首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Currently, the development of effective diagnostic reagents as well as treatments against Hepatitis C virus (HCV) remains a high priority. In this study, we have described the development of an alive cell surface -Systematic Evolution of Ligands by Exponential Enrichment (CS-SELEX) technique and screened the functional ssDNA aptamers that specifically bound to HCV envelope surface glycoprotein E2. Through 13 rounds of selection, the CS-SELEX generated high-affinity ssDNA aptamers, and the selected ssDNA aptamer ZE2 demonstrated the highest specificity and affinity to E2-positive cells. HCV particles could be specifically captured and diagnosed using the aptamer ZE2. A good correlation was observed in HCV patients between HCV E2 antigen-aptamer assay and assays for HCV RNA quantities or HCV antibody detection. Moreover, the selected aptamers, especially ZE2, could competitively inhibit E2 protein binding to CD81, an important HCV receptor, and significantly block HCV cell culture (HCVcc) infection of human hepatocytes (Huh7.5.1) in vitro. Our data demonstrate that the newly selected ssDNA aptamers, especially aptamer ZE2, hold great promise for developing new molecular probes, as an early diagnostic reagent for HCV surface antigen, or a therapeutic drug specifically for HCV.  相似文献   

2.
Biochemical and structural studies of fragments of the ectodomain of the human immunodeficiency virus type 1 (HIV-1) gp41 transmembrane envelope glycoprotein have demonstrated that the molecular contacts between alpha helices allow the formation of a trimeric coiled coil. By introducing cysteine residues into specific locations along these alpha helices, the normally labile HIV-1 gp160 envelope glycoprotein was converted into a stable disulfide-linked oligomer. Although proteolytic cleavage into gp120 and gp41 glycoproteins was largely blocked, the disulfide-linked oligomer was efficiently transported to the cell surface and was recognized by a series of conformationally dependent antibodies. The pattern of hetero-oligomer formation between this construct and an analogous construct lacking portions of the gp120 variable loops and of the gp41 cytoplasmic tail demonstrates that these oligomers are trimers. These results support the relevance of the proposed gp41 structure and intersubunit contacts to the native, complete HIV-1 envelope glycoprotein. Disulfide-mediated stabilization of the labile HIV-1 envelope glycoprotein oligomer, which has been suggested to possess advantages as an immunogen, may assist attempts to develop vaccines.  相似文献   

3.
The envelope glycoproteins (Env) are the focus of HIV-1 vaccine development strategies based on the induction of humoral immunity, but the mechanisms the virus has evolved to limit the induction and binding of neutralizing antibodies (NAbs) constitute substantial obstacles. Conserved neutralization epitopes are shielded by variable regions and carbohydrates, so one strategy to increase their exposure and, it is hoped, their immunogenicity is to delete the overlying variable loops. However, deleting the variable regions from Env trimers can be problematic, because hydrophobic patches that are normally solvent-inaccessible now become exposed, causing protein misfolding or aggregation, for example. Here, we describe the construction and characterization of recombinant gp140 trimers lacking variable domains 1 and 2 (ΔV1V2). The design of the trimers was guided by HIV-1 evolution studies that identified compensatory changes in V1V2-deleted but functional Env proteins (Bontjer, I., Land, A., Eggink, D., Verkade, E., Tuin, K., Baldwin, C., Pollakis, G., Paxton, W. A., Braakman, I., Berkhout, B., and Sanders, R. W. (2009) J. Virol. 83, 368–383). We now show that specific compensatory changes improved the function of ΔV1V2 Env proteins and hence HIV-1 replication. The changes acted by reducing the exposure of a hydrophobic surface either by replacing a hydrophobic residue with a hydrophilic one or by covering the surface with a glycan. The compensatory changes allowed the efficient expression of well folded, soluble gp140 trimers derived from various HIV-1 isolates. The evolved ΔV1V2 Env viruses were extremely sensitive to NAbs, indicating that neutralization epitopes are well exposed, which was confirmed by studies of NAb binding to the soluble ΔV1V2 gp140 trimers. These evolved ΔV1V2 trimers could be useful reagents for immunogenicity and structural studies.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) infection is a significant global public health problem for which development of an effective prophylactic vaccine remains a high scientific priority. Many concepts for a vaccine are focused on induction of appropriate titers of broadly neutralizing antibodies (bNAbs) against the viral envelope (Env) glycoproteins gp120 and gp41, but no immunogen has yet accomplished this goal in animals or humans. One approach to induction of bNAbs is to design soluble, trimeric mimics of the native viral Env trimer. Here, we describe structural studies by negative-stain electron microscopy of several variants of soluble Env trimers based on the KNH1144 subtype A sequence. These Env trimers are fully cleaved between the gp120 and gp41 components and stabilized by specific amino acid substitutions. We also illustrate the structural consequences of deletion of the V1/V2 and V3 variable loops from gp120 and the membrane-proximal external region (MPER) from gp41. All of these variants adopt a trimeric configuration that appropriately mimics native Env spikes, including the CD4 receptor-binding site and the epitope for the VRC PG04 bNAb. These cleaved, soluble trimer designs can be adapted for use with multiple different env genes for both vaccine and structural studies.  相似文献   

5.
6.
Nearly all livers transplanted into hepatitis C virus (HCV)-positive patients become infected with HCV, and 10 to 25% of reinfected livers develop cirrhosis within 5 years. Neutralizing monoclonal antibody could be an effective therapy for the prevention of infection in a transplant setting. To pursue this treatment modality, we developed human monoclonal antibodies (HuMAbs) directed against the HCV E2 envelope glycoprotein and assessed the capacity of these HuMAbs to neutralize a broad panel of HCV genotypes. HuMAb antibodies were generated by immunizing transgenic mice containing human antibody genes (HuMAb mice; Medarex Inc.) with soluble E2 envelope glycoprotein derived from a genotype 1a virus (H77). Two HuMAbs, HCV1 and 95-2, were selected for further study based on initial cross-reactivity with soluble E2 glycoproteins derived from genotypes 1a and 1b, as well as neutralization of lentivirus pseudotyped with HCV 1a and 1b envelope glycoproteins. Additionally, HuMAbs HCV1 and 95-2 potently neutralized pseudoviruses from all genotypes tested (1a, 1b, 2b, 3a, and 4a). Epitope mapping with mammalian and bacterially expressed proteins, as well as synthetic peptides, revealed that HuMAbs HCV1 and 95-2 recognize a highly conserved linear epitope spanning amino acids 412 to 423 of the E2 glycoprotein. The capacity to recognize and neutralize a broad range of genotypes, the highly conserved E2 epitope, and the fully human nature of the antibodies make HuMAbs HCV1 and 95-2 excellent candidates for treatment of HCV-positive individuals undergoing liver transplantation.Hepatitis C virus (HCV) is a major cause of liver failure and infects more than 170 million people worldwide. HCV is a member of the Flaviviridae family and contains a 9.6-kb positive-strand RNA genome. The genome is translated into a single polypeptide that is cleaved by viral and cellular proteases into at least nine different proteins. The major HCV surface glycoproteins, E1 and E2, form a noncovalent heterodimer on the virion surface (23) and are believed to mediate viral entry via a complex set of poorly understood interactions with cellular coreceptors, including CD81 (28), claudin-1 (8), occludin (29), scavenger receptor class B type I (30), and others (38). The E2 glycoprotein has been shown to interact directly with receptors (38); currently, no function has been assigned to E1, although it is known to be required for viral infection. These viral glycoproteins provide an obvious target for neutralizing monoclonal antibodies (MAbs).Isolation of potently neutralizing HCV-specific MAbs has been complicated by the lack of an in vitro cell culture system to study the full infection cycle of the virus. Recently, systems have been developed that allow for the generation of infectious viral particles, highlighting the importance of E1 and E2 in viral binding and entry. A novel in vitro infection system employs HCV pseudotyped viral particles (HCVpp) generated from a lentivirus that are devoid of native glycoproteins and engineered to contain HCV glycoproteins E1 and E2 (4, 15). HCVpp specifically infect cell lines derived from human liver cells and can be neutralized by polyclonal and MAbs directed against the HCV envelope glycoproteins.HCVpp have allowed the identification of antibodies that can neutralize HCV infection in cell culture. E1 has proven to be a difficult target for MAb-mediated neutralization, possibly because it appears to have low immunogenicity (32), has no identified binding proteins on the cell surface, and has an undefined role in cell entry. Despite this challenge, two groups have identified HCV neutralizing MAbs directed to E1: these MAbs are H-111, which has moderate neutralizing activity (17), and the recently isolated IGH505 and IGH526, which neutralize numerous HCV genotypes (1a, 1b, 2a, 4a, 5a, and 6a but not 2b and 3a) (22). Although they are predicted to inhibit viral binding or fusion, the mechanism by which these E1-directed MAbs neutralize HCV infection is unclear.A diverse group of mouse anti-E2 antibodies, recognizing both linear and discontinuous epitopes, has been generated. Many of these MAbs showed broad neutralization of multiple HCV genotypes, but not surprisingly, several HCV isolates were refractory to neutralization. In contrast, AP33, a mouse MAb that largely recognizes a highly conserved linear epitope in the N terminus of E2 (amino acids 412 to 423), was identified as a broadly cross-reactive antibody that neutralized strains from all genotypes tested (1a, 1b, 2a, 2b, 3a, 4, 5, and 6), with the exception of one genotype 5 virus (UKN5.14.4; GenBank accession no. AY894682) (24). Recently, several cross-reactive neutralizing MAbs have been identified that are of human origin and have the capacity to neutralize a significant fraction of the genotypes tested (1, 5, 12, 13, 27, 31) or to neutralize all genotypes tested (16, 20, 25). As with the vast majority of previously described human MAbs (HuMAbs), these MAbs recognize conformation-dependent epitopes of E2. One broadly neutralizing human antibody, AR3B, was tested in a mouse model of infection and showed significant protection from viremia (20). Given the known function of the E2 envelope glycoprotein, the high level of immunogenicity, the surface vulnerability, and the abundance of data pertaining to E2 and HCV neutralization, E2 provides a promising target for the development of fully human neutralizing antibodies.Liver deterioration due to HCV infection is the leading reason for liver transplantation in the United States. Unfortunately, it is highly likely that the transplanted liver will also become infected with HCV, and 10 to 25% of these patients develop cirrhosis within 5 years of transplant (9, 40). Here we describe the characterization of HuMAbs directed against the HCV E2 envelope glycoprotein, generated using transgenic mice. Based on epitope conservation and broad neutralization capacity, HuMAbs HCV1 and 95-2 provide excellent candidates for prevention of graft reinfection of HCV-infected individuals undergoing liver transplantation.  相似文献   

7.
Hepatitis C virus (HCV) glycoproteins E1 and E2, when expressed in eukaryotic cells, are retained in the endoplasmic reticulum (ER). C-terminal truncation of E2 at residue 661 or 715 (position on the polyprotein) leads to secretion, consistent with deletion of a proposed hydrophobic transmembrane anchor sequence. We demonstrate cell surface expression of a chimeric glycoprotein consisting of E2 residues 384 to 661 fused to the transmembrane and cytoplasmic domains of influenza A virus hemagglutinin (HA), termed E2661-HATMCT. The E2661-HATMCT chimeric glycoprotein was able to bind a number of conformation-dependent monoclonal antibodies and a recombinant soluble form of CD81, suggesting that it was folded in a manner comparable to "native" E2. Furthermore, cell surface-expressed E2661-HATMCT demonstrated pH-dependent changes in antigen conformation, consistent with an acid-mediated fusion mechanism. However, E2661-HATMCT was unable to induce cell fusion of CD81-positive HEK cells after neutral- or low-pH treatment. We propose that a stretch of conserved, hydrophobic amino acids within the E1 glycoprotein, displaying similarities to flavivirus and paramyxovirus fusion peptides, may constitute the HCV fusion peptide. We demonstrate that influenza virus can incorporate E2661-HATMCT into particles and discuss experiments to address the relevance of the E2-CD81 interaction for HCV attachment and entry.  相似文献   

8.
Genetic variability is a hallmark of RNA virus populations. However, transmission to a new host often results in a marked decrease in population diversity. This genetic bottlenecking is observed during hepatitis C virus (HCV) transmission and can arise via a selective sweep or through the founder effect. To model HCV transmission, we utilized chimeric SCID/Alb-uPA mice with transplanted human hepatocytes and infected them with a human serum HCV inoculum. E1E2 glycoprotein gene sequences in the donor inoculum and recipient mice were determined following single-genome amplification (SGA). In independent experiments, using mice with liver cells grafted from different sources, an E1E2 variant undetectable in the source inoculum was selected for during transmission. Bayesian coalescent analyses indicated that this variant arose in the inoculum pretransmission. Transmitted variants that established initial infection harbored key substitutions in E1E2 outside HVR1. Notably, all posttransmission E1E2s had lost a potential N-linked glycosylation site (PNGS) in E2. In lentiviral pseudoparticle assays, the major posttransmission E1E2 variant conferred an increased capacity for entry compared to the major variant present in the inoculum. Together, these data demonstrate that increased envelope glycoprotein fitness can drive selective outgrowth of minor variants posttransmission and that loss of a PNGS is integral to this improved phenotype. Mathematical modeling of the dynamics of competing HCV variants indicated that relatively modest differences in glycoprotein fitness can result in marked shifts in virus population composition. Overall, these data provide important insights into the dynamics and selection of HCV populations during transmission.  相似文献   

9.
We have determined the crystal structure of the broadly neutralizing antibody (bnAb) AP33, bound to a peptide corresponding to hepatitis C virus (HCV) E2 envelope glycoprotein antigenic site 412 to 423. Comparison with bnAb HCV1 bound to the same epitope reveals a different angle of approach to the antigen by bnAb AP33 and slight variation in its β-hairpin conformation of the epitope. These structures establish two different modes of binding to E2 that antibodies adopt to neutralize diverse HCV.  相似文献   

10.
Despite almost 30 years of research, no effective vaccine has yet been developed against HIV-1. Probably such a vaccine would need to induce both an effective T cell and antibody response. Any vaccine component focused on inducing humoral immunity requires the HIV-1 envelope (Env) glycoprotein complex as it is the only viral protein exposed on the virion surface. HIV-1 has evolved several mechanisms to evade broadly reactive neutralizing antibodies. One such a mechanism involves variable loop domains, which are highly flexible structures that shield the underlying conserved epitopes. We hypothesized that removal of such loops would increase the exposure and immunogenicity of these conserved regions. Env variable loop deletion however often leads to protein misfolding and aggregation because hydrophobic patches becoming solvent accessible. We have therefore previously used virus evolution to acquire functional Env proteins lacking the V1V2 loop. We then expressed them in soluble (uncleaved) gp140 forms. Three mutants were found to perform optimally in terms of protein expression, stability, trimerization and folding. In this study, we characterized the immune responses to these antigens in rabbits. The V1V2 deletion mutant ΔV1V2.9.VK induced a prominent response directed to epitopes that are not fully available on the other Env proteins tested but that effectively bound and neutralized the ΔV1V2 Env virus. This Env variant also induced more efficient neutralization of the tier 1 virus SF162. The immune refocusing effect was lost after booster immunization with a full-length gp140 protein with intact V1V2 loops. Collectively, this result suggests that deletion of variable domains could alter the specificity of the humoral immune response, but did not result in broad neutralization of neutralization-resistant virus isolates.  相似文献   

11.
12.
丙型肝炎病毒囊膜蛋白基因DNA疫苗的构建及动物免疫试验   总被引:1,自引:0,他引:1  
丙型肝炎病毒(Hepatitis C virus,HCV)主要通过输血传播,可以导致多种临床型的肝炎及其它肝脏疾病,包括肝硬化及肝细胞癌[1,2].目前尚无一种有效的抗HCV的措施,这使人们把眼光放到该病的预防上,DNA疫苗的产生为研制丙型肝炎(丙肝)的预防及治疗性疫苗提供了新的思路.  相似文献   

13.
丙型肝炎病毒(Hepatitis Cvirus,HCV)主要通过输血传播,可以导致多种临床型的肝炎及其它肝脏疾病,包括肝硬化及肝细胞癌。目前尚无一种有效的抗HCV的措施,这使人们把眼光放到该病的预防上,DNA疫苗的产生为研制丙型肝炎(丙肝)的预防及治疗性疫苗提供了新的思路。基因免疫是近几年快速发展起来的一种新型方法,它是将带有目的蛋白的编码基因和表达调控序列的质粒DNA导入机体组织后,使目的基因在体内表达,并全方位的刺激机体的免疫系统,  相似文献   

14.
在哺乳动物细胞中稳定表达丙型肝炎病毒E2糖蛋白   总被引:4,自引:0,他引:4  
利用DNA重组技术,将Ⅲ型中国株HCVE2/NS1基因片段插入真核表达载体,然后转染哺乳动物细胞NIH3T3以表达E2糖蛋白.检测显示来自3月以上培养的细胞克隆中表达产物分子量为70kD,经Westernblot证实该表达产物能与抗HCV阳性血清进行特异性反应.以上表明首次在哺乳动物细胞中成功表达Ⅲ型中国株HCV的E2糖蛋白,并建立相应的稳定表达细胞系.  相似文献   

15.
采用异硫氰酸胍一步法从480代猪瘟病毒兔化弱毒株(HCLV)脾毒中提取总RNA,以该RNA为模板,进行反转录,然后采用套式PCR扩增出HCLV的囊膜糖蛋白E0基因,琼脂糖凝胶电泳表明其大小与预计相符.将扩增出的E0基因克隆到pGEM-T载体中,用自动序列分析仪对其进行序列测定.将测得的序列及推导的氨基酸序列与国外测得的C株相应序列进行比较,结果发现,它们之间核苷酸序列同源性为99.08%,氨基酸序列同源性为98.42%.  相似文献   

16.
采用异硫氰酸胍一步法从480代猪瘟病毒兔化弱毒株(HCLV)脾毒中提取总RNA,以该RNA为模板,进行反转录,然后采用套式PCR扩增出HCLV的囊膜糖蛋白E0基因,琼脂糖凝胶电泳表明其大小与预计相符。将扩增出的E0基因克隆到pGEMT载体中,用自动序列分析仪对其进行序列测定。将测得的序列及推导的氨基酸序列与国外测得的C株相应序列进行比较,结果发现,它们之间核苷酸序列同源性为99.08%,氨基酸序列同源性为98.42%。  相似文献   

17.
The HCV envelope glycoproteins E1 and E2 contain eight and 18 highly conserved cysteine residues, respectively. Here, we examined the oxidation state of E1E2 heterodimers incorporated into retroviral pseudotyped particles (HCVpp) and investigated the significance of free sulfhydryl groups in cell culture-derived HCV (HCVcc) and HCVpp entry. Alkylation of free sulfhydryl groups on HCVcc/pp with a membrane-impermeable sulfhydryl-alkylating reagent 4-(N-maleimido)benzyl-α-trimethylammonium iodide (M135) prior to virus attachment to cells abolished infectivity in a dose-dependent manner. Labeling of HCVpp envelope proteins with EZ-Link maleimide-PEG2-biotin (maleimide-biotin) detected free thiol groups in both E1 and E2. Unlike retroviruses that employ disulfide reduction to facilitate virus entry, the infectivity of alkylated HCVcc could not be rescued by addition of exogenous reducing agents. Furthermore, the infectivity of HCVcc bound to target cells was not affected by addition of M135 indicative of a change in glycoprotein oxidation state from reduced to oxidized following virus attachment to cells. By contrast, HCVpp entry was reduced by 61% when treated with M135 immediately following attachment to cells, suggesting that the two model systems might demonstrate variations in oxidation kinetics. Glycoprotein oxidation was not altered following binding of HCVpp incorporated E1E2 to soluble heparin or recombinant CD81. These results suggest that HCV entry is dependent on the presence of free thiol groups in E1 and E2 prior to cellular attachment and reveals a new essential component of the HCV entry process.  相似文献   

18.
Host cell-mediated proteolytic cleavage of the human immunodeficiency virus type 1 (HIV-1) gp160 precursor glycoprotein into gp120 and gp41 subunits is required to generate fusion-competent envelope glycoprotein (Env) spikes. The gp120-directed broadly neutralizing monoclonal antibodies (bNabs) isolated from HIV-infected individuals efficiently recognize fully cleaved JRFL Env spikes; however, nonneutralizing gp120-directed monoclonal antibodies isolated from infected or vaccinated subjects recognize only uncleaved JRFL spikes. Therefore, as an immunogen, cleaved spikes that selectively present desired neutralizing epitopes to B cells may elicit cross-reactive neutralizing antibodies. Accordingly, we inoculated nonhuman primates (NHPs) with plasmid DNA encoding transmembrane-anchored, cleaved JRFL Env or by electroporation (EP). Priming with DNA expressing soluble, uncleaved gp140 trimers was included as a comparative experimental group of NHPs. DNA inoculation was followed by boosts with soluble JRFL gp140 trimers, and control NHPs were inoculated with soluble JRFL protein trimers without DNA priming. In the TZM-bl assay, elicitation of neutralizing antibodies against HIV-1 tier 1 isolates was robust following the protein boost. Neutralization of tier 2 isolates was detected, but only in animals primed with plasmid DNA and boosted with trimeric protein. Using the more sensitive A3R5 assay, consistent neutralization of both clade B and C tier 2 isolates was detected from all regimens assessed in the current study, exceeding levels achieved by our previous vaccine regimens in primates. Together, these data suggest a potential advantage of B cell priming followed by a rest interval and protein boosting to present JRFL Env spikes to the immune system to better generate HIV-1 cross-clade neutralizing antibodies.  相似文献   

19.
20.
An intracellular assay for viral envelope glycoprotein (env) messenger was employed to analyze the RNA from virus particles of Rous-associated virus type 2. For this assay RNA was microinjected into cells infected by the env-deficient Bryan strain of Rous sarcoma virus [RSV(-) cells]. Only when the injected RNA could be translated by the recipient cells to produce viral envelope glycoprotein was the env deficiency of the RSV(-) cells complemented, enabling them to release focus-forming virus. RNA in a 21S size fraction from the Rous-associated virus particle promoted the release of numerous focus-forming virus from RSV(-) cells, whereas the major 35S virion RNA species was inactive. The env messenger activity sedimented as a sharp peak with high specific activity. RNase T1-generated fragments of virion 35S RNA were unable to promote the release of infectious virus from RSV(-) cells. Consequently, the active molecule was most likely to be env messenger which had been encapsulated by the virus particle from the cytoplasm of infected cells. Approximately 95% of the env messenger within the virion was associated with the virion high-molecular-weight RNA complex. The temperature required to dissociate env messenger from the high-molecular-weight complex was indistinguishable from the temperature required to disrupt the complex itself. Virion high-molecular-weight RNA that was associated with env messenger sedimented slightly more rapidly than the bulk virion RNA; this was the strongest evidence that the 21S messenger had been encapsulated directly from the infected cells. These data are considered along with a related observation [concerning the prolonged expression of env messenger after injection into RSV(-) cells] to raise the possibility that virus-encapsulated env messenger can become expressed within subsequently infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号