首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Munc18-1 is a soluble protein essential for synaptic transmission. To investigate the dynamics of endogenous Munc18-1 in neurons, we created a mouse model expressing fluorescently tagged Munc18-1 from the endogenous munc18-1 locus. We show using fluorescence recovery after photobleaching in hippocampal neurons that the majority of Munc18-1 trafficked through axons and targeted to synapses via lateral diffusion together with syntaxin-1. Munc18-1 was strongly expressed at presynaptic terminals, with individual synapses showing a large variation in expression. Axon–synapse exchange rates of Munc18-1 were high: during stimulation, Munc18-1 rapidly dispersed from synapses and reclustered within minutes. Munc18-1 reclustering was independent of syntaxin-1, but required calcium influx and protein kinase C (PKC) activity. Importantly, a PKC-insensitive Munc18-1 mutant did not recluster. We show that synaptic Munc18-1 levels correlate with synaptic strength, and that synapses that recruit more Munc18-1 after stimulation have a larger releasable vesicle pool. Hence, PKC-dependent dynamic control of Munc18-1 levels enables individual synapses to tune their output during periods of activity.  相似文献   

2.
Synaptic transmission depends critically on the Sec1p/Munc18 protein Munc18-1, but it is unclear whether Munc18-1 primarily operates as a integral part of the fusion machinery or has a more upstream role in fusion complex assembly. Here, we show that point mutations in Munc18-1 that interfere with binding to the free Syntaxin1a N-terminus and strongly impair binding to assembled SNARE complexes all support normal docking, priming and fusion of synaptic vesicles, and normal synaptic plasticity in munc18-1 null mutant neurons. These data support a prevailing role of Munc18-1 before/during SNARE-complex assembly, while its continued association to assembled SNARE complexes is dispensable for synaptic transmission.  相似文献   

3.
Tyrosine kinases are important regulators of synaptic strength. Here, we describe a key component of the synaptic vesicle release machinery, Munc18‐1, as a phosphorylation target for neuronal Src family kinases (SFKs). Phosphomimetic Y473D mutation of a SFK phosphorylation site previously identified by brain phospho‐proteomics abolished the stimulatory effect of Munc18‐1 on SNARE complex formation (“SNARE‐templating”) and membrane fusion in vitro. Furthermore, priming but not docking of synaptic vesicles was disrupted in hippocampal munc18‐1‐null neurons expressing Munc18‐1Y473D. Synaptic transmission was temporarily restored by high‐frequency stimulation, as well as by a Munc18‐1 mutation that results in helix 12 extension, a critical conformational step in vesicle priming. On the other hand, expression of non‐phosphorylatable Munc18‐1 supported normal synaptic transmission. We propose that SFK‐dependent Munc18‐1 phosphorylation may constitute a potent, previously unknown mechanism to shut down synaptic transmission, via direct occlusion of a Synaptobrevin/VAMP2 binding groove and subsequent hindrance of conformational changes in domain 3a responsible for vesicle priming. This would strongly interfere with the essential post‐docking SNARE‐templating role of Munc18‐1, resulting in a largely abolished pool of releasable synaptic vesicles.  相似文献   

4.
Munc18-1, a member of the Sec1/Munc18 (SM) protein family, is essential for synaptic vesicle exocytosis. Munc18-1 binds tightly to the SNARE protein syntaxin 1, but the physiological significance and functional role of this interaction remain unclear. Here we show that syntaxin 1 levels are reduced by 70% in munc18-1 knockout mice. Pulse-chase analysis in transfected HEK293 cells revealed that Munc18-1 directly promotes the stability of syntaxin 1, consistent with a chaperone function. However, the residual syntaxin 1 in munc18-1 knockout mice is still correctly targeted to synapses and efficiently forms SDS-resistant SNARE complexes, demonstrating that Munc18-1 is not required for syntaxin 1 function as such. These data demonstrate that the Munc18-1 interaction with syntaxin 1 is physiologically important, but does not represent a classical chaperone-substrate relationship. Instead, the presence of SNARE complexes in the absence of membrane fusion in munc18-1 knockout mice indicates that Munc18-1 either controls the spatially correct assembly of core complexes for SNARE-dependent fusion, or acts as a direct component of the fusion machinery itself.  相似文献   

5.
Diacylglycerol (DAG) is a prominent endogenous modulator of synaptic transmission. Recent studies proposed two apparently incompatible pathways, via protein kinase C (PKC) and via Munc13. Here we show how these two pathways converge. First, we confirm that DAG analogs indeed continue to potentiate transmission after PKC inhibition (the Munc13 pathway), but only in neurons that previously experienced DAG analogs, before PKC inhibition started. Second, we identify an essential PKC pathway by expressing a PKC-insensitive Munc18-1 mutant in munc18-1 null mutant neurons. This mutant supported basic transmission, but not DAG-induced potentiation and vesicle redistribution. Moreover, synaptic depression was increased, but not Ca2+-independent release evoked by hypertonic solutions. These data show that activation of both PKC-dependent and -independent pathways (via Munc13) are required for DAG-induced potentiation. Munc18-1 is an essential downstream target in the PKC pathway. This pathway is of general importance for presynaptic plasticity.  相似文献   

6.
Munc18, a mammalian homolog of C. elegans Unc, is essential for neurotransmitter release. The aim of this study was to identify estrogen-dependent expression of Munc18-1 and its role in the regulation of glutamate release for puberty onset. Hypothalamic munc18-1 mRNA levels were significantly increased by estrogen treatment in ovariectomized, immature female rats. During pubertal development, the munc18-1 mRNA levels dramatically increased between the juvenile period and the anestrous phase of puberty. Intracerebroventricular administration of an antisense oligodeoxynucleotide against munc18-1 mRNA significantly decreased glutamate release and delayed the day of puberty onset. These results suggest that Munc18-1, expressed in an estrogen-dependent manner, plays an important role in the onset of female puberty via the regulation of glutamate release.  相似文献   

7.
Neuronal dense-core vesicles (DCVs) contain diverse cargo crucial for brain development and function, but the mechanisms that control their release are largely unknown. We quantified activity-dependent DCV release in hippocampal neurons at single vesicle resolution. DCVs fused preferentially at synaptic terminals. DCVs also fused at extrasynaptic sites but only after prolonged stimulation. In munc13-1/2–null mutant neurons, synaptic DCV release was reduced but not abolished, and synaptic preference was lost. The remaining fusion required prolonged stimulation, similar to extrasynaptic fusion in wild-type neurons. Conversely, Munc13-1 overexpression (M13OE) promoted extrasynaptic DCV release, also without prolonged stimulation. Thus, Munc13-1/2 facilitate DCV fusion but, unlike for synaptic vesicles, are not essential for DCV release, and M13OE is sufficient to produce efficient DCV release extrasynaptically.  相似文献   

8.
Rab3a is a small GTPase that binds selectively to secretory vesicles and switches between active, GTP-bound and inactive, GDP-bound conformations. In yeast, Rab and SM-genes interact genetically to promote vesicle targeting/fusion. We tested different Rab3a conformations and genetic interactions with the SM-gene munc18-1 on the docking function of Rab3a in mammalian chromaffin cells. We expressed Rab3a mutants locked in the GTP- or GDP-bound form in wild-type and munc18-1 null mutant cells and analyzed secretory vesicle distribution. We confirmed that wild-type Rab3a promotes vesicle docking in wild-type cells. Unexpectedly, both GTP- and GDP-locked Rab3a mutants did not promote docking. Furthermore, wild-type Rab3a did not promote docking in munc18-1 null cells and GTP- and GDP-Rab3a both decreased the amount of docked vesicles. The results show that GTP- and GDP-locked conformations do not support a Munc18-1 dependent role of Rab3a in docking. This suggests that nucleotide cycling is required to support docking and that this action of Rab3a is upstream of Munc18-1.  相似文献   

9.
Munc18-1, a SEC1/Munc18 protein and key regulatory protein in synaptic transmission, can either promote or inhibit SNARE complex assembly. Although the binary inhibitory interaction between Munc18-1 and closed syntaxin 1 is well described, the mechanism of how Munc18-1 stimulates membrane fusion remains elusive. Using a reconstituted assay that resolves vesicle docking, priming, clamping, and fusion during synaptic exocytosis, we show that helix 12 in domain 3a of Munc18-1 stimulates SNAREpin assembly and membrane fusion. A single point mutation (L348R) within helix 12 selectively abolishes VAMP2 binding and the stimulatory function of Munc18-1 in membrane fusion. In contrast, targeting a natural switch site (P335A) at the start of helix 12, which can result in an extended α-helical conformation, further accelerates lipid-mixing. Together with structural modeling, the data suggest that helix 12 provides a folding template for VAMP2, accelerating SNAREpin assembly and membrane fusion. Analogous SEC1/Munc18-SNARE interactions at other transport steps may provide a general mechanism to drive lipid bilayer merger. At the neuronal synapse, Munc18-1 may convert docked synaptic vesicles into a readily releasable pool.  相似文献   

10.
Secretory vesicles dock at their target in preparation for fusion. Using single-vesicle total internal reflection fluorescence microscopy in chromaffin cells, we show that most approaching vesicles dock only transiently, but that some are captured by at least two different tethering modes, weak and strong. Both vesicle delivery and tethering depend on Munc18-1, a known docking factor. By decreasing the amount of cortical actin by Latrunculin A application, morphological docking can be restored artificially in docking-deficient munc18-1 null cells, but neither strong tethering nor fusion, demonstrating that morphological docking is not sufficient for secretion. Deletion of the t-SNARE and Munc18-1 binding partner syntaxin, but not the v-SNARE synaptobrevin/VAMP, also reduces strong tethering and fusion. We conclude that docking vesicles either undock immediately or are captured by minimal tethering machinery and converted in a munc18-1/syntaxin-dependent, strongly tethered, fusion-competent state.  相似文献   

11.
Munc18-1 is an essential synaptic protein functioning during multiple stages of the exocytotic process including vesicle recruitment, docking and fusion. These functions require a number of distinct syntaxin-dependent interactions; however, Munc18-1 also regulates vesicle fusion via syntaxin-independent interactions with other exocytotic proteins. Although the structural regions of the Munc18-1 protein involved in closed-conformation syntaxin binding have been thoroughly examined, regions of the protein involved in other interactions are poorly characterised. To investigate this we performed a random transposon mutagenesis, identifying domain 3b of Munc18-1 as a functionally important region of the protein. Transposon insertion in an exposed loop within this domain specifically disrupted Mint1 binding despite leaving affinity for closed conformation syntaxin and binding to the SNARE complex unaffected. The insertion mutation significantly reduced total amounts of exocytosis as measured by carbon fiber amperometry in chromaffin cells. Introduction of the equivalent mutation in UNC-18 in Caenorhabditis elegans also reduced neurotransmitter release as assessed by aldicarb sensitivity. Correlation between the two experimental methods for recording changes in the number of exocytotic events was verified using a previously identified gain of function Munc18-1 mutation E466K (increased exocytosis in chromaffin cells and aldicarb hypersensitivity of C. elegans). These data implicate a novel role for an exposed loop in domain 3b of Munc18-1 in transducing regulation of vesicle fusion independent of closed-conformation syntaxin binding.  相似文献   

12.
Munc18-1 and soluble NSF attachment protein receptors (SNAREs) are critical for synaptic vesicle fusion. Munc18-1 binds to the SNARE syntaxin-1 folded into a closed conformation and to SNARE complexes containing open syntaxin-1. Understanding which steps in fusion depend on the latter interaction and whether Munc18-1 competes with other factors such as complexins for SNARE complex binding is critical to elucidate the mechanisms involved. In this study, we show that lentiviral expression of Munc18-1 rescues abrogation of release in Munc18-1 knockout mice. We describe point mutations in Munc18-1 that preserve tight binding to closed syntaxin-1 but markedly disrupt Munc18-1 binding to SNARE complexes containing open syntaxin-1. Lentiviral rescue experiments reveal that such disruption selectively impairs synaptic vesicle priming but not Ca2+-triggered fusion of primed vesicles. We also find that Munc18-1 and complexin-1 bind simultaneously to SNARE complexes. These results suggest that Munc18-1 binding to SNARE complexes mediates synaptic vesicle priming and that the resulting primed state involves a Munc18-1–SNARE–complexin macromolecular assembly that is poised for Ca2+ triggering of fusion.  相似文献   

13.
Kang L  He Z  Xu P  Fan J  Betz A  Brose N  Xu T 《Cell metabolism》2006,3(6):463-468
Munc13-1 is a presynaptic protein that is essential for synaptic vesicle priming. Deletion of Munc13-1/unc13 causes total arrest of synaptic transmission due to a complete loss of fusion-competent synaptic vesicles. The requirement of Munc13-1 for large dense-core vesicles (LDCVs), however, has not been established. In the present study, we use Munc13-1 knockout (KO) and diacylglycerol (DAG) binding-deficient Munc13-1H567K mutant knockin (KI) mice to determine the role of Munc13-1 in the secretion of insulin-containing LDCVs from primary cultured pancreatic β cells. We show that Munc13-1 is required for the sustained insulin release upon prolonged stimulation. The sustained release involves signaling of DAG second messenger, since it is also reduced in KI mice. Insulin secretion in response to glucose stimulation is characterized by a biphasic time course. Our data show that Munc13-1 plays an essential role in the development of the second phase of insulin secretion by priming insulin-containing LDCVs.  相似文献   

14.
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin-1 adopts a closed conformation when bound to Munc18-1, preventing binding to synaptobrevin-2 and SNAP-25 to form the ternary SNARE complex. Although it is known that the MUN domain of Munc13-1 catalyzes the transition from the Munc18-1/syntaxin-1 complex to the SNARE complex, the molecular mechanism is unclear. Here, we identified two conserved residues (R151, I155) in the syntaxin-1 linker region as key sites for the MUN domain interaction. This interaction is essential for SNARE complex formation in vitro and synaptic vesicle priming in neuronal cultures. Moreover, this interaction is important for a tripartite Munc18-1/syntaxin-1/MUN complex, in which syntaxin-1 still adopts a closed conformation tightly bound to Munc18-1, whereas the syntaxin-1 linker region changes its conformation, similar to that of the LE mutant of syntaxin-1 when bound to Munc18-1. We suggest that the conformational change of the syntaxin-1 linker region induced by Munc13-1 initiates ternary SNARE complex formation in the neuronal system.  相似文献   

15.
Munc18a scaffolds SNARE assembly to promote membrane fusion   总被引:1,自引:0,他引:1       下载免费PDF全文
Munc18a is an SM protein required for SNARE-mediated fusion. The molecular details of how Munc18a acts to enhance neurosecretion have remained elusive. Here, we use in vitro fusion assays to characterize how specific interactions between Munc18a and the neuronal SNAREs enhance the rate and extent of fusion. We show that Munc18a interacts directly and functionally with the preassembled t-SNARE complex. Analysis of Munc18a point mutations indicates that Munc18a interacts with helix C of the Syntaxin1a NRD in the t-SNARE complex. Replacement of the t-SNARE SNAP25b with yeast Sec9c had little effect, suggesting that Munc18a has minimal contact with SNAP25b within the t-SNARE complex. A chimeric Syntaxin built of the Syntaxin1a NRD and the H3 domain of yeast Sso1p and paired with Sec9c eliminated stimulation of fusion, suggesting that Munc18a/Syntaxin1a H3 domain contacts are important. Additionally, a Syntaxin1A mutant lacking a flexible linker region that allows NRD movement abolished stimulation of fusion. These experiments suggest that Munc18a binds to the Syntaxin1a NRD and H3 domain within the assembled t-SNARE complex, positioning them for productive VAMP2 binding. In this capacity, Munc18a serves as a platform for trans-SNARE complex assembly that facilitates efficient SNARE-mediated membrane fusion.  相似文献   

16.
We have previously shown that the AEX-1 protein, which is expressed in postsynaptic muscles, retrogradely regulates presynaptic neural activity at the Caenorhabditis elegans neuromuscular junctions. AEX-1 is similar to vertebrate Munc13-4 protein, suggesting a function for vesicle exocytosis from a kind of cells. Compared to emerging evidences of the role of Munc13 proteins in synaptic vesicle release, however, the precise mechanism for vesicle exocytosis by AEX-1 and Munc13-4 is little understood. Here we have identified SYN-1 as a candidate molecule of AEX-1-dependent vesicle exocytosis from non-neuronal cells. The syn-1 gene encodes a C. elegans syntaxin, which is distantly related to the neuronal syntaxin UNC-64. The syn-1 gene is predominantly expressed in non-neuronal tissues and genetically interacts with aex-1 for presynaptic activity. However, the two proteins did not interact physically in our yeast two-hybrid system and mutational SYN-1 did not bypass the requirement of AEX-1 for the behavioral defects in aex-1 mutants, whereas mutant UNC-64 does in unc-13 mutants. These results suggest that a novel molecular interaction between the AEX-1 and syntaxin may regulate vesicle exocytosis for retrograde signal release.  相似文献   

17.
The KCNC1 (previously Kv3.1) potassium channel, a delayed rectifier with a high threshold of activation, is highly expressed in the time coding nuclei of the adult chicken and barn owl auditory brainstem. The proposed role of KCNC1 currents in auditory neurons is to reduce the width of the action potential and enable neurons to transmit high frequency temporal information with little jitter. Because developmental changes in potassium currents are critical for the maturation of the shape of the action potential, we used immunohistochemical methods to examine the developmental expression of KCNC1 subunits in the avian auditory brainstem. The KCNC1 gene gives rise to two splice variants, a longer KCNC1b and a shorter KCNC1a that differ at the carboxy termini. Two antibodies were used: an antibody to the N-terminus that does not distinguish between KCNC1a and b isoforms, denoted as panKCNC1, and another antibody that specifically recognizes the C terminus of KCNC1b. A comparison of the staining patterns observed with the panKCNC1 and the KCNC1b specific antibodies suggests that KCNC1a and KCNC1b splice variants are differentially regulated during development. Although panKCNC1 immunoreactivity is observed from the earliest time examined in the chicken (E10), a subcellular redistribution of the immunoproduct was apparent over the course of development. KCNC1b specific staining has a late onset with immunostaining first appearing in the regions that map high frequencies in nucleus magnocellularis (NM) and nucleus laminaris (NL). The expression of KCNC1b protein begins around E14 in the chicken and after E21 in the barn owl, relatively late during ontogeny and at the time that synaptic connections mature morphologically and functionally.  相似文献   

18.
The Sec1-related proteins bind to syntaxin family t-SNAREs with high affinity, thus controlling the interaction of syntaxins with their cognate SNARE partners. Munc18-2 is a Sec1 homologue enriched in epithelial cells and forms a complex with syntaxin 3, a t-SNARE localized to the apical plasma membrane. We generated here a set of Munc18-2 point mutants with substitutions in conserved amino acid residues. The mutants displayed a spectrum of different syntaxin binding efficiencies. The in vitro and in vivo binding patterns were highly similar, and the association of the Munc18-2 variants with syntaxin 3 correlated well with their ability to displace SNAP-23 from syntaxin 3 complexes when overexpressed in Caco-2 cells. Even the Munc18-2 mutants that do not detectably bind syntaxin 3 were membrane associated in Caco-2 cells, suggesting that the syntaxin interaction is not the sole determinant of Sec1 protein membrane attachment. Overexpression of the wild-type Munc18-2 was shown to inhibit the apical delivery of influenza virus hemagglutinin (HA). Interestingly, mutants unable to bind syntaxin 3 behaved differently in the HA transport assay. While one of the mutants tested had no effect, one inhibited and one enhanced the apical transport of HA. This implies that Munc18-2 function in apical membrane trafficking involves aspects independent of the syntaxin 3 interaction.  相似文献   

19.
Cab45b is a cytosolic Ca2+-binding protein reported to regulate zymogen secretion in pancreatic acini. We now show that Cab45b is also expressed in pancreatic islet β-cells and interacts there with the Sec1-Munc18 protein Munc18b. We employed patch clamp cell capacitance measurements to show that antibodies against Cab45b inhibited depolarization-evoked membrane capacitance increments, suggesting an impact on β-cell granule exocytosis, both the readily releasable granule pool and refilling of this pool. Site-specific mutants in the Cab45b EF-hands were used to dissect the molecular interactions involved in Cab45b function. Mutants in EF-hands 2 and 3 had no detectable effects on interaction of Cab45b with Munc18b and did not affect the depolarization-evoked calcium currents, but remarkably, they facilitated the complex formation of Munc18b with syntaxin-2 and -3. As a result, these two EF-hand mutants inhibited β-cell membrane capacitance increments. This inhibition is mediated via Munc18b because Munc18b silencing with small interfering RNA abolished the effects of these two mutants. The results suggest a mechanism for Cab45b action that involves regulating the dynamic association of Munc18b with SNAREs to impact β-cell granule exocytosis.It is well established that the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)2 proteins form the core machinery responsible for the fusion of transport vesicles, including secretory granules, with their target membranes. A number of accessory factors regulate SNARE function in membrane fusion (1). The Sec1-Munc18 (SM) proteins constitute a family of central SNARE regulators that bind syntaxins to influence secretory vesicle docking and fusion directly (2, 3). In mammals, there are seven SM proteins, of which the Munc18 isoforms a, b, and c are involved in exocytosis at the plasma membrane (4, 5). The Munc18 proteins were initially proposed to function as negative regulators of membrane fusion by inhibiting the assembly of trans-SNARE complexes. However, recent studies suggest that the Munc18 proteins regulate the transition of syntaxin from closed to open conformation, thereby facilitating SNARE complex assembly (6, 7).A number of non-syntaxin-binding partners of the SM proteins have been identified and are suggested to modulate the SM protein-syntaxin interactions (811). Recently, we reported a novel SM-binding protein, a cytosolic splice variant of the EF-hand Ca2+-binding protein Cab45 (designated Cab45b) expressed in pancreatic acini. Cab45b binds to Munc18b in complex with syntaxin-2 (Syn-2) and -3 (Syn-3) and directly influences amylase release from acini (12). Munc18b is thought to control secretory functions in non-neuronal cells, such as epithelial cells (1315), pancreatic acinar cells (12), mast cells (16), and kidney medullary cells (17), whereas no function in neuronal or neuroendocrine cells has been assigned to this protein. In this study, we demonstrate that Cab45b is expressed in the neuroendocrine pancreatic islet β-cells and is associated with Munc18b-Syn-2 and Munc18b-Syn-3 complexes. Using cell membrane capacitance measurement, a well established technique for monitoring exocytosis in neurons and neuroendocrine cells (18, 19), we further dissect the functional domains within Cab45b (EF-hands 2 and 3) that impact the association of Munc18b with syntaxins to influence insulin granule exocytosis.  相似文献   

20.
Schizophrenia is a complex mental disorder with fairly high level of heritability. Dystrobrevin binding protein 1, a gene encoding dysbindin protein, is a susceptibility gene for schizophrenia that was identified by family-based association analysis. Recent studies revealed that dysbindin is involved in the exocytosis and/or formation of synaptic vesicles. However, the molecular function of dysbindin in synaptic transmission is largely unknown. To investigate the signaling pathway in which dysbindin is involved, we isolated dysbindin-interacting molecules from rat brain lysate by combining ammonium sulfate precipitation and dysbindin-affinity column chromatography, and identified dysbindin-interacting proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Proteins involved in protein localization process, including Munc18-1, were identified as dysbindin-interacting proteins. Munc18-1 was co-immunoprecipitated with dysbindin from rat brain lysate, and directly interacted with dysbindin in vitro . In primary cultured rat hippocampal neurons, a part of dysbindin was co-localized with Munc18-1 at pre-synaptic terminals. Our result suggests a role for dysbindin in synaptic vesicle exocytosis via interaction with Munc18-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号