首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fly》2013,7(1):7-15
General anesthetics achieve behavioral unresponsiveness via a mechanism that is incompletely understood. The study of genetic model systems such as the fruit fly Drosophila melanogaster is crucial to advancing our understanding of how anesthetic drugs render animals unresponsive. Previous studies have shown that wild-type control strains differ significantly in their sensitivity to general anesthetics, which potentially introduces confounding factors for comparing genetic mutations placed on these wild-type backgrounds. Here, we examined a variety of behavioral and electrophysiological endpoints in Drosophila, in both adult and larval animals. We characterized these endpoints in 3 commonly used fly strains: wild-type Canton Special (CS), and 2 commonly used white-eyed strains, isoCJ1 and w1118. We found that CS and isoCJ1 show remarkably similar sensitivity to isoflurane across a variety of behavioral and electrophysiological endpoints. In contrast, w1118 is resistant to isoflurane compared to the other 2 strains at both the adult and larval stages. This resistance is however not reflected at the level of neurotransmitter release at the larval neuromuscular junction (NMJ). This suggests that the w1118 strain harbors another mutation that produces isoflurane resistance, by acting on an arousal pathway that is most likely preserved between larval and adult brains. This mutation probably also affects sleep, as marked differences between isoCJ1 and w1118 have also recently been found for behavioral responsiveness and sleep intensity measures.  相似文献   

2.
3.
To study neuronal networks in terms of their function in behavior, we must analyze how neurons operate when each behavioral pattern is generated. Thus, simultaneous recordings of neuronal activity and behavior are essential to correlate brain activity to behavior. For such behavioral analyses, the fruit fly, Drosophila melanogaster, allows us to incorporate genetically encoded calcium indicators such as GCaMP1, to monitor neuronal activity, and to use sophisticated genetic manipulations for optogenetic or thermogenetic techniques to specifically activate identified neurons2-5. Use of a thermogenetic technique has led us to find critical neurons for feeding behavior (Flood et al., under revision). As a main part of feeding behavior, a Drosophila adult extends its proboscis for feeding6 (proboscis extension response; PER), responding to a sweet stimulus from sensory cells on its proboscis or tarsi. Combining the protocol for PER7 with a calcium imaging technique8 using GCaMP3.01, 9, I have established an experimental system, where we can monitor activity of neurons in the feeding center – the suboesophageal ganglion (SOG), simultaneously with behavioral observation of the proboscis. I have designed an apparatus ("Fly brain Live Imaging and Electrophysiology Stage": "FLIES") to accommodate a Drosophila adult, allowing its proboscis to freely move while its brain is exposed to the bath for Ca2+ imaging through a water immersion lens. The FLIES is also appropriate for many types of live experiments on fly brains such as electrophysiological recording or time lapse imaging of synaptic morphology. Because the results from live imaging can be directly correlated with the simultaneous PER behavior, this methodology can provide an excellent experimental system to study information processing of neuronal networks, and how this cellular activity is coupled to plastic processes and memory.  相似文献   

4.
General anesthetics abolish behavioral responsiveness in all animals, and in humans this is accompanied by loss of consciousness. Whether similar target mechanisms and behavioral endpoints exist across species remains controversial, although model organisms have been successfully used to study mechanisms of anesthesia. In Drosophila, a number of key mutants have been characterized as hypersensitive or resistant to general anesthetics by behavioral assays. In order to investigate general anesthesia in the Drosophila brain, local field potential (LFP) recordings were made during incremental exposures to isoflurane in wild-type and mutant flies. As in higher animals, general anesthesia in flies was found to involve a succession of distinct endpoints. At low doses, isoflurane uncoupled brain activity from ongoing movement, followed by a sudden attenuation in neural correlates of perception. Average LFP activity in the brain was more gradually attenuated with higher doses, followed by loss of movement behavior. Among mutants, a strong correspondence was found between behavioral and LFP sensitivities, thereby suggesting that LFP phenotypes are proximal to the anesthetic's mechanism of action. Finally, genetic and pharmacological analysis revealed that anesthetic sensitivities in the fly brain are, like other arousal states, influenced by dopaminergic activity. These results suggest that volatile anesthetics such as isoflurane may target the same processes that sustain wakefulness and attention in the brain. LFP correlates of general anesthesia in Drosophila provide a powerful new approach to uncovering the nature of these processes.  相似文献   

5.
A behavior generally comprises multiple processes. Analyzing these processes helps to reveal more characteristics of the behavior. In this report, light/dark choice-based Drosophila larval phototaxis is analyzed with a simplistic mathematical model to reveal a fast phase and a slow phase response that are involved. Larvae of the strain w1118, which is photophobic in phototaxis tests, prefer darkness to light in an immediate light/dark boundary passing test and demonstrate a significant reduction in motility in the dark condition during phototaxis tests. For tim01 larvae, which show neutral performance in phototaxis tests, larvae unexpectedly prefer light to darkness in the immediate light/dark boundary passing test and demonstrate no significant motility alteration in the dark condition. It is proposed that Drosophila larval phototaxis is determined by a fast phase immediate light/dark choice and an independent slow phase light/dark-induced motility alteration that follows.  相似文献   

6.
Given the relationship between sleep and plasticity, we examined the role of Extracellular signal-regulated kinase (ERK) in regulating baseline sleep, and modulating the response to waking experience. Both sleep deprivation and social enrichment increase ERK phosphorylation in wild-type flies. The effects of both sleep deprivation and social enrichment on structural plasticity in the LNvs can be recapitulated by expressing an active version of ERK (UAS-ERK SEM) pan-neuronally in the adult fly using GeneSwitch (Gsw) Gsw-elav-GAL4. Conversely, disrupting ERK reduces sleep and prevents both the behavioral and structural plasticity normally induced by social enrichment. Finally, using transgenic flies carrying a cAMP response Element (CRE)-luciferase reporter we show that activating ERK enhances CRE-Luc activity while disrupting ERK reduces it. These data suggest that ERK phosphorylation is an important mediator in transducing waking experience into sleep.  相似文献   

7.
One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.  相似文献   

8.
Drosophila have been used in classical conditioning experiments for over 40 years, thus greatly facilitating our understanding of memory, including the elucidation of the molecular mechanisms involved in cognitive diseases1-7. Learning and memory can be assayed in larvae to study the effect of neurodevelopmental genes8-10 and in flies to measure the contribution of adult plasticity genes1-7. Furthermore, the short lifespan of Drosophila facilitates the analysis of genes mediating age-related memory impairment5,11-13. The availability of many inducible promoters that subdivide the Drosophila nervous system makes it possible to determine when and where a gene of interest is required for normal memory as well as relay of different aspects of the reinforcement signal3,4,14,16.Studying memory in adult Drosophila allows for a detailed analysis of the behavior and circuitry involved and a measurement of long-term memory15-17. The length of the adult stage accommodates longer-term genetic, behavioral, dietary and pharmacological manipulations of memory, in addition to determining the effect of aging and neurodegenerative disease on memory3-6,11-13,15-21.Classical conditioning is induced by the simultaneous presentation of a neutral odor cue (conditioned stimulus, CS+) and a reinforcement stimulus, e.g., an electric shock or sucrose, (unconditioned stimulus, US), that become associated with one another by the animal1,16. A second conditioned stimulus (CS-) is subsequently presented without the US. During the testing phase, Drosophila are simultaneously presented with CS+ and CS- odors. After the Drosophila are provided time to choose between the odors, the distribution of the animals is recorded. This procedure allows associative aversive or appetitive conditioning to be reliably measured without a bias introduced by the innate preference for either of the conditioned stimuli. Various control experiments are also performed to test whether all genotypes respond normally to odor and reinforcement alone.  相似文献   

9.
Molecular and cellular evidence argues that a heterodimer between two ABC transporters, the White protein and the Brown protein, is responsible for pumping guanine into pigment‐synthesizing cells of the fruit fly, Drosophila melanogaster. Previous studies have not detected White or Brown outside pigment‐synthesizing cells nor have behavioral effects of null mutants been reported, other than those that are visually dependent. Nevertheless, we show here that exposure to the volatile general anesthetic (VGA) enflurane reveals a difference in neuromuscular performance between wild‐type flies and those that carry a null allele in either the white or brown gene. Specifically, in a test of climbing ability, w1118 or bw1 flies are much less affected by enflurane than are congenic controls. Altered anesthetic sensitivity is still observed when visual cues are reduced or eliminated, arguing that white and brown contribute to neural function outside the eye. This hypothesis is supported by the detection of white message in heads of flies that are genetically altered so as to lack pigment‐producing cells. The w1118 or bw1 mutations also alter the response to a second VGA, halothane, albeit somewhat differently. Under some conditions, the combination of w1118 with another mutation that affects anesthesia leads to a drastically altered phenotype. We consider several ways by which diminished transport of guanine could influence neural function and anesthetic sensitivity. Published 2001 John Wiley & Sons, Inc. J Neurobiol 49: 339–349, 2001  相似文献   

10.
The relationship was studied between radiation-induced apoptosis in the nervous system of Drosophila larvae and the age dynamics in adult fly neuromuscular activity. The level of apoptosis in the neural ganglia of third-instar larvae from the wild-type strain increased 2.5 times after larval exposure to ionizing radiation (54 cGy). Irradiation of the strain with enhanced sensitivity to apoptosis induction, which carries a mutation in gene–inhibitor of apoptosis th (allele th 4), and the wild-type strain Berlin led to an increase in neuromuscular activity of adult flies throughout the experiment and, consequently, to reduced aging rate. Conversely, this effect was not observed in strains with reduced sensitivity to induction of apoptosis (with mutations in genes dArk and Dcp-1).  相似文献   

11.
In eukaryotes, the ubiquitin–proteasome machinery regulates a number of fundamental cellular processes through accurate and tightly controlled protein degradation pathways. We have, herein, examined the effects of proteasome functional disruption in Dmp53 +/+ (wild-type) and Dmp53 ?/? Drosophila melanogaster fly strains through utilization of Bortezomib, a proteasome-specific inhibitor. We report that proteasome inhibition drastically shortens fly life-span and impairs climbing performance, while it also causes larval lethality and activates developmentally irregular cell death programs during oogenesis. Interestingly, Dmp53 gene seems to play a role in fly longevity and climbing ability. Moreover, Bortezomib proved to induce endoplasmic reticulum (ER) stress that was able to result in the engagement of unfolded protein response (UPR) signaling pathway, as respectively indicated by fly Xbp1 activation and Ref(2)P-containing protein aggregate formation. Larva salivary gland and adult brain both underwent strong ER stress in response to Bortezomib, thus underscoring the detrimental role of proteasome inhibition in larval development and brain function. We also propose that the observed upregulation of autophagy operates as a protective mechanism to “counterbalance” Bortezomib-induced systemic toxicity, which is tightly associated, besides ER stress, with activation of apoptosis, mainly mediated by functional Drice caspase and deregulated dAkt kinase. The reduced life-span of exposed to Bortezomib flies overexpressing Atg1_RNAi or Atg18_RNAi supports the protective nature of autophagy against proteasome inhibition-induced stress. Our data reveal the in vivo significance of proteasome functional integrity as a major defensive system against cellular toxicity likely occurring during critical biological processes and morphogenetic courses.  相似文献   

12.
In this work, a comparative study of the structure of symbiotic bacteria Wolbachia (strain wMelPop decreasing the fly lifespan) in genotypically different Drosophila melanogaster, as well as the effect of the bacteria on the host cell ultrastructure was investigated out. As a result of special crossings, the Drosophila melanogaster [w]Trl 362 and [w]Trl en82 lines, which are carried of mutations for the gene Trithorax-like, are synthesized (lines infected with Wolbachia are designated as [w]). The Drosophila melanogaster line free of Wolbachia was obtained by treatment with antibiotics of the initially infected [w]w 1118 line. The complex of the used methods and approaches has allowed us to perform a comparative study of the morphology of cell structures for the first time before and after the infestation of insects with bacteria and to evaluate effect of the bacteria on viability and fertility of flies of these lines. Electron microscopy analysis has shown that the embryos of the analyzed lines contain typical Wolbachia in contact with various host cell compartments; the ultrastructural organization of the bacteria indicates the preservation of their functional activity. In the cytoplasm of embryos that are mutant for the gene Trithorax-like, morphologically atypical mitochondria were revealed, as well as Wolbachia (wMelPop) of unusual morphology with a modified form of membtane envelopes. The presence of Wolbachia in ovarian cells of the female mutant fly lines has been found to produce no effect on the amount of the female-ovipositioned eggs. It has been established for the first time that lifespans of the infected and Wolbachia-free Drosophila melanogaster mutant lines TM3 containing chromosome 3 as a balancer are equal. However, it is significantly shorter in the imago of the [w]w 1118 line than in flies of the mutant lines. This has allowed us to suggest that either the chromosome-balancer TM3 or mutation of the gene Trl play an important role in the host-symbiont interactions. On checking this suggestion, it was found that the lifespan of homozygotes [w]Trl 362 and [w]Trl en82 after the infection of flies with bacteria decreased markedly and was close to the lifespan of [w]w 1118 line. The obtained data indicate that the chromosome-balancer TM3 can have a significant effect on the symbiont-host interaction.  相似文献   

13.
Rocket immunoelectrophoresis was used to estimate aldehyde oxidase cross-reacting material (AO-CRM) in larval hemolymph and adult fly extracts in mutants with reduced AO enzymatic activity. Hemolymph of larvae homozygous for Aldox n, which is a mutation of the presumed structural gene for AO, contains 30% of the wild-type CRM. The demonstration of AO-CRM in Aldox n larval hemolymph is surprising since this genotype has been reported to lack CRM. By contrast, adult Aldox n flies lack detectable CRM. The other AO-deficient mutants that were examined are cin, mal, and lxd; each has appreciable levels of CRM in both larval hemolymph and adult extracts. Detection of CRM in these mutants helps to clarify conflicting reports in the literature.This research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada to L.W.B.  相似文献   

14.
Age‐related memory impairment (AMI) occurs in many species, including humans. The underlying mechanisms are not fully understood. In wild‐type Drosophila (w1118 ), AMI appears in the form of a decrease in learning (3‐min memory) from middle age (30 days after eclosion [DAE]). We performed in vivo, DNA microarray, and behavioral screen studies to identify genes controlling both lifespan and AMI and selected mitochondrial Acon1 (mAcon1). mAcon1 expression in the head of w1118 decreased with age. Neuronal overexpression of mAcon1 extended its lifespan and improved AMI. Neuronal or mushroom body expression of mAcon1 regulated the learning of young (10 DAE) and middle‐aged flies. Interestingly, acetyl‐CoA and citrate levels increased in the heads of middle‐aged and neuronal mAcon1 knockdown flies. Acetyl‐CoA, as a cellular energy sensor, is related to autophagy. Autophagy activity and efficacy determined by the positive and negative changes in the expression levels of Atg8a‐II and p62 were proportional to the expression level of mAcon1. Levels of the presynaptic active zone scaffold protein Bruchpilot were inversely proportional to neuronal mAcon1 levels in the whole brain. Furthermore, mAcon1 overexpression in Kenyon cells induced mitophagy labeled with mt‐Keima and improved learning ability. Both processes were blocked by pink1 knockdown. Taken together, our results imply that the regulation of learning and AMI by mAcon1 occurs via autophagy/mitophagy‐mediated neural plasticity.  相似文献   

15.
The adenylate cyclase/cAMP signaling pathway and adult mushroom bodies (MBs) have been shown to play an important role in sleep regulation in Drosophila. The amnesiac (amn) gene, encodes a neuropeptide that is homologous with vertebrate pituitary adenylate cyclase-activating peptide (PACAP), is expressed in dorsal paired medial (DPM) neurons and is required for the middle-term memory (MTM) in flies. However, the role of amn on regulation of sleep is as yet unknown. Here we provide evidence that amn plays a major role on sleep maintenance and onset in Drosophila. Flies with the amnesiac allele, loss-of-function amnX8 mutation, showed a fragmented sleep pattern and short sleep latency. Moreover, homeostatic regulation was disrupted in amnX8 mutants after sleep deprivation. Sleep maintenance was also influenced by disruption of neurotransmission in DPM neurons with increased sleep bout number and decreased sleep bout length. Furthermore, age-related sleep fragmentation and initiation were inhibited in amnX8 mutant flies. These data suggest that amn is required in initiation and maintenance of sleep.  相似文献   

16.
The circadian clock regulates many aspects of life, including sleep, locomotor activity, and body temperature (BTR) rhythms1,2. We recently identified a novel Drosophila circadian output, called the temperature preference rhythm (TPR), in which the preferred temperature in flies rises during the day and falls during the night 3. Surprisingly, the TPR and locomotor activity are controlled through distinct circadian neurons3. Drosophila locomotor activity is a well known circadian behavioral output and has provided strong contributions to the discovery of many conserved mammalian circadian clock genes and mechanisms4. Therefore, understanding TPR will lead to the identification of hitherto unknown molecular and cellular circadian mechanisms. Here, we describe how to perform and analyze the TPR assay. This technique not only allows for dissecting the molecular and neural mechanisms of TPR, but also provides new insights into the fundamental mechanisms of the brain functions that integrate different environmental signals and regulate animal behaviors. Furthermore, our recently published data suggest that the fly TPR shares features with the mammalian BTR3. Drosophila are ectotherms, in which the body temperature is typically behaviorally regulated. Therefore, TPR is a strategy used to generate a rhythmic body temperature in these flies5-8. We believe that further exploration of Drosophila TPR will facilitate the characterization of the mechanisms underlying body temperature control in animals.  相似文献   

17.
SIFamide receptor (SIFR) is a Drosophila G protein-coupled receptor for the neuropeptide SIFamide (SIFa). Although the sequence and spatial expression of SIFa are evolutionarily conserved among insect species, the physiological function of SIFa/SIFR signaling remains elusive. Here, we provide genetic evidence that SIFa and SIFR promote sleep in Drosophila. Either genetic ablation of SIFa-expressing neurons in the pars intercerebralis (PI) or pan-neuronal depletion of SIFa expression shortened baseline sleep and reduced sleep-bout length, suggesting that it caused sleep fragmentation. Consistently, RNA interference-mediated knockdown of SIFR expression caused short sleep phenotypes as observed in SIFa-ablated or depleted flies. Using a panel of neuron-specific Gal4 drivers, we further mapped SIFR effects to subsets of PI neurons. Taken together, these results reveal a novel physiological role of the neuropeptide SIFa/SIFR pathway to regulate sleep through sleep-promoting neural circuits in the PI of adult fly brains.  相似文献   

18.
Drosophila RNase ZL (dRNaseZ) belongs to a family of endoribonucleases with a major role in tRNA 3′-end processing. The biochemical function of RNase ZL is conserved from yeast to human. Here we present a study of its biological function during Drosophila development. In flies, dRNaseZ provides a non-redundant function, as the RNZED24 knockout (KO) mutation causes early larval lethality. Mosaic and conditional rescue techniques were employed to determine dRNaseZ requirements at later stages. We found that dRNaseZ activity is essential for all phases of fly development that involve cell division, including growth of adult tissue progenitors during larval and metamorphic stages, and gametogenesis in adults. At the cellular level, two major phenotypes were identified—cell growth deficiency in endoreplicating tissues and cell cycle arrest in mitotic tissues. While cell growth and proliferation are both dependant on protein synthesis, the two phenotypes displayed reliance on different dRNaseZ functions. We found that dRNaseZ KO completely blocks tRNA maturation without diminishing the abundance of mature tRNA molecules. Our data indicate that growth arrest of endoreplicating cells is primarily attributed to the relocation of the pool of mature tRNAs into the nuclei causing a decrease in translation efficiency. Mitotically dividing cells appear to be less dependent on translation machinery as they maintain their normal size when deprived of dRNaseZ activity, but rather display a cell cycle arrest at the G2–M transition.  相似文献   

19.
The mutant genotype Abnormal abdomen (A53g) of Drosophila melanogaster causes an increase in the amount of soluble protein per fly when compared to a wild-type strain (Ore-R). This increase is first detected at 50 hr after puparium formation and is preceded 2 hr earlier by an increase in total RNA. A direct correlation is found between the expressivity of the A53g mutation in the adult fly and the total soluble protein per mg body weight of that fly. Quantitative analyses of supernatant protein from mutant and wild-type flies on polyacrylamide disk gel electrophoresis reveal that the increases observed in the mutant are due to increases in specific electrophoretic classes of proteins and not to a general stimulation of all proteins. Reciprocal crosses between mutant and wild-type flies indicate that the penetrance and expressivity of the A53g phenotype is under maternal control and that an increased soluble protein content in F1 flies is found only when the mutant genotype is contributed to the F1 through the maternal gamete.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号