首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Finding a suitable reference gene is the key for qRT-PCR analysis. However, none of the reference gene discovered thus far can be utilized universally under various biotic and abiotic experimental conditions. In this study, we further examine the stability of candidate reference genes under a single abiotic factor, insecticide treatment. After being exposed to eight commercially available insecticides, which belong to five different classes, the expression profiles of eight housekeeping genes in the sweetpotato whitefly, Bemisia tabaci, one of the most invasive and destructive pests in the world, were investigated using qRT-PCR analysis. In summary, elongation factor 1α (EF1α), α-tubulin (TUB1α) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified as the most stable reference genes under the insecticide treatment. The initial assessment of candidate reference genes was further validated with the expression of two target genes, a P450 (Cyp6cm1) and a glutathione S-transferase (GST). However, ranking of reference genes varied substantially among intra- and inter-classes of insecticides. These combined data strongly suggested the necessity of conducting custom reference gene selection designed for each and every experimental condition, even when examining the same abiotic or biotic factor.  相似文献   

2.
The larvae of the common green bottle fly Lucilia sericata (Diptera: Calliphoridae) have been used for centuries to promote wound healing, but the molecular basis of their antimicrobial, debridement and healing functions remains largely unknown. The analysis of differential gene expression in specific larval tissues before and after immune challenge could be used to identify key molecular factors, but the most sensitive and reproducible method qRT-PCR requires validated reference genes. We therefore selected 10 candidate reference genes encoding products from different functional classes (18S rRNA, 28S rRNA, actin, β-tubulin, RPS3, RPLP0, EF1α, PKA, GAPDH and GST1). Two widely applied algorithms (GeNorm and Normfinder) were used to analyze reference gene candidates in different larval tissues associated with secretion, digestion, and antimicrobial activity (midgut, hindgut, salivary glands, crop and fat body). The Gram-negative bacterium Pseudomonas aeruginosa was then used to boost the larval immune system and the stability of reference gene expression was tested in comparison to three immune genes (lucimycin, defensin-1 and attacin-2), which target different pathogen classes. We observed no differential expression of the antifungal peptide lucimycin, whereas the representative targeting Gram-positive bacteria (defensin-1) was upregulated in salivary glands, crop, nerve ganglion and reached its maximum in fat body (up to 300-fold). The strongest upregulation in all immune challenged tissues (over 50,000-fold induction in the fat body) was monitored for attacin-2, the representative targeting Gram-negative bacteria. Here we identified and validated a set of reference genes that allows the accurate normalization of gene expression in specific tissues of L. sericata after immune challenge.  相似文献   

3.
Lilium is an important commercial market flower bulb. qRT-PCR is an extremely important technique to track gene expression levels. The requirement of suitable reference genes for normalization has become increasingly significant and exigent. The expression of internal control genes in living organisms varies considerably under different experimental conditions. For economically important Lilium, only a limited number of reference genes applied in qRT-PCR have been reported to date. In this study, the expression stability of 12 candidate genes including α-TUB, β-TUB, ACT, eIF, GAPDH, UBQ, UBC, 18S, 60S, AP4, FP, and RH2, in a diverse set of 29 samples representing different developmental processes, three stress treatments (cold, heat, and salt) and different organs, has been evaluated. For different organs, the combination of ACT, GAPDH, and UBQ is appropriate whereas ACT together with AP4, or ACT along with GAPDH is suitable for normalization of leaves and scales at different developmental stages, respectively. In leaves, scales and roots under stress treatments, FP, ACT and AP4, respectively showed the most stable expression. This study provides a guide for the selection of a reference gene under different experimental conditions, and will benefit future research on more accurate gene expression studies in a wide variety of Lilium genotypes.  相似文献   

4.
5.
Gene expression analysis using quantitative real-time PCR (qRT-PCR) is a very sensitive technique and its sensitivity depends on the stable performance of reference gene(s) used in the study. A number of housekeeping genes have been used in various expression studies in many crops however, their expression were found to be inconsistent under different stress conditions. As a result, species specific housekeeping genes have been recommended for different expression studies in several crop species. However, such specific housekeeping genes have not been reported in the case of pigeonpea (Cajanus cajan) despite the fact that genome sequence has become available for the crop. To identify the stable housekeeping genes in pigeonpea for expression analysis under drought stress conditions, the relative expression variations of 10 commonly used housekeeping genes (EF1α, UBQ10, GAPDH, 18SrRNA, 25SrRNA, TUB6, ACT1, IF4α, UBC and HSP90) were studied on root, stem and leaves tissues of Asha (ICPL 87119). Three statistical algorithms geNorm, NormFinder and BestKeeper were used to define the stability of candidate genes. geNorm analysis identified IF4α and TUB6 as the most stable housekeeping genes however, NormFinder analysis determined IF4α and HSP90 as the most stable housekeeping genes under drought stress conditions. Subsequently validation of the identified candidate genes was undertaken in qRT-PCR based gene expression analysis of uspA gene which plays an important role for drought stress conditions in pigeonpea. The relative quantification of the uspA gene varied according to the internal controls (stable and least stable genes), thus highlighting the importance of the choice of as well as validation of internal controls in such experiments. The identified stable and validated housekeeping genes will facilitate gene expression studies in pigeonpea especially under drought stress conditions.  相似文献   

6.
7.
Quantitative real-time PCR (qRT-PCR) is a reliable and reproducible technique for measuring mRNA expression. To facilitate gene expression studies and obtain more accurate qRT-PCR analysis, normalization relative to stable housekeeping genes is mandatory. In this study, ten housekeeping genes, including beta-actin (Actin) , elongation factor 1 α (EF1A) , glyceralde hyde-3-phosphate dehydrogenase (GAPDH) , ribosomal protein L13 (RPL13) , ribosomal protein 49 (RP49) , α-tubulin (Tubulin) , vacuolar-type H+-ATPase (v-ATPase) , succinate dehydrogenase subunit A (SDHA) , 28S ribosomal RNA (28S) , and 18S ribosomal RNA (18S) from the two-spotted spider mite, Tetranychus urticae, were selected as the candidate reference genes. Four algorithms, geNorm, Normfinder, BestKeeper, and the ΔCt method, were used to evaluate the performance of these candidates as endogenous controls across different developmental stages. In addition, RefFinder, which integrates the above-mentioned software tools, provided the overall ranking of the stability/suitability of these candidate reference genes. Among them, PRL13 and v-ATPase were the two most stable housekeeping genes across different developmental stages. This work is the first step toward establishing a standardized qRT-PCR analysis in T. urticae following the MIQE guideline. With the recent release of the T. urticae genome, results from this study provide a critical piece for the subsequent genomics and functional genomics research in this emerging model system.  相似文献   

8.
The common marmoset (Callithrix jacchus) is considered a novel experimental animal model of non-human primates. However, due to antibody unavailability, immunological and pathological studies have not been adequately conducted in various disease models of common marmoset. Quantitative real-time PCR (qPCR) is a powerful tool to examine gene expression levels. Recent reports have shown that selection of internal reference housekeeping genes are required for accurate normalization of gene expression. To develop a reliable qPCR method in common marmoset, we used geNorm applets to evaluate the expression stability of eight candidate reference genes (GAPDH, ACTB, rRNA, B2M, UBC, HPRT, SDHA and TBP) in various tissues from laboratory common marmosets. geNorm analysis showed that GAPDH, ACTB, SDHA and TBP were generally ranked high in stability followed by UBC. In contrast, HPRT, rRNA and B2M exhibited lower expression stability than other genes in most tissues analyzed. Furthermore, by using the improved qPCR with selected reference genes, we analyzed the expression levels of CD antigens (CD3ε, CD4, CD8α and CD20) and cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12β, IL-13, IFN-γ and TNF-α) in peripheral blood leukocytes and compared them between common marmosets and humans. The expression levels of CD4 and IL-4 were lower in common marmosets than in humans whereas those of IL-10, IL-12β and IFN-γ were higher in the common marmoset. The ratio of Th1-related gene expression level to that of Th2-related genes was inverted in common marmosets. We confirmed the inverted ratio of CD4 to CD8 in common marmosets by flow cytometric analysis. Therefore, the difference in Th1/Th2 balance between common marmosets and humans may affect host defense and/or disease susceptibility, which should be carefully considered when using common marmoset as an experimental model for biomedical research.  相似文献   

9.
Gene expression of reproductive system of the black tiger shrimp (Peneaus monodon) has been widely studied to address poor maturation problem in captivity. However, a systematic evaluation of reference genes in quantitative real-time PCR (qPCR) for P. monodon reproductive organs is lacking. In this study, the stability of four potential reference genes (18s rRNA, GAPDH, β-actin, and EF1-α) was examined in the reproductive tissues in various conditions using bioinformatic tools: NormFinder and geNorm. For NormFinder, EF1-α and GAPDH ranked first and second as the most stable genes in testis groups whereas GAPDH and EF1-α were for ovaries from wild-caught broodstock and domesticated groups. EF1-α and β-actin ranked first and second for the eyestalk ablated ovaries. For geNorm, EF1-α and GAPDH had the best stability in all testis and ovaries from domesticated groups whereas EF1-α and β-actin were the best for ovaries from wild-caught and eyestalk ablated groups. Moreover, the expression levels of two well-known reproductive genes, Dmc1 and Vitellogenin, were used to validate these reference genes. When normalized to EF1-α, the expected expression patterns were obtained in all cases. Therefore, this work suggests that EF1-α is more versatile as reference genes in qPCR analysis for reproductive system in P. monodon.  相似文献   

10.
11.
12.
To accurately evaluate gene expression levels and obtain more accurate quantitative real-time RT-PCR (qRT-PCR) data, normalization relative to reliable reference gene(s) is required. Drosophila suzukii, is an invasive fruit pest native to East Asia, and recently invaded Europe and North America, the stability of its reference genes have not been previously investigated. In this study, ten candidate reference genes (RPL18, RPS3, AK, EF-1β, TBP, NADH, HSP22, GAPDH, Actin, α-Tubulin), were evaluated for their suitability as normalization genes under different biotic (developmental stage, tissue and population), and abiotic (photoperiod, temperature) conditions. The three statistical approaches (geNorm, NormFinder and BestKeeper) and one web-based comprehensive tool (RefFinder) were used to normalize analysis of the ten candidate reference genes identified α-Tubulin, TBP and AK as the most stable candidates, while HSP22 and Actin showed the lowest expression stability. We used three most stable genes (α-Tubulin, TBP and AK) and one unstably expressed gene to analyze the expression of P-glycoprotein in abamectin-resistant and sensitive strains, and the results were similar to reference genes α-Tubulin, TBP and AK, which show good stability, while the result of HSP22 has a certain bias. The three validated reference genes can be widely used for quantification of target gene expression with qRT-PCR technology in D.suzukii.  相似文献   

13.
14.
15.
16.
The accuracy of quantitative real-time PCR (qRT-PCR) depends on the stability of the reference gene used for normalization. In heading Chinese cabbage (Brassica rapa L. ssp. pekinensis), the most stable reference genes for qRT-PCR during flower bud development have not been elucidated. In this study, the statistical software geNorm was used to test eight candidate reference genes during flower bud development in male sterile (Ms) and fertile (Mf) plants. The result revealed that the stability order was Tub/GAPDH > Cyp > EF1a > U34559 > BrTip41 > Apr > 18S rRNA, Tub and GAPDH were the most stable genes [average expression stability (M) 0.614], and the combined use of six reference genes [pairwise variation (V) 0.15] was suggested to be the optimal reference gene for qRT-PCR during flower bud development. Furthermore, the expressions of BcPME31 during flower bud development normalized with the combined use of six reference genes and with GAPDH or Tub alone were compared; the various results also suggested that selection of the optimal reference gene was necessary for gene expression analysis.  相似文献   

17.
18.
19.
Quantitative real-time PCR (qRT-PCR) is a reliable and reproducible technique for measuring and evaluating changes in gene expression. The most common method for analyzing qRT-PCR data is to normalize mRNA levels of target genes to internal reference genes. Evaluating and selecting stable reference genes on a case-by-case basis is critical. The present study aimed to facilitate gene expression studies by identifying the most suitable reference genes for normalization of mRNA expression in qRT-PCR analysis of the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae). For this purpose, three software tools (geNorm, NormFinder and BestKeeper) were used to investigate 10 candidate reference genes in nine developmental stages and five different tissues (epidermis, head, midgut, fat body and hemolymph) in three larval physiological stages (molting, feeding and wandering stages) of, S. exigua. With the exception of 18S ribosomal RNA (18S), all other candidate genes evaluated, β-actin1(ACT1), β-actin2 (ACT2), elongation factor1(EF1), elongation factor 2 (EF2), Glyceralde hyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein L10 (L10), ribosomal protein L17A (L17A), superoxide dismutase (SOD), α-tubulin (TUB),proved to be acceptable reference genes. However, their suitability partly differed between physiological stages and different tissues. L10, EF2 and L17A ranked highest in all tissue sample sets. SOD, ACT2, GAPDH, EF1 and ACT1 were stably expressed in all developmental stage sample sets; ACT2, ACT1 and L10 for larvae sample sets; GAPDH, ACT1 and ACT2 for pupae and adults; SOD and L17A for males; and EF2 and SOD for females. The expression stability of genes varied in different conditions. The findings provided here demonstrated, with a few exceptions, the suitability of most of the 10 reference genes tested in tissues and life developmental stages. Overall, this study emphasizes the importance of validating reference genes for qRT-PCR analysis in S. exigua.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号