首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Influenza A virus and respiratory syncytial virus (RSV) cause substantial morbidity and mortality afflicting the ends of the age spectrum during the autumn through winter months in the United States. The benefit of vaccination against RSV and influenza using a subunit vaccine to enhance immunity and neutralizing antibody was investigated. Influenza virus hemagglutinin (HA) and RSV fusion (F) protein were tested as vaccine components alone and in combination to explore the adjuvant properties of RSV F protein on HA immunity. Mice vaccinated with HA and F exhibited robust immunity that, when challenged, had reduced viral burden for both influenza and RSV. These studies show an enhancing and cross-protective benefit of F protein for anti-HA immunity.  相似文献   

3.
水稻条纹病毒引起的水稻条纹叶枯病在水稻种植区造成巨大的经济损失,有关病毒本身及抗病基因一直是近年研究的热点。根据近年的研究成果,综述在病毒的核酸、蛋白质、抗病基因及应用基因工程控制病害等方面的研究进展,并对利用抗病基因工程策略控制病害的应用前景进行了展望。  相似文献   

4.
5.
6.
7.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants worldwide. Despite decades of research, there is still no registered vaccine available for this major pathogen. We investigated the protective efficacy of a recombinant influenza virus, PR8/NA-F85–93, that carries the RSV CD8+ T cell epitope F85–93 in its neuraminidase stalk. F85–93-specific cytotoxic T lymphocytes (CTLs) were induced in mice after a single intranasal immunization with PR8/NA-F85-93 virus, and these CTLs provided a significant reduction in the lung viral load upon a subsequent challenge with RSV. To avoid influenza-induced morbidity, we treated mice with matrix protein 2 (M2e)-specific monoclonal antibodies before PR8/NA-F85-93 virus infection. Treatment with anti-M2e antibodies reduced the infiltration of immune cells in the lungs upon PR8/NA-F85-93 infection, whereas the formation of inducible bronchus-associated lymphoid tissue was not affected. Moreover, this treatment prevented body weight loss yet still permitted the induction of RSV F-specific T cell responses and significantly reduced RSV replication upon challenge. These results demonstrate that it is possible to take advantage of the infection-permissive protection of M2e-specific antibodies against influenza A virus to induce heterologous CD8+ T cell-mediated immunity by an influenza A virus vector expressing the RSV F85-93 epitope.  相似文献   

8.

Rationale

Respiratory syncytial virus (RSV) infection in preterm and newborn infants can result in severe bronchiolitis and hospitalization. The lamb lung has several key features conducive to modeling RSV infection in human infants, including susceptibility to human strains of RSV such as the A2, Long, and Memphis Strain 37 (M37). In this study, the kinetics of M37 infection was investigated in newborn lambs in order to better define clinical, viral, physiological, and immunological parameters as well as the pathology and lesions.

Methods

Newborn lambs were nebulized with M37 hRSV (6 mL of 1.27 x 107 FFU/mL), monitored daily for clinical responses, and respiratory tissues were collected from groups of lambs at days 1, 3, 4, 6, and 8 post-inoculation for the assessment of viral replication parameters, lesions and also cellular, immunologic and inflammatory responses.

Results

Lambs had increased expiratory effort (forced expiration) at days 4, 6, and 8 post-inoculation. Nasal wash lacked RSV titers at day 1, but titers were present at low levels at days 3 (peak), 4, and 8. Viral titers in bronchoalveolar lavage fluid (BALF) reached a plateau at day 3 (4.6 Log10 FFU/mL), which was maintained until day 6 (4.83 Log10 FFU/mL), and were markedly reduced or absent at day 8. Viral RNA levels (detected by RT-qPCR) in BALF were indistinguishable at days 3 (6.22 ± 0.08 Log10 M37 RNA copies/mL; mean ± se) and 4 (6.20 ± 0.16 Log10 M37 RNA copies/mL; mean ± se) and increased slightly on day 6 (7.15 ± 0.2 Log10 M37 RNA copies/mL; mean ± se). Viral antigen in lung tissue as detected by immunohistochemistry was not seen at day 1, was present at days 3 and 4 before reaching a peak by day 6, and was markedly reduced by day 8. Viral antigen was mainly present in airways (bronchi, bronchioles) at day 3 and was increasingly present in alveolar cells at days 4 and 6, with reduction at day 8. Histopathologic lesions such as bronchitis/bronchiolitis, epithelial necrosis and hyperplasia, peribronchial lymphocyte infiltration, and syncytial cells, were consistent with those described previously for lambs and infants.

Conclusion

This work demonstrates that M37 hRSV replication in the lower airways of newborn lambs is robust with peak replication on day 3 and sustained until day 6. These findings, along with the similarities of lamb lung to those of infants in terms of alveolar development, airway branching and epithelium, susceptibility to human RSV strains, lesion characteristics (bronchiolitis), lung size, clinical parameters, and immunity, further establish the neonatal lamb as a model with key features that mimic RSV infection in infants.  相似文献   

9.
10.
A set of five missense mutations previously identified by nucleotide sequence analysis of subgroup A cold-passaged (cp) respiratory syncytial virus (RSV) has been introduced into a recombinant wild-type strain of RSV. This recombinant virus, designated rA2cp, appears to replicate less efficiently in the upper and lower respiratory tracts of seronegative chimpanzees than either biologically derived or recombinant wild-type RSV. Infection with rA2cp also resulted in significantly less rhinorrhea and cough than infection with wild-type RSV. These findings confirm the role of the cp mutations in attenuation of RSV and identify their usefulness for inclusion in future live attenuated recombinant RSV vaccine candidates.  相似文献   

11.
Respiratory syncytial virus (RSV) is the leading cause of hospitalization especially in young children with respiratory tract infections (RTI). Patterns of circulating RSV genotypes can provide a better understanding of the molecular epidemiology of RSV infection. We retrospectively analyzed the genetic diversity of RSV infection in hospitalized children with acute RTI admitted to University Hospital Heidelberg/Germany between October 2012 and April 2013. Nasopharyngeal aspirates (NPA) were routinely obtained in 240 children younger than 2 years of age who presented with clinical symptoms of upper or lower RTI. We analyzed NPAs via PCR and sequence analysis of the second variable region of the RSV G gene coding for the attachment glycoprotein. We obtained medical records reviewing routine clinical data. RSV was detected in 134/240 children. In RSV-positive patients the most common diagnosis was bronchitis/bronchiolitis (75.4%). The mean duration of hospitalization was longer in RSV-positive compared to RSV-negative patients (3.5 vs. 5.1 days; p<0.01). RSV-A was detected in 82.1%, RSV-B in 17.9% of all samples. Phylogenetic analysis of 112 isolates revealed that the majority of RSV-A strains (65%) belonged to the novel ON1 genotype containing a 72-nucleotide duplication. However, genotype ON1 was not associated with a more severe course of illness when taking basic clinical/laboratory parameters into account. Molecular characterization of RSV confirms the co-circulation of multiple genotypes of subtype RSV-A and RSV-B. The duplication in the G gene of genotype ON1 might have an effect on the rapid spread of this emerging RSV strain.  相似文献   

12.
A maximum-likelihood analysis of selection pressures acting on the attachment (G) glycoprotein gene of respiratory syncytial virus (RSV) from humans (HRSV) and bovines (BRSV) is presented. Six positively selected sites were identified in both group A and group B of HRSV, although only one site was common between them, while no positively selected sites were detected in BRSV. All positively selected sites were located within the ectodomain of the G protein and showed some association with positions of immunoglobulin (Ig) epitopes and sites of O-glycosylation. These results suggest that immune (antibody)-driven natural selection is an important determinant of RSV evolution and that this selection pressure differs among strains. The passage histories of RSV strains were also shown to affect the distribution of positively selected sites, particularly in HRSV B, and should be considered whenever retrospective analysis of adaptive evolution is undertaken. Received: 15 August 2000 / Accepted: 2 November 2000  相似文献   

13.
14.
The respiratory syncytial virus (RSV) G glycoprotein promotes differentiation of type 2 CD4+ T lymphocytes and induces an eosinophilic response in lungs of RSV-infected mice. A unique feature of G is that a second initiation codon in the transmembrane region of the glycoprotein results in secretion of soluble protein from infected cells. Recombinant vaccinia viruses that express wild-type G (vvWT G), only secreted G (vvM48), or only membrane-anchored G (vvM48I) were used to define the influence of G priming on immunopathogenesis. Mice immunized with vvM48 had more severe illness following RSV challenge than did mice primed with vvWT G or vvM48I. Coadministration of purified G during priming with the construct expressing membrane-anchored G shifted immune responses following RSV challenge to a more Th2-like response. This was characterized by increased interleukin-5 in lung supernatants and an increase in G-specific immunoglobulin G1 antibodies. Eosinophils were present in the infiltrate of all mice primed with G-containing vectors but were greatest in mice primed with regimens including secreted G. These data suggest the form of G protein available for initial antigen processing and presentation is an important factor in promoting Th2-like immune responses, including the induction of lung eosinophilia. The ability of RSV to secrete G protein may therefore represent a viral strategy for immunomodulation and be a key determinant of disease pathogenesis.  相似文献   

15.
Therapeutic options to control respiratory syncytial virus (RSV) are limited, thus development of new therapeutics is high priority. Previous studies with a monoclonal antibody (mAb) reactive to an epitope proximal to the central conserved region (CCR) of RSV G protein (mAb 131-2G) showed therapeutic efficacy for reducing pulmonary inflammation RSV infection in BALB/c mice. Here, we show a protective effect in RSV-infected mice therapeutically treated with a mAb (130-6D) reactive to an epitope within the CCR of G protein, while treatment with a mAb specific for a carboxyl G protein epitope had no effect. Combined treatment with mAbs 130-6D and 131-2G significantly decreased RSV-associated pulmonary inflammation compared to either antibody alone. The results suggest that anti-RSV G protein mAbs that react at or near the CCR and can block RSV G protein-mediated activities are effective at preventing RSV disease and may be an effective strategy for RSV therapeutic treatment.  相似文献   

16.
After cell entry, HIV undergoes rapid transport toward the nucleus using microtubules and microfilaments. Neither the cellular cytoplasmic components nor the viral proteins that interact to mediate transport have yet been identified. Using a yeast two-hybrid screen, we identified four cytoskeletal components as putative interaction partners for HIV-1 p24 capsid protein: MAP1A, MAP1S, CKAP1, and WIRE. Depletion of MAP1A/MAP1S in indicator cell lines and primary human macrophages led to a profound reduction in HIV-1 infectivity as a result of impaired retrograde trafficking, demonstrated by a characteristic accumulation of capsids away from the nuclear membrane, and an overall defect in nuclear import. MAP1A/MAP1S did not impact microtubule network integrity or cell morphology but contributed to microtubule stabilization, which was shown previously to facilitate infection. In addition, we found that MAP1 proteins interact with HIV-1 cores both in vitro and in infected cells and that interaction involves MAP1 light chain LC2. Depletion of MAP1 proteins reduced the association of HIV-1 capsids with both dynamic and stable microtubules, suggesting that MAP1 proteins help tether incoming viral capsids to the microtubular network, thus promoting cytoplasmic trafficking. This work shows for the first time that following entry into target cells, HIV-1 interacts with the cytoskeleton via its p24 capsid protein. Moreover, our results support a role for MAP1 proteins in promoting efficient retrograde trafficking of HIV-1 by stimulating the formation of stable microtubules and mediating the association of HIV-1 cores with microtubules.  相似文献   

17.
Respiratory syncytial virus (RSV) is the most frequent cause of bronchiolitis in infants and children worldwide. There are currently no licensed vaccines or effective antivirals. The lack of a vaccine is partly due to increased caution following the aftermath of a failed clinical trial of a formalin-inactivated RSV vaccine (FI-RSV) conducted in the 1960’s that led to enhanced disease, necessitating hospitalization of 80% of vaccine recipients and resulting in two fatalities. Perinatal lamb lungs are similar in size, structure and physiology to those of human infants and are susceptible to human strains of RSV that induce similar lesions as those observed in infected human infants. We sought to determine if perinatal lambs immunized with FI-RSV would develop key features of vaccine-enhanced disease. This was tested in colostrum-deprived lambs immunized at 3–5 days of age with FI-RSV followed two weeks later by RSV infection. The FI-RSV-vaccinated lambs exhibited several key features of RSV vaccine-enhanced disease, including reduced RSV titers in bronchoalveolar lavage fluid and lung, and increased infiltration of peribronchiolar and perivascular lymphocytes compared to lambs either undergoing an acute RSV infection or naïve controls; all features of RSV vaccine-enhanced disease. These results represent a first step proof-of-principle demonstration that the lamb can develop altered responses to RSV following FI-RSV vaccination. The lamb model may be useful for future mechanistic studies as well as the assessment of RSV vaccines designed for infants.  相似文献   

18.
To investigate the role of cell surface glycosaminoglycans (GAGs), including heparan sulfate (HS), on HIV-1 infection in human T cells, HIV-1 binding and infection were determined after treatment of T-cell lines and CD4 + T cells from normal peripheral blood mononuclear cells (PBMC) with GAG-degrading enzyme or a GAG metabolic sulfation inhibitor. Heparitinase I (hep I) and sodium chlorate prevented binding of HIV-1/IIIB to MT-4 cells as revealed by indirect immunofluorescence procedures, thereby inhibiting infection. Hep I was less effective in the binding inhibition of the macrophage-tropic strain HIV-1/SF162 than that of the T-cell line-tropic strain HIV-1/IIIB. The binding of HIV-1/SF162 was about 100-fold less dependent on cell surface HS than HIV-1/IIIB. Human HTLV-I positive T-cell lines expressed more HS than HTLV-I negative T-cell lines or normal CD4 + T cells when stained with anti-HS mAbs against either native or heparitinase-treated HS. With the exception of endo-β-galactosidase (endo-β-gal), GAG-degrading enzymes, including hep I, chondroitinase ABC (chon ABC), chondroitinase AC II (chon AC II) and keratanase, did not prevent the binding of HIV-1/IIIB to CD4+ T cells from normal PBMC. These results indicate that the cell surface HS of human T cells participates in HIV-1 infection by facilitating HIV-1/IIIB binding to MT-4 cells. In particular, the sulfation of HS chains is critical. Since the expression of cell surface HS varies among T cells, which are not consistently sensitive to hep I treatment in HIV-1 binding inhibition, other GAG-like molecules may also be involved.  相似文献   

19.
Integration of the human immunodeficiency virus type 1 (HIV-1) DNA into the human genome requires the virusencoded integrase protein. The recombinant integrase protein of HIV-1 (isolate Bru) was prepared by constructing a plasmid based on pET-15b encoding the integrase gene. Integrase of HIV-1 was purified using a bacterial expression system (Escherichia coli). The main kinetic parameters of HIV-1 integrase (K m = (3.7 ± 0.2)·10–10 M, k cat = (1.2 ± 0.3)·10–7 sec–1) were determined using an oligonucleotide duplex constructed on the basis of the U5-terminal sequence of proviral HIV-1 DNA as the substrate. Inhibition of integrase by aurintricarbonic acid ([I]50 = 6.3 ± 0.4 M) and dependence of integrase activity on Mg2+ and Mn2+ concentration were studied.  相似文献   

20.
紫球藻胞外多糖抗呼吸道合胞病毒(RSV)活性研究   总被引:1,自引:0,他引:1  
采用体外细胞培养的方法,在Hela细胞系上检测了来自紫球藻的胞外多糖及其组分的抗呼吸道病毒(RSV)活性。发现紫球藻胞外多糖对呼吸道合胞病毒具有强烈的抑制活性,同时对宿主细胞的抑制作用很小。分离组分中的强带电性组分ESPSⅥ活性最高,其TI值达3125,为阳性对照药病毒唑的40余倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号