首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marine teleost fish secrete bicarbonate (HCO3 ?) into the intestine to aid osmoregulation and limit Ca2+ uptake by carbonate precipitation. Intestinal HCO3 ? secretion is associated with an equimolar transport of protons (H+) into the blood, both being proportional to environmental salinity. We hypothesized that the H+-sensitive haemoglobin (Hb) system of seawater teleosts could be exploited via the Bohr and/or Root effects (reduced Hb-O2 affinity and/or capacity with decreasing pH) to improve O2 delivery to intestinal cells during high metabolic demand associated with osmoregulation. To test this, we characterized H+ equilibria and gas exchange properties of European flounder (Platichthys flesus) haemoglobin and constructed a model incorporating these values, intestinal blood flow rates and arterial–venous acidification at three different environmental salinities (33, 60 and 90). The model suggested red blood cell pH (pHi) during passage through intestinal capillaries could be reduced by 0.14–0.33 units (depending on external salinity) which is sufficient to activate the Bohr effect (Bohr coefficient of ?0.63), and perhaps even the Root effect, and enhance tissue O2 delivery by up to 42 % without changing blood flow. In vivo measurements of intestinal venous blood pH were not possible in flounder but were in seawater-acclimated rainbow trout which confirmed a blood acidification of no less than 0.2 units (equivalent to ?0.12 for pHi). When using trout-specific values for the model variables, predicted values were consistent with measured in vivo values, further supporting the model. Thus this system is an elegant example of autoregulation: as the need for costly osmoregulatory processes (including HCO3 ? secretion) increases at higher environmental salinity, so does the enhancement of O2 delivery to the intestine via a localized acidosis and the Bohr (and possibly Root) effect.  相似文献   

2.
The Root effect, a reduction in blood oxygen (O2) carrying capacity at low pH, is used by many fish species to maximize O2 delivery to the eye and swimbladder. It is believed to have evolved in the basal actinopterygian lineage of fishes, species that lack the intracellular pH (pHi) protection mechanism of more derived species’ red blood cells (i.e., adrenergically activated Na+/H+ exchangers; βNHE). These basal actinopterygians may consequently experience a reduction in blood O2 carrying capacity, and thus O2 uptake at the gills, during hypoxia- and exercise-induced generalized blood acidoses. We analyzed the hemoglobins (Hbs) of seven species within this group [American paddlefish (Polyodon spathula), white sturgeon (Acipenser transmontanus), spotted gar (Lepisosteus oculatus), alligator gar (Atractosteus spatula), bowfin (Amia calva), mooneye (Hiodon tergisus), and pirarucu (Arapaima gigas)] for their Root effect characteristics so as to test the hypothesis of the Root effect onset pH value being lower than those pH values expected during a generalized acidosis in vivo. Analysis of the haemolysates revealed that, although each of the seven species displayed Root effects (ranging from 7.3 to 40.5% desaturation of Hb with O2, i.e., Hb O2 desaturation), the Root effect onset pH values of all species are considerably lower (ranging from pH 5.94 to 7.04) than the maximum blood acidoses that would be expected following hypoxia or exercise (pHi 7.15–7.3). Thus, although these primitive fishes possess Hbs with large Root effects and lack any significant red blood cell βNHE activity, it is unlikely that the possession of a Root effect would impair O2 uptake at the gills following a generalized acidosis of the blood. As well, it was shown that both maximal Root effect and Root effect onset pH values increased significantly in bowfin over those of the more basal species, toward values of similar magnitude to those of most of the more derived teleosts studied to date. This is paralleled by the initial appearance of the choroid rete in bowfin, as well as a significant decrease in Hb buffer value and an increase in Bohr/Haldane effects, together suggesting bowfin as the most basal species capable of utilizing its Root effect to maximize O2 delivery to the eye.  相似文献   

3.
Synopsis Both physical and physiological modifications to the oxygen transport system promote high metabolic performance of tuna. The large surface area of the gills and thin blood-water barrier means that O2 utilization is high (30–50%) even when ram ventilation approaches 101 min–1kg–1. The heart is extremely large and generates peak blood pressures in the range of 70–100 mmHg at frequencies of 1–5 Hz. The blood O2 capacity approaches 16 ml dl–1 and a large Bohr coefficient (–0.83 to –1.17) ensures adequate loading and unloading of O2 from the well buffered blood (20.9 slykes). Tuna muscles have aerobic oxidation rates that are 3–5 times higher than in other teleosts and extremely high glycolytic capacity (150 mol g–1 lactate generated) due to enhanced concentration of glycolytic enzymes. Gill resistance in tuna is high and may be more than 50% of total peripheral resistance so that dorsal aortic pressure is similar to that in other active fishes such as salmon or trout. An O2 delivery/demand model predicts the maximum sustained swimming speed of small yellowfin and skipjack tuna is 5.6 BL s–1 and 3.5 BL sec–1, respectively. The surplus O2 delivery capacity at lower swimming speeds allows tuna to repay large oxygen debts while swimming at 2–2.5 BL s–1. Maximum oxygen consumption (7–9 × above the standard metabolic rate) at maximum exercise is provided by approximately 2 × increases in each of heart rate, stroke volume, and arterial-venous O2 content difference.Paper from International Union of Biological Societies symposium The biology of tunas and billfishes: an examination of life on the knife edge, organized by Richard W. Brill and Kim N. Holland.  相似文献   

4.
Many teleost fishes have haemoglobins which possess a Root effect, a large Haldane effect and a low buffer capacity. This combination of characteristics influences the interaction between movements of oxygen and carbon dioxide in the red cell, in the respiratory epithelium, and in the tissues. The presence of the Root effect may limit oxygen uptake at the gills due to an accumulation of Bohr protons released upon oxygenation. However, the Root effect is probably important in maintaining or elevating blood PO2 during muscle capillary transit, enhancing oxygen delivery to the tissues.Bohr protons are reversibly bound to haemoglobin. The release of Bohr protons during oxygenation facilitates bicarbonate dehydration at the gills, while Bohr proton binding facilitates CO2 hydration at the tissues. In some teleost fishes, most of the Bohr protons are released and bound to haemoglobin, between 50 and 100% of haemoglobin-oxygen saturation (27). This trait is probably significant in maximizing oxygen uptake at the gills and in conserving body CO2 stores during exposure to hypoxia and exercise, when the lower reaches of the haemoglobin-oxygen equilibrium curve are used.  相似文献   

5.
We have used isoelectric focusing to measure the differences between the pI values of various normal and mutant human haemoglobins when completely deoxygenated and when fully liganded with CO. It was assumed that the ΔpI(deox.–ox.) values might correspond quantitatively to the intrinsic alkaline Bohr effect, as most of the anionic cofactors of the haemoglobin molecule are `stripped' off during the electrophoretic process. In haemoglobins known to exhibit a normal Bohr coefficient (ΔlogP50/ΔpH) in solutions, the ΔpI(deox.–ox.) values are lower the higher their respective pI(ox.) values. This indicates that for any particular haemoglobin the ΔpI(deox.–ox.) value accounts for the difference in surface charges at the pH of its pI value. This was confirmed by measuring, by the direct-titration technique, the difference in pH of deoxy and fully liganded haemoglobin A02β2) solutions in conditions approximating those of the isoelectric focusing, i.e. at 5°C and very low concentration of KCl. The variation of the ΔpH(deox.–ox.) curve as a function of pH (ox.) was similar to the isoelectric-focusing curve relating the variation of ΔpI(deox.–ox.) versus pI(ox.) in various haemoglobins with Bohr factor identical with that of haemoglobin A0. In haemoglobin A0 the ΔpI(deox.–ox.) value is 0.17 pH unit, which corresponds to a difference of 1.20 positive charges between the oxy and deoxy states of the tetrameric haemoglobin. This value compares favourably with the values of the intrinsic Bohr effect estimated in back-titration experiments. The ΔpI(deox.–ox.) values of mutant or chemically modified haemoglobins carrying an abnormality at the N- or C-terminus of the α-chains are decreased by 30% compared with the ΔpI value measured in haemoglobin A0. When the C-terminus of the β-chains is altered, as in Hb Nancy (α2βTyr-145→Asp2), we observed a 70% decrease in the ΔpI value compared with that measured in haemoglobin A0. These values are in close agreement with the estimated respective roles of the two major Bohr groups, Val-1α and His-146β, at the origin of the intrinsic alkaline Bohr effect [Kilmartin, Fogg, Luzzana & Rossi-Bernardi (1973) J. Biol. Chem. 248, 7039–7043; Perutz, Kilmartin, Nishikura, Fogg, Butler & Rollema (1980) J. Mol. Biol. 138, 649–670]. In other mutant haemoglobins it is demonstrated also that the ΔpI(deox.–ox.) value may be decreased or even suppressed when the substitution affects residues involved in the stability of the tetramer. These results support the interpretation proposed by Perutz, Kilmartin, Nishikura, Fogg, Butler & Rollema [(1980), J. Mol. Biol. 138, 649–670] for the mechanism of the alkaline Bohr effect, and also indicate that the transition between the two quaternary configurations is a prerequisite for the full expression of the alkaline Bohr effect.  相似文献   

6.
The respiratory properties of the whole blood of the burrowing red band fish Cepola rubescens L. were investigated. Oxygen dissociation curves constructed at 15°C were found to be close to hyperbolic in shape with a mean value for the cooperativity coefficient at half-saturation (n50) of 1.56. Half-saturation oxygen tension (P50) for pH = 7.56 (mean in vivo pH of venous blood) was 27 Torr. The blood showed a marked Bohr effect (Δ log P50ΔpH = ?1.19) and also a Root effect which at the in vivo pH reduced oxygen carrying capacity by 20%. The PvCO2 was 3.2 Torr and the buffering power of the blood was low, the buffer value of true plasma averaging 5.43 mmol · 1?1 · pH?1. It is suggested that the large Bohr effect coupled with the low buffer value confers on the haemoglobin a flexibility, in terms of oxygen affinity, to withstand changes which occur in environmental oxygen tensions.  相似文献   

7.
Synopsis Aquatic and aerial oxygen uptake (̇O2), ventilation frequency, and oxygen transport properties of the blood were determined for the intertidal fish Helcogramma medium. Ventilation frequency increased in response to decreased environmental PO2 and aquatic ̇O2 was maintained down to a critical PO2 of 30–40 mm Hg. Below PO2 30 mm Hg fish intermittently gulped air and finally emerged into air at PO2 18 mm Hg. After 1 h exposure to air ̇O2 decreased to 60% of the aquatic rate and this was accompanied by an increase in blood lactate. Aerobic expansibility was reduced in air (×1.2) compared to water (× 5.5). The Hb concentration was 0.47 ± 0.13 mmol 1–1 and hematocrit 11.55 ± 3.61% indicating a moderate O2-carrying capacity. Oxygen affinity was not especially high (P50 = 19 mm Hg at pH 7.7 and 15°C) and ATP was the predominant acid-soluble phosphate regulating P50. The equilibrium curve was essentially hyperbolic (Hill's n = 1.2) with a marked Bohr effect = –1.06) and Root effect (saturation depressed by 50% at pH7.1). The pattern of respiration and the respiratory properties of the blood together with observations of the behaviour of the fish during aerial exposure indicated that Helcogramma is adapted to living in a well-aerated environment yet can adequately tolerate short term exposure to low aquatic PO2 or air.  相似文献   

8.
In fishes, catecholamines increase red blood cell intracellular pH through stimulation of a sodium/proton (Na+/H+) antiporter. This response can counteract potential reductions in blood O2 carrying capacity (due to Bohr and Root effects) when plasma pH and intracellular pH decrease during hypoxia, hypercapnia, or following exhaustive exercise. Tuna physiology and behavior dictate exceptionally high rates of O2 delivery to the tissues often under adverse conditions, but especially during recovery from exhaustive exercise when plasma pH may be reduced by as much as 0.4 pH units. We hypothesize that blood O2 transport during periods of metabolic acidosis could be especially critical in tunas and the response of rbc to catecholamines elevated to an extreme. We therefore investigated the in vitro response of red blood cells from yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis) to catecholamines. Tuna red blood cells had a typical response to catecholamines, indicated by a rapid decrease in plasma pH. Amiloride reduced the response, whereas 4,4′diisothiocyanatostilbene-2,2′-disulphonic acid enhanced both the decrease in plasma pH and the increase in intracellular pH. Changes in plasma [Na+], [Cl], and [K+] were consistent with the hypothesis that tuna red blood cells have a Na+/H+ antiporter similar to that described for other teleost red blood cells. Red blood cells from both tuna species were more responsive to noradrenaline than adrenaline. At identical catecholamine concentrations, the decrease in plasma pH was greater in skipjack tuna blood, the more active of the two tuna species. Based on changes in plasma pH, the response of red blood cells to catecholamines from both tuna species was less than that of rainbow trout (Oncorhynchus mykiss) red blood cells, but greater than that of cod (Gadus morhua) red blood cells. Noradrenaline had no measurable influence on the O2 affinity of skipjack tuna blood and only slightly increased the O2 affinity of yellowfin tuna blood. Our results, therefore, do not support our original hypothesis. The catecholamine response of red blood cells from high-energy-demand teleosts (i.e., tunas) is not enhanced compared to other teleosts. There are data on changes in cardio-respiratory function in tunas caused by acute hypoxia and modest increases in activity, but there are no data on the changes in cardio-respiratory function in tunas accompanying the large increases in metabolic rate seen during recovery from exhaustive exercise. However, we conclude that during those instances where high rates of O2 delivery to the tissues are needed, tunas' ability to increase cardiac output, ventilation volume, blood O2 carrying capacity, and effective respiratory (i.e., gill) surface area are probably more important than are the responses of red blood cells to catecholamines. We also use our data to investigate the extent of the Haldane effect and its relationship to blood O2 and CO2 transport in yellowfin tuna. Yellowfin tuna blood shows a large Haldane effect; intracellular pH increases 0.20 units during oxygenation. The largest change in intracellular pH occurs between 40–100% O2 saturation, indicating that yellowfin tuna, like other teleosts, fully exploit the Haldane effect over the normal physiological range of blood O2 saturation. Accepted: 27 March 1998  相似文献   

9.
The discovery that cysteine (Cys) S-nitrosation of trout myoglobin (Mb) increases heme O2 affinity has revealed a novel allosteric effect that may promote hypoxia-induced nitric oxide (NO) delivery in the trout heart and improve myocardial efficiency. To better understand this allosteric effect, we investigated the functional effects and structural origin of S-nitrosation in selected fish Mbs differing by content and position of reactive cysteine (Cys) residues. The Mbs from the Atlantic salmon and the yellowfin tuna, containing two and one reactive Cys, respectively, were S-nitrosated in vitro by reaction with Cys-NO to generate Mb-SNO to a similar yield (∼0.50 SH/heme), suggesting reaction at a specific Cys residue. As found for trout, salmon Mb showed a low O2 affinity (P 50 = 2.7 torr) that was increased by S-nitrosation (P 50 = 1.7 torr), whereas in tuna Mb, O2 affinity (P 50 = 0.9 torr) was independent of S-nitrosation. O2 dissociation rates (k off) of trout and salmon Mbs were not altered when Cys were in the SNO or N-ethylmaleimide (NEM) forms, suggesting that S-nitrosation should affect O2 affinity by raising the O2 association rate (k on). Taken together, these results indicate that O2-linked S-nitrosation may occur specifically at Cys107, present in salmon and trout Mb but not in tuna Mb, and that it may relieve protein constraints that limit O2 entry to the heme pocket of the unmodified Mb by a yet unknown mechanism. UV-Vis and resonance Raman spectra of the NEM-derivative of trout Mb (functionally equivalent to Mb-SNO and not photolabile) were identical to those of the unmodified Mb, indicating that S-nitrosation does not affect the extent or nature of heme-ligand stabilization of the fully ligated protein. The importance of S-nitrosation of Mb in vivo is confirmed by the observation that Mb-SNO is present in trout hearts and that its level can be significantly reduced by anoxic conditions.  相似文献   

10.
Summary At the onset of moderate swimming activity,Callinectes sapidus rapidly increased branchial ventilation, heart rate, and oxygen uptake, reaching steady state values in 2–3 min, with a half-time of 30 sec. Although O2 extraction efficiency decreased slightly (50% to 43%) upon reaching steady state, O2 uptake was increased 2.6 fold over resting (routine) levels. HemolymphP O 2 did not change during sustained (30–60 min) exercise, but a marked decrease in pH (7.60 to 7.10), associated with a 14-fold increase in hemolymph lactate concentration, caused decreases in both pre-and postbranchial O2 content due to a large hemocyanin Bohr shift. The effect of the Bohr shift on O2 binding, however, was minimized by an increase in hemocyanin O2 affinity induced by lactate ions; the influence of lactate on hemocyaninP 50 was shown to be the same in vivo and in vitro. As a result of the interaction between the Bohr and lactate effects, only slight increases were observed in the a-v O2 difference (13%) and the quantitative role of hemocyanin in oxygen transport (11%) during exercise. The increase in O2 delivery was therefore attributed primarily to a 2.3 fold increase in cardiac output (Fick estimate), resulting from increases in both heart rate (1.61 X) and stroke volume (1.42X). During exercise hemocyanin remained 21% oxygenated upon leaving the tissues, thus maintaining a substantial venous O2 reserve which could be utilized to fuel more strenuous levels of exercise at least partly by aerobic pathways. The high hemolymph lactate levels, however, indicate that anaerobic metabolism makes a significant contribution to energy production even during moderate exercise. These results are similar to the respiratory and circulatory responses reported for other decapod crustaceans and fish during mild exercise.C. sapidus, however, appears to be highly resistant to fatigue, which correlates with its welldeveloped locomotor capabilities.  相似文献   

11.
Peripheral O2 chemoreceptors initiate adaptive cardiorespiratory responses to hypoxia in vertebrates. Morphological and physiological evidence suggests that, in fish, neuroepithelial cells (NECs) of the gill perform this role. We conducted a comparative examination in three species of teleosts (zebrafish, goldfish and trout) and larvae of the amphibian Xenopus laevis, using whole-mount gill preparations and confocal immunofluorescence, to elucidate the distribution, morphology and innervation of gill NECs. Nerve fibres were immunolabelled with the neuronal marker zn-12 and were associated with serotonin-immunoreactive NECs in the gills of all species tested. With the exception of trout, innervated NECs were present on all gill arches in the filaments and respiratory lamellae in fish and on homologous structures in Xenopus (i.e. gill “tufts”, including respiratory terminal branches). Thus, the distribution and innervation of NECs of the internal gills of amphibians and teleosts are relatively well conserved, suggesting an important role for gill NECs as O2 chemoreceptors in aquatic vertebrates. Furthermore, the size and density of gill NECs is variable among teleosts and developmental stages of Xenopus larvae and may be dependent on general gill dimensions or environmental conditions. This report constitutes the first comparative study of gill NECs in fish and amphibians and highlights the significance of gill NECs as an evolutionary model for studying O2 sensing in vertebrates. We acknowledge the Natural Sciences and Engineering Research Council (NSERC) of Canada for funding through an operating grant to C.A.N., and the NSERC and the Ontario Graduate Scholarship (OGS) program for postgraduate scholarships to M.G.J.  相似文献   

12.
Vacuolar proton-translocating ATPase (V-ATPase) is a central regulator of cellular pH homeostasis, and inactivation of all V-ATPase function has been shown to prevent infectivity in Candida albicans. V-ATPase subunit a of the Vo domain (Voa) is present as two fungal isoforms: Stv1p (Golgi) and Vph1p (vacuole). To delineate the individual contribution of Stv1p and Vph1p to C. albicans physiology, we created stv1Δ/Δ and vph1Δ/Δ mutants and compared them to the corresponding reintegrant strains (stv1Δ/ΔR and vph1Δ/ΔR). V-ATPase activity, vacuolar physiology, and in vitro virulence-related phenotypes were unaffected in the stv1Δ/Δ mutant. The vph1Δ/Δ mutant exhibited defective V1Vo assembly and a 90% reduction in concanamycin A-sensitive ATPase activity and proton transport in purified vacuolar membranes, suggesting that the Vph1p isoform is essential for vacuolar V-ATPase activity in C. albicans. The vph1Δ/Δ cells also had abnormal endocytosis and vacuolar morphology and an alkalinized vacuolar lumen (pHvph1Δ/Δ = 6.8 versus pHvph1Δ/ΔR = 5.8) in both yeast cells and hyphae. Secreted protease and lipase activities were significantly reduced, and M199-induced filamentation was impaired in the vph1Δ/Δ mutant. However, the vph1Δ/Δ cells remained competent for filamentation induced by Spider media and YPD, 10% FCS, and biofilm formation and macrophage killing were unaffected in vitro. These studies suggest that different virulence mechanisms differentially rely on acidified vacuoles and that the loss of both vacuolar (Vph1p) and non-vacuolar (Stv1p) V-ATPase activity is necessary to affect in vitro virulence-related phenotypes. As a determinant of C. albicans pathogenesis, vacuolar pH alone may prove less critical than originally assumed.  相似文献   

13.
Part of the “signature sequence” that defines the voltage-gated proton channel (HV1) is a tryptophan residue adjacent to the second Arg in the S4 transmembrane helix: RxWRxxR, which is perfectly conserved in all high confidence HV1 genes. Replacing Trp207 in human HV1 (hHV1) with Ala, Ser, or Phe facilitated gating, accelerating channel opening by 100-fold, and closing by 30-fold. Mutant channels opened at more negative voltages than wild-type (WT) channels, indicating that in WT channels, Trp favors a closed state. The Arrhenius activation energy, Ea, for channel opening decreased to 22 kcal/mol from 30–38 kcal/mol for WT, confirming that Trp207 establishes the major energy barrier between closed and open hHV1. Cation–π interaction between Trp207 and Arg211 evidently latches the channel closed. Trp207 mutants lost proton selectivity at pHo >8.0. Finally, gating that depends on the transmembrane pH gradient (ΔpH-dependent gating), a universal feature of HV1 that is essential to its biological functions, was compromised. In the WT hHV1, ΔpH-dependent gating is shown to saturate above pHi or pHo 8, consistent with a single pH sensor with alternating access to internal and external solutions. However, saturation occurred independently of ΔpH, indicating the existence of distinct internal and external pH sensors. In Trp207 mutants, ΔpH-dependent gating saturated at lower pHo but not at lower pHi. That Trp207 mutation selectively alters pHo sensing further supports the existence of distinct internal and external pH sensors. Analogous mutations in HV1 from the unicellular species Karlodinium veneficum and Emiliania huxleyi produced generally similar consequences. Saturation of ΔpH-dependent gating occurred at the same pHo and pHi in HV1 of all three species, suggesting that the same or similar group(s) is involved in pH sensing. Therefore, Trp enables four characteristic properties: slow channel opening, highly temperature-dependent gating kinetics, proton selectivity, and ΔpH-dependent gating.  相似文献   

14.
Summary Rainbow trout (Salmo gairdneri) were exposed to acidic soft water (pHin4.2–6.3) in the presence (93 g·l–1) or absence of Al. Fish were fitted with latex masks and opercular catheters to measure ventilation , pH changes at the gills, O2 consumption , ammonia excretion , and Al extraction. During 2–3-h exposures, was generally higher in Al-exposed fish over the pHin range 4.7–6.3. Alkalinization of expired water was about 0.3 pH units less in Al-exposed fish than in acid-only exposed fish at pHin 4.5–5.2, an effect attributable to both increased and to buffering by Al. During 44-h exposures to pHin 5.2 and 4.8 plus Al, increased greatly and expired water pH (pHex) decreased with time. There was a small increase in over 44 h at pH 4.4 plus Al, and no changes in pHex. In contrast, during 44-h exposures to pH 5.2, 4.8, and 4.4 in the absence of Al, such changes were much smaller or absent. During both short- and longerterm exposures, measured Al accumulation on the gills was only 5–18% of that calculated from cumulative Al extraction from the water, suggesting considerable sloughing of Al. In free-swimming trout, gill Al accumulation was greatest during exposure (2h) to Al at pH 5.2, lower at pH 4.8, and least at pH 4.4 and 4.0. Our results suggest that Al deposition occurs at the gills, causing respiratory and ionoregulatory toxicity, because the pH in the branchial micro-environment is raised above that in the acidic inspired soft water. Higher pH at fish gills may result in Al precipitation due to loss of solubility, or Al accumulation because of shifts in Al species to Al-hydroxide forms which more readily adsorb to the gills.Abbreviations pH ex expired pH - pH in inspired pH  相似文献   

15.
1. The Bohr effects of trout blood (which exhibits the Root effect) and of human blood were compared. Precise oxygen equilibria were measured with an automatic recording system, on normal trout red blood cell suspensions at pH 7.6 - 8.6, at 10 and 20 degrees C, and on normal human red blood cell suspensions at pH 6.8 - 8.0, at 37 degrees C. 2. The data were fitted to the Adair's stepwise oxygenation model which describes experimental curves with four constants ki (i = 1-4). 3. Adair's scheme successfully fits the equilibrium data for trout and human blood, in the range of conditions examined. 4. The R-state Bohr effect (d log k4/ d pH), is very large in trout blood, indicating a large pH dependence of the R structure, as opposed to human blood. 5. The T-state Bohr effect (d log k1/ d pH), and the overall Bohr effect (d log Pm/ d pH), are equivalent in trout and human blood. 6. The overall Bohr effect is essentially accounted for by the first and fourth oxygenation steps in trout blood and shows a significant effect of temperature. 7. The data attribute a major role to Hb4 in trout blood isotherms and confirm the importance of the C-termini of Beta chains in Bohr and Root effects.  相似文献   

16.
Oxidation of Hbs leads to the formation of different forms of Fe(III) that are relevant to a range of biochemical and physiological functions. Here we report a combined EPR/x-ray crystallography study performed at acidic pH on six ferric tetrameric Hbs. Five of the Hbs were isolated from the high-Antarctic notothenioid fishes Trematomus bernacchii, Trematomus newnesi, and Gymnodraco acuticeps, and one was isolated from the sub-Antarctic notothenioid Cottoperca gobio. Our EPR analysis reveals that 1), in all of these Hbs, at acidic pH the aquomet form and two hemichromes coexist; and 2), only in the three Hbs that exhibit the Root effect is a significant amount of the pentacoordinate (5C) high-spin Fe(III) form found. The crystal structure at acidic pH of the ferric form of the Root-effect Hb from T. bernacchii is also reported at 1.7 Å resolution. This structure reveals a 5C state of the heme iron for both the α- and β-chains within a T quaternary structure. Altogether, the spectroscopic and crystallographic results indicate that the Root effect and hemichrome stability at acidic pH are correlated in tetrameric Hbs. Furthermore, Antarctic fish Hbs exhibit higher peroxidase activity than mammalian and temperate fish Hbs, suggesting that a partial hemichrome state in tetrameric Hbs, unlike in monomeric Hbs, does not remove the need for protection from peroxide attack, in contrast to previous results from monomeric Hbs.  相似文献   

17.
The effect of long-term (7 day) anaemia on catecholamine release was examined in rainbow trout (Oncorhynchus mykiss) in vivo during acute exposure to hypoxia and in situ using a perfused post-cardinal vein preparation. The first goal was to distinguish among reductions in blood O2 partial pressure, O2 concentration and haemoglobin percentage saturation as potential stimuli for, or correlates of, catecholamine secretion during hypoxia. The second goal was to elucidate the role of these factors in promoting enhanced chromaffin cell responsiveness in trout subjected to chronic hypoxia (Montpetit and Perry 1998). Anaemic fish (haematocrit lowered from 28.4±2.4% to 11.9±1.6%) displayed a marked reduction in haemoglobin-O2 binding affinity [P 50 (P aO2 at 50% Hb-O2 saturation) was increased from 14.7 mm Hg to 24.3 mm Hg]. Upon exposure to hypoxia, the anaemic fish released catecholamines into their circulation at higher values of arterial O2 partial pressure (∼52 mm Hg versus ∼18 mm Hg) and haemoglobin O2 saturation (<70% versus <55%) than did control fish. In addition, anaemic fish achieved significantly greater circulating levels of total catecholamines (noradrenaline plus adrenaline) during acute hypoxia (294.8±67.3 versus 107.0±35.6 nmol l−1). These results do not support the view that catecholamine release is triggered by a reduction in haemoglobin O2 saturation or arterial PO2, per se. Nor are they consistent with the idea that catecholamine release occurs at a threshold value of arterial PO2 corresponding to a critical reduction in blood O2 concentration. The effects of the non-selective cholinergic receptor carbachol on catecholamine secretion from chromaffin tissue were assessed using perfused posterior cardinal vein preparations derived from control or anaemic fish. For adrenaline secretion, there was no statistically significant change in the ED50 (dose eliciting 50% response). For noradrenaline secretion however, preparations originating from anaemic fish displayed an enhanced responsiveness to carbachol as indicated by a significant 4.5-fold reduction in the carbachol ED50 value from 2.53 × 10−6 mol kg−1 to 5.67 × 10−7 mol kg−1. These results demonstrate that anaemia-induced hypoxaemia, in the absence of any lowering of PO2, is able to modulate the responsiveness of chromaffin cells to cholinergic stimulation. Accepted: 21 April 1999  相似文献   

18.
Ischemia is known to inhibit gap junction (GJ) mediated intercellular communication. However the detail mechanisms of this inhibition are largely unknown. In the present study, we determined the vulnerability of different cardiac GJ channels formed of connexins (Cxs) 43, 40, and 45 to simulated ischemia, by creating oxygen glucose deprived (OGD) condition. 5 minutes of OGD decreased the junctional conductance (Gj) of Cx43, Cx40 and Cx45 by 53±3%, 64±1% and 85±2% respectively. Reduction of Gj was prevented completely by restricting the change of both intracellular calcium ([Ca2+]i) and pH (pHi) with potassium phosphate buffer. Clamping of either [Ca2+]i or pHi, through BAPTA (2 mM) or HEPES (80 mM) respectively, offered partial resistance to ischemic uncoupling. Anti-calmodulin antibody attenuated the uncoupling of Cx43 and Cx45 significantly but not of Cx40. Furthermore, OGD could reduce only 26±2% of Gj in C-terminus (CT) truncated Cx43 (Cx43-Δ257). Tethering CT of Cx43 to the CT-truncated Cx40 (Cx40-Δ249), and Cx45 (Cx45-Δ272) helped to resist OGD mediated uncoupling. Moreover, CT domain played a significant role in determining the junction current density and plaque diameter. Our results suggest; OGD mediated uncoupling of GJ channels is primarily due to elevated [Ca2+]i and acidic pHi, though the latter contributes more. Among Cx43, Cx40 and Cx45, Cx43 is the most resistant to OGD while Cx45 is the most sensitive one. CT of Cx43 has major necessary elements for OGD induced uncoupling and it can complement CT of Cx40 and Cx45.  相似文献   

19.
Allosteric effects of erythrocytic NTP and proton concentrations on cathodic eel Hb were investigated by precise measurement of Hb-O2 equilibria (including extreme saturation values) and analysis in terms of the MWC two-state model and the Adair four-step oxygenation theory. Stripped cathodic Hb shows a reverse Bohr effect and high sensitivities to ATP and GTP that extend to high pH values (>8.5). A decrease in pH raises K T and lowers the allosteric constant L; compared to opposite effects in normal Bohr effect Hbs. Phosphates even at low concentrations (GTP/Hb=0.5) annihilate the reverse Bohr effect. GTP exerts a reater effect than ATP due to greater changes in K T and L, and NTP slightly reduces K R. In the absence of NTP, about 1.1 protons are released on deoxygenation at pH 8.15 (where most protons are released), indicating a pK value of the reverse Bohr group of approximately 8.2 (higher in oxy-Hb and lower in deoxy-Hb). The pH and NTP dependence of the Adair association constants and calculated fractional populations of Hb molecules in different oxygenation stages show that NTP effectors stabilise the T structure and postpone the T-R transition, whereas protons in the absence of NTP have the opposite effect. A molecular mechanism for the reverse Bohr effect is suggested.Abbreviations DPG 2,3 diphosphoglycerate - EPLC fast protein liquid chromatography - Hb hemoglobin - HEPES N-2-hydroxymethyl-piperazine-N-2-ethanesulfonic acid - K T and K R O2 association equilibrium constants of Hb in the deoxy- and oxy-states, respectively - k 1, k 2, k 3 and k 4 Adair affinity constants for binding of the four O2 molecules to Hb - L allosteric constant - NTP nucleoside triphosphate - P m medium O2 pressure - n 50 Hill's cooperativity coefficient at P 50 - P 50 half-satutarion O2 tension - TRIS tris(hydroxymethyl)aminomethane  相似文献   

20.
Currently existing data show that the capability for long-chain PUFA (LC-PUFA) biosynthesis in teleost fish is more diverse than in other vertebrates. Such diversity has been primarily linked to the subfunctionalization that teleostei fatty acyl desaturase (Fads)2 desaturases have undergone during evolution. We previously showed that Chirostoma estor, one of the few representatives of freshwater atherinopsids, had the ability for LC-PUFA biosynthesis from C18 PUFA precursors, in agreement with this species having unusually high contents of DHA. The particular ancestry and pattern of LC-PUFA biosynthesis activity of C. estor make this species an excellent model for study to gain further insight into LC-PUFA biosynthetic abilities among teleosts. The present study aimed to characterize cDNA sequences encoding fatty acyl elongases and desaturases, key genes involved in the LC-PUFA biosynthesis. Results show that C. estor expresses an elongase of very long-chain FA (Elovl)5 elongase and two Fads2 desaturases displaying Δ4 and Δ6/Δ5 specificities, thus allowing us to conclude that these three genes cover all the enzymatic abilities required for LC-PUFA biosynthesis from C18 PUFA. In addition, the specificities of the C. estor Fads2 enabled us to propose potential evolutionary patterns and mechanisms for subfunctionalization of Fads2 among fish lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号