首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One strategy to obtain better yields of secreted proteins has been overexpression of single endoplasmic reticulum-resident foldases or chaperones. We report here that manipulation of the unfolded-protein response (UPR) pathway regulator, HAC1, affects production of both native and foreign proteins in the yeast Saccharomyces cerevisiae. The effects of HAC1 deletion and overexpression on the production of a native protein, invertase, and two foreign proteins, Bacillus amyloliquefaciens α-amylase and Trichoderma reesei endoglucanase EGI, were studied. Disruption of HAC1 caused decreases in the secretion of both α-amylase (70 to 75% reduction) and EGI (40 to 50% reduction) compared to the secretion by the parental strain. Constitutive overexpression of HAC1 caused a 70% increase in α-amylase secretion but had no effect on EGI secretion. The invertase levels were twofold higher in the strain overexpressing HAC1. Also, the effect of the active form of T. reesei hac1 was tested in S. cerevisiae. hac1 expression caused a 2.4-fold increase in the secretion of α-amylase in S. cerevisiae and also slight increases in invertase and total protein production. Overexpression of both S. cerevisiae HAC1 and T. reesei hac1 caused an increase in the expression of the known UPR target gene KAR2 at early time points during cultivation.  相似文献   

2.
A signaling network called the unfolded protein response (UPR) resolves the protein-folding defects in the endoplasmic reticulum (ER) from yeasts to humans. In the yeast Saccharomyces cerevisiae, the UPR activation involves (i) aggregation of the ER-resident kinase/RNase Ire1 to form an Ire1 focus, (ii) targeting HAC1 pre-mRNA toward the Ire1 focus that cleaves out an inhibitory intron from the mRNA, and (iii) translation of Hac1 protein from the spliced mRNA. Targeting HAC1 mRNA to the Ire1 focus requires a cis-acting bipartite element (3′BE) located at the 3′ untranslated leader. Here, we report that the 3′BE plays an additional role in promoting translation from the spliced mRNA. We also report that a high dose of either of two paralogue kinases, Kin1 and Kin2, overcomes the defective UPR caused by a mutation in the 3′BE. These results define a novel role for Kin kinases in the UPR beyond their role in cell polarity and exocytosis. Consistently, targeting, splicing, and translation of HAC1 mRNA are substantially reduced in the kin1Δ kin2Δ strain. Furthermore, we show that Kin2 kinase domain itself is sufficient to activate the UPR, suggesting that Kin2 initiates a signaling cascade to ensure an optimum UPR.  相似文献   

3.
4.
5.
One strategy to obtain better yields of secreted proteins has been overexpression of single endoplasmic reticulum-resident foldases or chaperones. We report here that manipulation of the unfolded-protein response (UPR) pathway regulator, HAC1, affects production of both native and foreign proteins in the yeast Saccharomyces cerevisiae. The effects of HAC1 deletion and overexpression on the production of a native protein, invertase, and two foreign proteins, Bacillus amyloliquefaciens alpha-amylase and Trichoderma reesei endoglucanase EGI, were studied. Disruption of HAC1 caused decreases in the secretion of both alpha-amylase (70 to 75% reduction) and EGI (40 to 50% reduction) compared to the secretion by the parental strain. Constitutive overexpression of HAC1 caused a 70% increase in alpha-amylase secretion but had no effect on EGI secretion. The invertase levels were twofold higher in the strain overexpressing HAC1. Also, the effect of the active form of T. reesei hac1 was tested in S. cerevisiae. hac1 expression caused a 2.4-fold increase in the secretion of alpha-amylase in S. cerevisiae and also slight increases in invertase and total protein production. Overexpression of both S. cerevisiae HAC1 and T. reesei hac1 caused an increase in the expression of the known UPR target gene KAR2 at early time points during cultivation.  相似文献   

6.
【目的】内质网应激(Endoplasmic reticulum stress,ERS)可激活细胞保护性信号级联反应——未折叠蛋白质反应(Unfolded protein response,UPR)。研究表明,酵母细胞中的UPR信号通路由转录因子Hac1p和ERS感应因子Ire1p共同介导。前期研究发现:蛋白质-O-甘露糖转移酶1(Protein-O-mannosyltransferase 1,PMT1)基因缺失能延长酵母细胞的复制性寿命,其机制与上调UPR通路活性相关。本文进一步探讨PMT1基因缺失在酵母ERS反应中的作用。【方法】观察PMT1基因与IRE1或HAC1基因双缺失酵母菌株(pmt1?hac1?和pmt1?ire1?)在ERS反应条件下的克隆形成能力;通过比色法检测各菌株的细胞增殖活性;RT-PCR检测各菌株UPR通路下游部分靶基因的转录水平。【结果】与对照菌株比较,PMT1基因缺失菌株(pmt1?)在ERS反应条件下生长较慢,而HAC1和IRE1单基因缺失菌株(hac1?和ire1?)在ERS反应条件下无法存活;在hac1?或ire1?菌株的基础上进一步缺失PMT1基因,可以改善hac1?菌株在ERS反应条件下的生长状态;但缺失PMT1基因没有上调hac1?菌株UPR通路靶基因的转录水平。【结论】缺失PMT1基因可增强hac1?菌株对ERS诱导剂衣霉素的抗性,机制与已知的UPR通路不相关,提示可能存在其它途径参与ERS反应的调控。  相似文献   

7.
8.
Glycoproteins derived from Hansenula polymorpha can not be used for therapeutic purposes due to their high-mannose type asparagine-linked (N-linked) glycans, which result in immune reactions and poor pharmacokinetic behaviors in human body. Previously, we reported that the trimannosyl core N-linked glycans (Man3GlcNAc2) intermediate can be generated in endoplasmic reticulum in HpALG3 and HpALG11 double-mutant H. polymorpha. Here, we describe the further modification of the glycosylation pathway in this double-defect strain to express glycoproteins with complex human-like glycans. After eliminating the impact of HpOCH1, three glycosyltransferases were introduced into this triple-mutant strain. When human β-1,2-N-acetylglucosaminyltransferase I (hGnTI) was efficiently targeted in early Golgi, more than 95 % glycans attached to the glycoproteins were added one N-acetylglucosamine (GlcNAc). With subsequently introduction of rat β-1,2-N-acetylglucosaminyltransferase II (rGnTII) and human β-1,4-galactosyltransferase I (hGalTI), several glycoengineered strains can produce glycoproteins bearing glycans with terminal N-acetylglucosamine or galactose. The expression of glycoproteins with glycan Gal2GlcNAc2Man3GlcNAc2 represents a significant step toward the ability to express fully humanized glycoproteins in H. polymorpha. Furthermore, several shake-flask and bioreactor fermentation experiments indicated that, although the cells do display a reduction in growth rate, the glycoengineered strains are still suitable for high-density fermentation.  相似文献   

9.
The unfolded protein response (UPR) is an essential signal transduction to cope with protein-folding stress in the endoplasmic reticulum. In the yeast UPR, the unconventional splicing of HAC1 mRNA is a key step. Translation of HAC1 pre-mRNA (HAC1u mRNA) is attenuated on polysomes and restarted only after splicing upon the UPR. However, the precise mechanism of this restart remained unclear. Here we show that yeast tRNA ligase (Rlg1p/Trl1p) acting on HAC1 ligation has an unexpected role in HAC1 translation. An RLG1 homologue from Arabidopsis thaliana (AtRLG1) substitutes for yeast RLG1 in tRNA splicing but not in the UPR. Surprisingly, AtRlg1p ligates HAC1 exons, but the spliced mRNA (HAC1i mRNA) is not translated efficiently. In the AtRLG1 cells, the HAC1 intron is circularized after splicing and remains associated on polysomes, impairing relief of the translational repression of HAC1i mRNA. Furthermore, the HAC1 5′ UTR itself enables yeast Rlg1p to regulate translation of the following ORF. RNA IP revealed that yeast Rlg1p is integrated in HAC1 mRNP, before Ire1p cleaves HAC1u mRNA. These results indicate that the splicing and the release of translational attenuation of HAC1 mRNA are separable steps and that Rlg1p has pivotal roles in both of these steps.  相似文献   

10.
11.
Genome-wide screening for sensitivity to chronic endoplasmic reticulum (ER) stress induced by dithiothreitol and tunicamycin (TM) identified mutants deleted for Cu, Zn superoxide dismutase (SOD) function (SOD1, CCS1) or affected in NADPH generation via the pentose phosphate pathway (TKL1, RPE1). TM-induced ER stress led to an increase in cellular superoxide accumulation and an increase in SOD1 expression and Sod1p activity. Prior adaptation of the hac1 mutant deficient in the unfolded protein response (UPR) to the superoxide-generating agent paraquat reduced cell death under ER stress. Overexpression of the ER oxidoreductase Ero1p known to generate hydrogen peroxide in vitro, did not lead to increased superoxide levels in cells subjected to ER stress. The mutants lacking SOD1, TKL1, or RPE1 exhibited decreased UPR induction under ER stress. Sensitivity of the sod1 mutant to ER stress and decreased UPR induction was partially rescued by overexpression of TKL1 encoding transketolase. These data indicate an important role for SOD and cellular NADP(H) in cell survival during ER stress, and it is proposed that accumulation of superoxide affects NADP(H) homeostasis, leading to reduced UPR induction during ER stress.  相似文献   

12.
Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice.  相似文献   

13.
The O-antigen (Oag) component of lipopolysaccharide (LPS) is a major virulence determinant of Shigella flexneri and is synthesized by the O-antigen polymerase, WzySf. Oag chain length is regulated by chromosomally encoded WzzSf and pHS-2 plasmid-encoded WzzpHS2. To identify functionally important amino acid residues in WzySf, random mutagenesis was performed on the wzySf gene in a pWaldo-TEV-GFP plasmid, followed by screening with colicin E2. Analysis of the LPS conferred by mutated WzySf proteins in the wzySf-deficient (Δwzy) strain identified 4 different mutant classes, with mutations found in periplasmic loop 1 (PL1), PL2, PL3, and PL6, transmembrane region 2 (TM2), TM4, TM5, TM7, TM8, and TM9, and cytoplasmic loop 1 (CL1) and CL5. The association of WzySf and WzzSf was investigated by transforming these mutated wzySf plasmids into a wzySf- and wzzSf-deficient (Δwzy Δwzz) strain. Comparison of the LPS profiles in the Δwzy and Δwzy Δwzz backgrounds identified WzySf mutants whose polymerization activities were WzzSf dependent. Colicin E2 and bacteriophage Sf6c sensitivities were consistent with the LPS profiles. Analysis of the expression levels of the WzySf-GFP mutants in the Δwzy and Δwzy Δwzz backgrounds identified a role for WzzSf in WzySf stability. Hence, in addition to its role in regulating Oag modal chain length, WzzSf also affects WzySf activity and stability.  相似文献   

14.
15.
Fatty acid-derived biofuels and biochemicals can be produced in microbes using β-oxidation pathway engineering. In this study, the β-oxidation pathway of Saccharomyces cerevisiae was engineered to accumulate a higher ratio of medium chain fatty acids (MCFAs) when cells were grown on fatty acid-rich feedstock. For this purpose, the haploid deletion strain Δpox1 was obtained, in which the sole acyl-CoA oxidase encoded by POX1 was deleted. Next, the POX2 gene from Yarrowia lipolytica, which encodes an acyl-CoA oxidase with a preference for long chain acyl-CoAs, was expressed in the Δpox1 strain. The resulting Δpox1 [pox2+] strain exhibited a growth defect because the β-oxidation pathway was blocked in peroxisomes. To unblock the β-oxidation pathway, the gene CROT, which encodes carnitine O-octanoyltransferase, was expressed in the Δpox1 [pox2+] strain to transport the accumulated medium chain acyl-coAs out of the peroxisomes. The obtained Δpox1 [pox2+, crot+] strain grew at a normal rate. The effect of these genetic modifications on fatty acid accumulation and profile was investigated when the strains were grown on oleic acids-containing medium. It was determined that the engineered strains Δpox1 [pox2+] and Δpox1 [pox2+, crot+] had increased fatty acid accumulation and an increased ratio of MCFAs. Compared to the wild-type (WT) strain, the total fatty acid production of the strains Δpox1 [pox2+] and Δpox1 [pox2+, crot+] were increased 29.5% and 15.6%, respectively. The intracellular level of MCFAs in Δpox1 [pox2+] and Δpox1 [pox2+, crot+] increased 2.26- and 1.87-fold compared to the WT strain, respectively. In addition, MCFAs in the culture medium increased 3.29-fold and 3.34-fold compared to the WT strain. These results suggested that fatty acids with an increased MCFAs ratio accumulate in the engineered strains with a modified β-oxidation pathway. Our approach exhibits great potential for transforming low value fatty acid-rich feedstock into high value fatty acid-derived products.  相似文献   

16.
17.
Sapovirus, a member of the Caliciviridae family, is an important cause of acute gastroenteritis in humans and pigs. Currently, the porcine sapovirus (PSaV) Cowden strain remains the only cultivable member of the Sapovirus genus. While some caliciviruses are known to utilize carbohydrate receptors for entry and infection, a functional receptor for sapovirus is unknown. To characterize the functional receptor of the Cowden strain of PSaV, we undertook a comprehensive series of protein-ligand biochemical assays in mock and PSaV-infected cell culture and/or piglet intestinal tissue sections. PSaV revealed neither hemagglutination activity with red blood cells from any species nor binding activity to synthetic histo-blood group antigens, indicating that PSaV does not use histo-blood group antigens as receptors. Attachment and infection of PSaV were markedly blocked by sialic acid and Vibrio cholerae neuraminidase (NA), suggesting a role for α2,3-linked, α2,6-linked or α2,8-linked sialic acid in virus attachment. However, viral attachment and infection were only partially inhibited by treatment of cells with sialidase S (SS) or Maackia amurensis lectin (MAL), both specific for α2,3-linked sialic acid, or Sambucus nigra lectin (SNL), specific for α2,6-linked sialic acid. These results indicated that PSaV recognizes both α2,3- and α2,6-linked sialic acids for viral attachment and infection. Treatment of cells with proteases or with benzyl 4-O-β-D-galactopyranosyl-β-D-glucopyranoside (benzylGalNAc), which inhibits O-linked glycosylation, also reduced virus binding and infection, whereas inhibition of glycolipd synthesis or N-linked glycosylation had no such effect on virus binding or infection. These data suggest PSaV binds to cellular receptors that consist of α2,3- and α2,6-linked sialic acids on glycoproteins attached via O-linked glycosylation.  相似文献   

18.
The gastric pathogen Helicobacter pylori must combat chronic acid and oxidative stress. It does so via many mechanisms, including macromolecule repair and gene regulation. Mitomycin C-sensitive clones from a transposon mutagenesis library were screened. One sensitive strain contained the insertion element at the locus of hp119, a hypothetical gene. No homologous gene exists in any (non-H. pylori) organism. Nevertheless, the predicted protein has some features characteristic of histone-like proteins, and we showed that purified HP119 protein is a DNA-binding protein. A Δhp119 strain was markedly more sensitive (viability loss) to acid or to air exposure, and these phenotypes were restored to wild-type (WT) attributes upon complementation of the mutant with the wild-type version of hp119 at a separate chromosomal locus. The mutant strain was approximately10-fold more sensitive to macrophage-mediated killing than the parent or the complemented strain. Of 12 mice inoculated with the wild type, all contained H. pylori, whereas 5 of 12 mice contained the mutant strain; the mean colonization numbers were 158-fold less for the mutant strain. A proteomic (two-dimensional PAGE with mass spectrometric analysis) comparison between the Δhp119 mutant and the WT strain under oxidative stress conditions revealed a number of important antioxidant protein differences; SodB, Tpx, TrxR, and NapA, as well as the peptidoglycan deacetylase PgdA, were significantly less expressed in the Δhp119 mutant than in the WT strain. This study identified HP119 as a putative histone-like DNA-binding protein and showed that it plays an important role in Helicobacter pylori stress tolerance and survival in the host.  相似文献   

19.
Iwata Y  Koizumi N 《Planta》2005,220(5):804-807
When correct folding of protein in the endoplasmic reticulum (ER) is prevented, cells respond to overcome the accumulation of unfolded proteins. This cellular response, which includes the induction of ER chaperones, is called an unfolded protein response (UPR). Although a link between the UPR and apoptosis has been reported in mammalian cells, little is known about this mechanism in plant cells. Asparagine (N)-linked glycosylation of proteins is critical for protein folding in the ER; and tunicamycin, a potent inhibitor of N-linked glycosylation, induces UPR. Growth arrest was observed in cultured tobacco cells treated with tunicamycin. Cell death and induction of Hsr203J, a marker for programmed cell death, were observed in the 24-h period after addition of tunicamycin, following UPR that started within 2 h. These results indicate a strong link between UPR and programmed cell death in plant cells.  相似文献   

20.
The thermotolerant strain 1-IR was isolated as a contaminant microflora of the industrial strain “Red” (the Netherlands) during the study of the baker’s yeast Saccharomyces cerevisiae. The strain was assigned to the species Ogataea parapolymorpha by sequencing the 26S rDNA D1/D2 domain. The strain 1-IR was shown to be capable of efficient glucose and xylose fermentation at an elevated temperature of 45°C. In this respect, the strain 1-IR surpassed the thermotolerant yeasts O. polymorpha CBS 4732, NCYC 495, and O. parapolymorpha DL1. The prospects of using the O. parapolymorpha yeasts as producers of biofuel from lignocellulose wastes of agricultural and woodworking industries is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号