首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phenazines, including pyocyanin and iodonin, are biologically active compounds that are believed to confer producing organisms with a competitive growth advantage, and also are thought to be virulence factors in certain diseases including cystic fibrosis. The basic, tricyclic phenazine ring system is synthesized in a series of poorly characterized steps by enzymes encoded in a seven-gene cistron in Pseudomonas and other organisms. Despite the biological importance of these compounds, and our understanding of their mode of action, the biochemistry and mechanisms of phenazine biosynthesis are not well resolved. Here we report the 1.8 A crystal structure of PhzF, a key enzyme in phenazine biosynthesis, solved by molecular replacement. PhzF is structurally similar to the lysine biosynthetic enzyme diaminopimelate epimerase, sharing an unusual fold consisting of two nearly identical domains with the active site located in an occluded cleft between the domains. Unlike diaminopimelate epimerase, PhzF is a dimer in solution. The two apparently independent active sites open toward opposite sides of the dimer and are occupied by sulfate ions in the structure. In vitro experiments using a mixture of purified PhzF, -A, -B, and -G confirm that phenazine-1-carboxylic acid (PCA) is readily produced from trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) without aid of other cellular factors. PhzA, -B, and -G have no activity toward DHHA. However, in the presence of PhzF, individually or in combinations, they accelerate the formation of PCA from DHHA and therefore appear to function after the action of PhzF. Surprisingly, PhzF is itself capable of producing PCA, albeit slowly, from DHHA. These observations suggest that PhzF catalyzes the initial step in the conversion of DHHA to PCA, probably via a rearrangement reaction yielding the more reactive 3-oxo analogue of DHHA, and that subsequent steps can occur spontaneously. A hypothetical model for how DHHA binds to the PhzF active site suggests that Glu45 and Asp208 could act as general acid-base catalysts in a rearrangement reaction. Given that four reactions lie between DHHA and PCA, ketone formation, ring formation, decarboxylation, and oxidation, we hypothesize that the similar PhzA and -B proteins catalyze ring formation and thus may be more than noncatalytic accessory proteins. PhzG is almost certainly an oxidase and is predicted to catalyze the final oxidation/aromatization reaction.  相似文献   

2.
Abstract The DNA sequence of five contiguous open reading frames encoding enzymes for phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30–84 was determined. These open reading frames were named phzF, phzA, phzB, phzC and phzD . Protein PhzF is similar to 3-deoxy-D-arabino-heptulosonate-7-phosphate synthases of solanaceous plants. PhzA is similar to 2,3-dihydro-2,3-dihydroxybenzoate synthase (EntB) of Escherichia coli . PhzB shares similarity with both subunits of anthranilate synthase and the phzB open reading frame complemented an E. coli trpE mutant deficient in anthranilate synthase activity. Although phzC shares little similarity to known genes, its product is responsible for the conversion of phenazine-1-carboxylic acid to 2-hydroxy-phenazine-1-carboxylic acid. PhzD is similar to pyridoxamine phosphate oxidases. These results indicate that phenazine biosynthesis in P. aureofaciens shares similarities with the shikimic acid, enterochelin, and tryptophan biosynthetic pathways.  相似文献   

3.
X-Ray crystal structures have revealed that 2, 3-epoxypropyl-beta-D-xyloside reacts with endo-1,4-beta-xylanase (XYNII) by forming a covalent bond with Glu86. In contrast, 3, 4-epoxybutyl-beta-D-xyloside forms a covalent bond with Glu177. In the normal enzyme reaction Glu86 acts as the catalytic nucleophile and Glu177 as the acid/base catalyst. To rationalize the observed reactivity of the two mechanism-based inhibitors, we carried out eight 300 ps molecular dynamics simulations for different enzyme-inhibitor complexes. Simulations were done for both stereo isomers (R and S) of the inhibitors and for enzyme in which the protonation state of the nucleophile and acid/base catalyst was normal (Glu86 charged, Glu177 neutral) and in which the roles of the catalytic residues were reversed (Glu86 neutral, Glu177 charged). The number of reactive conformations found in each simulation was used to predict the reactivity of epoxy inhibitors. The conformation was considered to be a reactive one when at the same time (i) the proton of the catalytic acid was close (<2.9/3.4/3.9 A) to the oxirane oxygen of the inhibitor, (ii) the nucleophile was close to the terminal carbon of the oxirane group (<3.4/3.9/4.4 A) and (iii) the nucleophile approached the terminal carbon from a reactive angle (<30/45/60 degrees from an ideal attack angle). On the basis of the number of reactive conformations, 2,3-epoxypropyl-beta-D-xyloside was predicted to form a covalent bond with Glu86 and 3, 4-epoxybutyl-beta-D-xyloside with Glu177, both in agreement with the experiment. Thus, the MD simulations and the X-ray structures indicate that in the covalent binding of 3, 4-epoxybutyl-beta-D-xyloside the roles of the catalytic glutamates of XYNII are reversed from that of the normal enzyme reaction.  相似文献   

4.
Two seven-gene phenazine biosynthetic loci were cloned from Pseudomonas aeruginosa PAO1. The operons, designated phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2, are homologous to previously studied phenazine biosynthetic operons from Pseudomonas fluorescens and Pseudomonas aureofaciens. Functional studies of phenazine-nonproducing strains of fluorescent pseudomonads indicated that each of the biosynthetic operons from P. aeruginosa is sufficient for production of a single compound, phenazine-1-carboxylic acid (PCA). Subsequent conversion of PCA to pyocyanin is mediated in P. aeruginosa by two novel phenazine-modifying genes, phzM and phzS, which encode putative phenazine-specific methyltransferase and flavin-containing monooxygenase, respectively. Expression of phzS alone in Escherichia coli or in enzymes, pyocyanin-nonproducing P. fluorescens resulted in conversion of PCA to 1-hydroxyphenazine. P. aeruginosa with insertionally inactivated phzM or phzS developed pyocyanin-deficient phenotypes. A third phenazine-modifying gene, phzH, which has a homologue in Pseudomonas chlororaphis, also was identified and was shown to control synthesis of phenazine-1-carboxamide from PCA in P. aeruginosa PAO1. Our results suggest that there is a complex pyocyanin biosynthetic pathway in P. aeruginosa consisting of two core loci responsible for synthesis of PCA and three additional genes encoding unique enzymes involved in the conversion of PCA to pyocyanin, 1-hydroxyphenazine, and phenazine-1-carboxamide.  相似文献   

5.
Pseudomonas aureofaciens strain 30-84 suppresses take-all disease of wheat caused by Gaeumannomyces graminis var. tritici. Three antibiotics, phenazine-1-carboxylic acid, 2-hydroxyphenazine-1-carboxylic acid, and 2-hydroxyphenazine, were responsible for disease suppression. Tn5-induced mutants deficient in production of one or more of the antibiotics (Phz-) were significantly less suppressive than the parental strain. Cosmids pLSP259 and pLSP282 from a genomic library of strain 30-84 restored phenazine production and fungal inhibition to 10 different Phz- mutants. Sequences required for production of the phenazines were localized to a segment of approximately 2.8 kilobases that was present in both cosmids. Expression of this locus in Escherichia coli required the introduction of a functional promoter, was orientation-specific, and resulted in the production of all three phenazine antibiotics. These results strongly suggest that the cloned sequences encode a major portion of the phenazine biosynthetic pathway.  相似文献   

6.
Experimental structural data on the state of substrates bound to class 3 Aldehyde Dehydrogenases (ALDH3A1) is currently unknown. We have utilized molecular mechanics (MM) simulations, in conjunction with new force field parameters for aldehydes, to study the atomic details of benzaldehyde binding to ALDH3A1. Our results indicate that while the nucleophilic Cys243 must be in the neutral state to form what are commonly called near-attack conformers (NACs), these structures do not correlate with increased complexation energy calculated with the MM-Generalized Born Molecular Volume (GBMV) method. The negatively charged Cys243 (thiolate form) of ALDH3A1 also binds benzaldehyde in a stable conformation but in this complex the sulfur of Cys243 is oriented away from benzaldehyde yet yields the most favorable MM-GBMV complexation energy. The identity of the general base, Glu209 or Glu333, in ALDHs remains uncertain. The MM simulations reveal structural and possible functional roles for both Glu209 and Glu333. Structures from the MM simulations that would support either glutamate residue as the general base were further examined with Hybrid Quantum Mechanical (QM)/MM simulations. These simulations show that, with the PM3/OPLS potential, Glu209 must go through a step-wise mechanism to activate Cys243 through an intervening water molecule while Glu333 can go through a more favorable concerted mechanism for the same activation process.  相似文献   

7.
Escherichia coli MutT protein hydrolyzes 8-oxo-7,8-dihydro-2′-dGTP (8-oxo-dGTP) to the monophosphate, thus avoiding the incorporation of 8-oxo-7,8-dihydroguanine (8-oxo-G) into nascent DNA. Bacterial and mammalian homologs of MutT protein share the phosphohydrolase module (MutT: Gly37→Gly59). By saturation mutagenesis of conserved residues in the MutT module, four of the 10 conserved residues (Gly37, Gly38, Glu53 and Glu57) were revealed to be essential to suppress spontaneous A:T→C:G transversion mutation in a mutT mutator strain. For the other six residues (Lys39, Glu44, Thr45, Arg52, Glu56 and Gly59), many positive mutants which can suppress the spontaneous mutation were obtained; however, all of the positive mutants for Glu44 and Arg52 either partially or inefficiently suppressed the mutation, indicating that these two residues are also important for MutT function. Several positive mutants for Lys39, Thr45, Glu56 and Gly59 efficiently decreased the elevated spontaneous mutation rate, as seen with the wild-type, hence, these four residues are non-essential for MutT function. As Lys38 and Glu55 in human MTH1, corresponding to the non-essential residues Lys39 and Glu56 in MutT, could not be replaced by any other residue without loss of function, different structural features between the two modules of MTH1 and MutT proteins are evident.  相似文献   

8.
Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason–Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy (31P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme–product complex structure.  相似文献   

9.
Certain strains of root-colonizing fluorescent Pseudomonas spp. produce phenazines, a class of antifungal metabolites that can provide protection against various soilborne root pathogens. Despite the fact that the phenazine biosynthetic locus is highly conserved among fluorescent Pseudomonas spp., individual strains differ in the range of phenazine compounds they produce. This study focuses on the ability of Pseudomonas aureofaciens 30-84 to produce 2-hydroxyphenazine-1-carboxylic acid (2-OH-PCA) and 2-hydroxyphenazine from the common phenazine metabolite phenazine-1-carboxylic acid (PCA). P. aureofaciens 30-84 contains a novel gene located downstream from the core phenazine operon that encodes a 55-kDa aromatic monooxygenase responsible for the hydroxylation of PCA to produce 2-OH-PCA. Knowledge of the genes responsible for phenazine product specificity could ultimately reveal ways to manipulate organisms to produce multiple phenazines or novel phenazines not previously described.  相似文献   

10.
To investigate the mechanism of the deacylation reaction in the active site of human butyrylcholinesterase (BuChE), we carried out quantum mechanical (QM) calculations on cluster models of the active site built from a crystallographic structure. The models consisted of the substrate butyrate moiety, the catalytic triad of residues (Ser198, Glu325, and His438), the "oxy-anion hole" (Gly116, Gly117, and Ala199), the side chain of Glu197, four water molecules, the side chain of Ser225, and the peptide linkage between Val321 and Asn322. Analyses of the equilibrium geometries, electronic properties, and energies of the QM models gave insights into the catalytic mechanism. In addition, the QM calculations provided the data required to build a molecular mechanics representation of the reactive BuChE region that was employed in molecular dynamics simulations followed by molecular-mechanics-Poisson-Boltzmann (MM-PB) calculations. Subsequently, we combined the QM energies with average MM-PB energies to estimate the free energy of the reactive structures in the enzyme. The rate-determining step corresponds to the formation of a tetrahedral intermediate with a free-energy barrier of approximately 14.0 kcal/mol. The modulation of the BuChE activity, exerted by either neutral molecules (glycerol, GOL) or a second butyrylcholine (CHO) molecule bound to the cation-pi site, does not involve any significant allosteric effect. Interestingly, the presence of GOL or CHO stabilizes a product complex formed between a butyric acid molecule and BuChE. These results are in consonance with the crystallographic structure of BuChE, in which the catalytic Ser198 interacts with a butyric fragment, while the cation-pi site is occupied by one GOL molecule.  相似文献   

11.
We have obtained precatalytic (enzyme–substrate complex) and postcatalytic (enzyme–product complex) crystal structures of an active full-length hammerhead RNA that cleaves in the crystal. Using the natural satellite tobacco ringspot virus hammerhead RNA sequence, the self-cleavage reaction was modulated by substituting the general base of the ribozyme, G12, with A12, a purine variant with a much lower pKa that does not significantly perturb the ribozyme's atomic structure. The active, but slowly cleaving, ribozyme thus permitted isolation of enzyme–substrate and enzyme–product complexes without modifying the nucleophile or leaving group of the cleavage reaction, nor any other aspect of the substrate. The predissociation enzyme-product complex structure reveals RNA and metal ion interactions potentially relevant to transition-state stabilization that are absent in precatalytic structures.  相似文献   

12.
A detailed computational analysis of 32 protein–RNA complexes is presented. A number of physical and chemical properties of the intermolecular interfaces are calculated and compared with those observed in protein–double-stranded DNA and protein–single-stranded DNA complexes. The interface properties of the protein–RNA complexes reveal the diverse nature of the binding sites. van der Waals contacts played a more prevalent role than hydrogen bond contacts, and preferential binding to guanine and uracil was observed. The positively charged residue, arginine, and the single aromatic residues, phenylalanine and tyrosine, all played key roles in the RNA binding sites. A comparison between protein–RNA and protein–DNA complexes showed that whilst base and backbone contacts (both hydrogen bonding and van der Waals) were observed with equal frequency in the protein–RNA complexes, backbone contacts were more dominant in the protein–DNA complexes. Although similar modes of secondary structure interactions have been observed in RNA and DNA binding proteins, the current analysis emphasises the differences that exist between the two types of nucleic acid binding protein at the atomic contact level.  相似文献   

13.
d-Arabinose isomerase (d-AI), also known as l-fucose isomerase (l-FI), catalyzes the aldose–ketose isomerization of d-arabinose to d-ribulose, and l-fucose to l-fuculose. Bacillus pallidus (B. pallidus) d-AI can catalyze isomerization of d-altrose to d-psicose, as well as d-arabinose and l-fucose. Three X-ray structures of B. pallidusd-AI in complexes with 2-methyl-2,4-pentadiol, glycerol and an inhibitor, l-fucitol, were determined at resolutions of 1.77, 1.60 and 2.60 Å, respectively. B. pallidusd-AI forms a homo-hexamer, and one subunit has three domains of almost equal size; two Rossmann fold domains and a mimic of the (β/α) barrel fold domain. A catalytic metal ion (Mn2+) was found in the active site coordinated by Glu342, Asp366 and His532, and an additional metal ion was found at the channel for the passage of a substrate coordinated by Asp453. The X-ray structures basically supported the ene-diol mechanism for the aldose–ketose isomerization by B. pallidusd-AI, as well as Escherichia coli (E. coli) l-FI, in which Glu342 and Asp366 facing each other at the catalytic metal ion transfer a proton from C2 to C1 and O1 to O2, acting as acid/base catalysts, respectively. However, considering the ionized state of Asp366, the catalytic reaction also possibly occurs through the negatively charged ene-diolate intermediate stabilized by the catalytic metal ion. A structural comparison with E. colil-FI showed that B. pallidusd-AI possibly interconverts between “open” and “closed” forms, and that the additional metal ion found in B. pallidusd-AI may help to stabilize the channel region.  相似文献   

14.
Nucleic acids are generally considered as efficient cation binders. Therefore, the likelihood that negatively charged ions might intrude their first hydration shell is rarely considered. Here, we show on the basis of (i) a survey of the Nucleic Acid Database, (ii) several structures extracted from the Cambridge Structural Database, and (iii) molecular dynamics simulations, that the nucleotide electropositive edges involving mainly amino, imino, and hydroxyl groups can cast specific anion binding sites. These binding sites constitute also good locations for the binding of the negatively charged groups of the Asp and Glu residues or the nucleic acid phosphate groups. Furthermore, it is observed in several instances that anions, like water molecules and cations, do mediate protein/nucleic acid interactions. Thus, anions as well as negatively charged groups are directly involved in specific recognition and folding phenomena involving polyanionic nucleic acids.  相似文献   

15.
Tyrosine hydroxylase (TH), which converts L-tyrosine to L-3, 4-dihydroxyphenylalanine, is a rate-limiting enzyme in the biosynthesis of catecholamines; its activity is regulated by the feedback inhibition of the catecholamine products including dopamine. To rationalize the significant role of the N-terminal sequence Arg(37)-Arg(38) of human TH type 1 (hTH1) in determining the efficiency of feedback inhibition, we produced mutants of which the positively charged Arg(37)-Arg(38) site was replaced by electrically neutral Gly and/or negatively charged Glu and analyzed the degree of inhibition of these mutant enzymes by dopamine. The replacement of Arg by Gly reduced the inhibitory effect of dopamine on the catalytic activity measured in the basic pH range and the replacement of Arg by Glu was enough to abolish the inhibitory effect, although these mutations brought no significant changes to the circular dichroism spectrum. The prediction of the secondary structure of N-terminal residues 1-60 by computer software specified the location of the Arg(37)-Arg(38) sequence in the turn intervening between the two alpha-helices (residues 16-29 and residues 41-59). These results suggest that the positive charge of the amino acid residues at positions 37 and 38 is one of the main factors that maintains the characteristic of the turn and is responsible for the enzyme inhibition by dopamine.  相似文献   

16.
Both antibiotics and siderophores have been implicated in the control of soilborne plant pathogens by fluorescent pseudomonads. In Pseudomonas fluorescens 2–79, which suppresses take-all of wheat, the importance of the antibiotic phenazine-1-carboxylic acid was established with mutants deficient or complemented for antiobiotic production and by isolation of the antibiotic from the roots of wheat colonized by the bacteria. Genetic and biochemical studies of phenazine synthesis have focused on two loci; the first is involved in production of both anthranilic acid and phenazine-1-carboxylic acid, and the second encodes genes involved directly in phenazine synthesis. Because the antibiotic does not account fully for the suppressiveness of strain 2-79, additional mutants were analyzed to evaluate the role of the fluorescent siderophore and of an antifungal factor (Aff, identified as anthranilic acid) that accumulates when iron is limiting. Whereas strains producing only the siderophore conferred little protection against take-all, Aff+ strains were suppressive, but much less so than phenazine-producing strains. Iron-regulated nonsiderophore antibiotics may be produced by fluorescent pseudomonads more frequently than previously recognized, and could be partly responsible for beneficial effects that were attributed in the past to fluorescent siderophores.  相似文献   

17.
The DNA-bound orientations of Cu(II) x Xaa-Gly-L-His metallopeptides (where Xaa is Gly, L-Lys or L-Arg) were investigated by DNA fiber EPR spectroscopy and molecular modeling. Observed and calculated EPR spectra indicated that the g// axes of 1:1 Cu(II) complexes of the tripeptides tilted about 50 degrees from the DNA fiber axis. These results suggest that the complexes are stereospecifically oriented in the DNA minor groove. Although the side chain of the N-terminal amino acid residue did not affect the orientation of the DNA-bound complexes, it contributed to their stability in the presence of DNA; the Cu(II) complex of Gly-Gly-L-His was found to dissociate to hydrated Cu(II) ion more extensively than the respective L-Lys-Gly-L-His and L-Arg-Gly-L-His complexes. The ionic interaction between the positively charged lysine or arginine residues and the negatively charged DNA phosphodiester backbone may result in the reduced dissociation of these complexes when bound to the DNA minor groove.  相似文献   

18.
Chang TE  Wegmann B  Wang WY 《Plant physiology》1990,93(4):1641-1649
Chlorophyll biosynthesis starts with the synthesis of glutamyl-tRNA (glu-tRNA) by a glutamyl-tRNA synthetase (Glu RS). The glu-tRNA is subsequently transformed to δ-aminolevulinic acid (ALA), which is a committed and regulated precursor in the chlorophyll biosynthetic pathway. The Glu RS from a green alga, Chlamydomonas reinhardtii, was purified and shown to be able to synthesize glu-tRNA and to participate in ALA synthesis in a coupled enzyme assay. Physical and chemical characterization of the purified Glu RS indicated that the enzyme had been purified to homogeneity. The purified enzyme has a native molecular weight of 60,000, an isoelectric point of 4.6, and it formed a single band of 32,500 daltons when analyzed by a silver stained denaturing gel. The N-terminal amino acid sequence of the 32,500 dalton protein was determined to be Asn-Lys-Val-Ala-Leu-Leu-Gly-Ala-Ala-Gly. The molecular weight analyses together with the unambiguous N-terminal amino acid sequence obtained from the purified enzyme suggested that the native enzyme was composed of two identical subunits. Polyclonal antibodies raised against the purified and denatured enzyme were able to inhibit the activity of the native enzyme and to interact specifically with the 32,500 dalton band on Western blots. Thus, the antibodies provided an additional linkage for the structural and functional identities of the enzyme. In vitro experiments showed that over 90% of the glu RS activity was inhibited by 5 micromolar heme, which suggested that Glu RS may be a regulated enzyme in the chlorophyll biosynthetic pathway.  相似文献   

19.
Antigen–antibody interactions are critical for understanding antigen–antibody associations in immunology. To shed further light on this question, we studied a dissociation of the 19D9D6-HCV core protein antibody complex structure. However, forced separations in single molecule experiments are difficult, and therefore molecular simulation techniques were applied in our study. The stretching, that is, the distance between the center of mass of the HCV core protein and the 19D9D6 antibody, has been studied using the potential of mean force calculations based on molecular dynamics and the explicit water model. Our simulations indicate that the 7 residues Gly70, Gly72, Gly134, Gly158, Glu219, Gln221 and Tyr314, the interaction region (antibody), and the 14 interprotein molecular hydrogen bonds might play important roles in the antigen–antibody interaction, and this finding may be useful for protein engineering of this antigen–antibody structure. In addition, the 3 residues Gly134, Gly158 and Tyr314 might be more important in the development of bioactive antibody analogs.  相似文献   

20.
Phenazines (Phzs), a family of chemicals with a phenazine backbone, are secondary metabolites with diverse properties such as antibacterial, anti-fungal, or anticancer activity. The core derivatives of phenazine, phenazine-1-carboxylic acid (PCA) and phenazine-1,6-dicarboxylic acid (PDC), are themselves precursors for various other derivatives. Recent advances in genome mining tools have enabled researchers to identify many biosynthetic gene clusters (BGCs) that might produce novel Phzs. To characterize the function of these BGCs efficiently, we performed modular construct assembly and subsequent multi-chassis heterologous expression using chassis-independent recombinase-assisted genome engineering (CRAGE). CRAGE allowed rapid integration of a PCA BGC into 23 diverse γ-proteobacteria species and allowed us to identify top PCA producers. We then used the top five chassis hosts to express four partially refactored PDC BGCs. A few of these platforms produced high levels of PDC. Specifically, Xenorhabdus doucetiae and Pseudomonas simiae produced PDC at a titer of 293 mg/L and 373 mg/L, respectively, in minimal media. These titers are significantly higher than those previously reported. Furthermore, selectivity toward PDC production over PCA production was improved by up to 9-fold. The results show that these strains are promising chassis for production of PCA, PDC, and their derivatives, as well as for function characterization of Phz BGCs identified via bioinformatics mining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号