminated and pristine soil microcosms seeded with Q15 cells than in uninoculated control soil microcosms. The detection of hexadecane and dodecane metabolic intermediates (1-hexadecanol and 2-hexadecanol and 1-dodecanol and 2-dodecanone, respectively) by solid-phase microextraction–gas chromatography-mass spectrometry and the utilization of potential metabolic intermediates indicated that Q15 oxidizes alkanes by both the terminal oxidation pathway and the subterminal oxidation pathway. Genetic characterization by PCR and nucleotide sequence analysis indicated that Q15 possesses an aliphatic aldehyde dehydrogenase gene highly homologous to the Rhodococcus erythropolis thcA gene. Rhodococcus sp. strain Q15 possessed two large plasmids of approximately 90 and 115 kb (shown to mediate Cd resistance) which were not required for alkane mineralization, although the 90-kb plasmid enhanced mineralization of some alkanes and growth on diesel oil at both 5 and 25°C.  相似文献   

15.
Biodegradation of long chain n-alkanes and crude oil with fast rate and high concentration are desirable for bioremediation, especially in heavily oil-polluted areas, and enhanced oil recovery. We discovered Rhodococcus sp. Moj-3449 with such unique abilities by screening microorganisms for the growth on n-hexadecane at 30 mg/mL. The new strain grew very fast on 120 mg/mL of n-hexadecane giving a cell density of 14.7 g cdw/L after only 2 days’ incubation. During the growth with this strain, the oil–water phases were rapidly emulsified, giving rise to tolerance to high alkane concentration (250 mg/mL) and fast growth rate of 0.10–0.20 h?1 for alkane concentration of 1–180 mg/mL. The degraded concentration of n-hexadecane increased linearly with the initial alkane concentration (1–250 mg/mL). Incubation on n-hexadecane at 250 mg/mL for 7 days gave a cell density of 13.5 g cdw/L and degraded 124 mg/mL of n-hexadecane. The strain grew also fast on n-dodecane (C12), n-tetradecane (C14), and n-octadecane (C18), with degradation preference of C14 (=C16) > C12 > C18. Different from many alkane-degrading strains, Rhodococcus sp. Moj-3449 was found to have subterminal oxidation pathway. Rhodococcus sp. Moj-3449 degraded also crude oil fast at 60–250 mg/mL, with a wide range of n-alkanes (C10–C35) as substrates in which C14–C19 are preferred. The degradation ability increased with initial oil concentration from 60 to 150 mg/mL and slightly decreased afterwards. Incubation on 150 mg/mL of crude oil for 7 days degraded 37% of n-alkanes. The outstanding ability of rapidly degrading long chain n-alkanes and crude oil at high concentration makes Rhodococcus sp. Moj-3449 potentially useful for bioremediation and microbial enhanced oil recovery.  相似文献   

16.
Rhodococcus spp. are organic solvent-tolerant strains with strong adaptive abilities and diverse metabolic activities, and are therefore widely utilized in bioconversion, biosynthesis and bioremediation. However, due to the high GC-content of the genome (~70%), together with low transformation and recombination efficiency, the efficient genome editing of Rhodococcus remains challenging. In this study, we report for the first time the successful establishment of a CRISPR/Cas9-based genome editing system for R. ruber. With a bypass of the restriction-modification system, the transformation efficiency of R. ruber was enhanced by 89-fold, making it feasible to obtain enough colonies for screening of mutants. By introducing a pair of bacteriophage recombinases, Che9c60 and Che9c61, the editing efficiency was improved from 1% to 75%. A CRISPR/Cas9-mediated triple-plasmid recombineering system was developed with high efficiency of gene deletion, insertion and mutation. Finally, this new genome editing method was successfully applied to engineer R. ruber for the bio-production of acrylamide. By deletion of a byproduct-related gene and in-situ subsititution of the natural nitrile hydratase gene with a stable mutant, an engineered strain R. ruber THY was obtained with reduced byproduct formation and enhanced catalytic stability. Compared with the use of wild-type R. ruber TH, utilization of R. ruber THY as biocatalyst increased the acrylamide concentration from 405 g/L to 500 g/L, reduced the byproduct concentration from 2.54 g/L to 0.5 g/L, and enhanced the number of times that cells could be recycled from 1 batch to 4 batches.  相似文献   

17.
The potential of two Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol was investigated. Genome sequence data of Rhodococcus sp. I24 suggested a coenzyme A-dependent, non-β-oxidative pathway for ferulic acid bioconversion, which involves feruloyl–CoA synthetase (Fcs), enoyl–CoA hydratase/aldolase (Ech), and vanillin dehydrogenase (Vdh). This pathway was proven for Rhodococcus opacus PD630 by physiological characterization of knockout mutants. However, expression and functional characterization of corresponding structural genes from I24 suggested that degradation of ferulic acid in this strain proceeds via a β-oxidative pathway. The vanillin precursor eugenol facilitated growth of I24 but not of PD630. Coniferyl aldehyde was an intermediate of eugenol degradation by I24. Since the genome sequence of I24 is devoid of eugenol hydroxylase homologous genes (ehyAB), eugenol bioconversion is most probably initiated by a new step in this bacterium. To establish eugenol bioconversion in PD630, the vanillyl alcohol oxidase gene (vaoA) from Penicillium simplicissimum CBS 170.90 was expressed in PD630 together with coniferyl alcohol dehydrogenase (calA) and coniferyl aldehyde dehydrogenase (calB) genes from Pseudomonas sp. HR199. The recombinant strain converted eugenol to ferulic acid. The obtained data suggest that genetically engineered strains of I24 and PD630 are suitable candidates for vanillin production from eugenol.  相似文献   

18.
In cells of Rhodococcus opacus GM-14, GM-29, and 1CP, the contents of branched (10-methyl) fatty acids increased from 3% to 15 to 34% of the total fatty acids when the cells were grown on benzene, phenol, 4-chlorophenol, chlorobenzene, or toluene as the sole source of carbon and energy, in comparison with cells grown on fructose. In addition, the content of trans-hexadecenoic acid increased from 5% to 8 to 18% with phenol or chlorophenol as the carbon source. The 10-methyl branched fatty acid content of R. opacus GM-14 cells increased in a dose-related manner following exposure to phenol or toluene when toluene was not utilized as the growth substrate. The results suggest that 10-methyl branched fatty acids may participate in the adaptation of R. opacus to lipophilic aromatic compounds.  相似文献   

19.
Growth and cesium accumulation characteristics of two cesium-accumulating bacteria isolated from soils were investigated. Rhodococcus erythropolis CS98 and Rhodococcus sp. strain CS402 accumulated high levels of cesium (approximately 690 and 380 μmol/g [dry weight] of cells or 92 and 52 mg/g [dry weight] of cells, respectively) after 24 h of incubation in the presence of 0.5 mM cesium. The optimum pH for cesium uptake by both Rhodococcus strains was 8.5. Rubidium and cesium assumed part of the role of potassium in the growth of both Rhodococcus strains. Potassium and rubidium inhibited cesium accumulation by these Rhodococcus strains. It is likely that both Rhodococcus strains accumulated cesium through a potassium transport system.  相似文献   

20.
The ability of a Rhodococcus aetherovorans strain, BCP1, to grow on butane and to degrade chloroform in the 0–633 μM range (0–75.5 mg l−1) via aerobic cometabolism was investigated by means of resting-cell assays. BCP1 degraded chloroform with a complete mineralization of the organic Cl. The resulting butane and chloroform maximum specific degradation rates were equal to 118 and 22 μmol , respectively. Butane inhibition on chloroform degradation was satisfactorily interpreted by means of a model of competitive inhibition, with an inhibition constant equal to 38 % of the estimated butane half-saturation constant, whereas chloroform (at 11 μM) did not inhibit butane utilization. Acetylene (1,720 μM) induced an almost complete inactivation of the degradation of both butane and chloroform, indicating that the studied cometabolic process is mediated by a monooxygenase enzyme. BCP1 proved capable of degrading vinyl chloride and 1,1,2-trichloroethane, but not 1,2-trans-dichloroethylene. BCP1 could grow on the intermediates of the most common butane metabolic pathways and on the aliphatic hydrocarbons from ethane to n-heptane. After growth on n-hexane, it was able to deplete chloroform (13 μM) with a degradation rate higher than that obtained, at the same chloroform concentration, after growth on butane.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号