首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Sex-linked dwarf male (dw/dw) and female (dw/-) chickens from a commercial meat strain, grew significantly slower than genetically normal broilers (Dw/Dw). The differences were evident at 2 weeks of age and they remained constant with age, at least through 8 weeks. The dwarfs in turn grew significantly faster than genetically normal (Dw/Dw) but slow-growing roaster strain chicks. Heterozygous (Dw/dw) normal, fast-growing male broilers grew significantly faster than the normal and roaster chicks but weighed 8% less than the normal broilers at 8 weeks. Abdominal fat accretion was greatest in the dwarf chicks and least in the slow-growing roaster strain when comparisons were made at the same age and the same body weight. Pectoralis muscle growth was greater in the broiler strain when equal age and weight comparisons were made. Gastrocnemius muscle growth, however, was greatest in the slow-growing roaster chicks.  相似文献   

2.
The presence of the sex-linked dwarf gene (dw) in homozygous male (dw/dw) and female (dw/-) meat strain chickens is associated with a significant reduction in circulating levels of triiodothyronine (T3). Heterozygous (Dw/dw) male broiler strain chickens have T3 concentrations similar to those in homozygous (Dw/Dw) male broilers. Genetically normal (Dw/Dw) but significantly slower growing roaster strain male meat chickens had consistently higher T3 than the faster growing broilers at all ages in one experiment but only at 8 weeks in a second experiment. Age and not growth rate appears to have a greater influence on serum T3 concentrations in the slow- and fast-growing normal strains. Growth hormone levels were significantly higher in the dwarf chickens at all ages and in all three experiments. The heterozygous and homozygous broilers had similar GH levels and the slow-growing, genetically normal roasters had intermediate concentrations between the broiler and dwarf lines. GH was influenced to a greater extent by the rate of body weight gain than by increasing age in the genetically normal fast and slow growing strains.  相似文献   

3.
ABSTRACT

The current experiment was designed to examine effects of dietary supplemental sunflower hulls (SH) and rice hulls (RH) on growth performance, carcass traits, intestinal morphology, lesion score and oocyst shedding in broiler chickens exposed to coccidial challenge. A total of 540 broiler chickens (Ross 308) were assigned to six dietary treatments based on a factorial arrangement (2 × 3) across 1–14, 14–28 and 28-42-d periods. Experimental treatments consisted of broiler chickens without or with coccidial challenge each offered with three different diets: a basal diet or basal diet supplemented with either RH or SH at 40 g/kg diet, respectively. Infection with Eimeria impaired daily weight gain (DWG) and feed conversion ratio (FCR) of broiler chickens during growing period (p < 0.05) while supplementation of SH or RH reduced the adverse effect of coccidiosis so that birds had similar DWG to those fed the basal diet without infection. However, only dietary SH improved the FCR of broilers challenged with coccidiosis. Regardless of coccidial challenge, dietary access to insoluble fibre improved performance of broilers across the growing period (p < 0.05); however, this effect was not observed during the entire rearing period. Relative weights of liver and pancreas were increased in birds subjected to coccidial challenge on d 21 of age (p < 0.05). Moreover, relative weights of the intestinal segments were enhanced (p < 0.05). Furthermore, gizzard weights were higher in birds receiving diets added with fibre (p < 0.05). Infection with coccidiosis decreased villus height and villus height to crypt depth ratio in duodenum of broilers which received the basal diet compared with those fed the same feed without coccidial challenge (p < 0.05). However, supplemental SH could decrease the negative effect of infection on the noted intestinal morphometric attributes. Similarly, a marked reduction was observed for lesion score and faecal oocyst excretion of challenged broilers fed on dietary supplemental fibre (p < 0.05). In conclusion, supplementation of insoluble fibre could ameliorate negative effects of coccidial challenge on DWG of broiler chickens and inclusion of SH in diet of birds exposed to Eimeria infection could be recommended.  相似文献   

4.
At high ambient temperature (Ta=35°C) weight gain and feed intake declined significantly. At 15°C weight gain was similar to that at 25°C, at the cost of increased feed intake. Under diurnal cyclic temperature, weight gain and feed intake were significantly lower than in the average corresponding temperature.In all treatments the turkeys’ body temperature (Tb) was at the lower level of normothemia known for broiler chickens at a similar age.The blood system compensated for changes in Ta by increasing hematocrit, hemoglobin concentration and heart muscle weight at low Ta, and by plasma expansion and increased panting at high Ta.Plasma (T3) concentration was positively correlated with feed intake and weight gain.  相似文献   

5.
This paper describes the effects of ambient temperatures on whole blood viscosity and plasma protein concentration in broiler chickens. Whole blood viscosity and haematocrit, compared at 7 and 20°C, decreased significantly at or above 25°C of ambient temperature. However, no marked difference were found between 7 and 20°C or between the temperatures of 25, 30 and 35°C. The heat-induced decrease of whole blood viscosity was found after exposure for 1 h. These results suggest that the heat-induced decrease in blood viscosity is only a level change, which occurs between thermoneutral and high ambient temperature.  相似文献   

6.
The objective of this study was to determine if a diet supplemented simultaneously with vitamins C and E would alleviate the negative effects of heat stress, applied between 28 and 42 days of age, on performance, carcass and meat quality traits of broiler chickens. A total of 384 male broiler chickens were assigned to a completely randomized design, with a 2×3 factorial arrangement (diet with or without vitamin supplementation and two ambient temperatures plus a pair-feeding group) and 16 replicates. Chickens were kept in thermoneutral conditions up to 28 days of age. They were then housed in groups of four per cage, in three environmentally controlled chambers: two thermoneutral (22.5 and 22.6°C) and one for heat stress (32°C). Half the chickens were fed a diet supplemented with vitamins C (257 to 288 mg/kg) and E (93 to 109 mg/kg). In the thermoneutral chambers, half of the chickens were pair-fed to heat stressed chickens, receiving each day the average feed intake recorded in the heat stress chamber in the previous day. Meat physical quality analyses were performed on the pectoralis major muscle. No ambient temperature×diet supplementation interaction effects were detected on performance, carcass, or meat quality traits. The supplemented diet resulted in lower growth performance, attributed either to a carry-over effect of the lower initial BW, or to a possible catabolic effect of vitamins C and E when supplemented simultaneously at high levels. Heat stress reduced slaughter and carcass weights, average daily gain and feed intake, and increased feed conversion. Growth performance of pair-fed chickens was similar to that of heat stressed chickens. Exposure to heat stress increased carcass and abdominal fat percentages, but reduced breast, liver and heart percentages. Pair-fed chickens showed the lowest fat percentage and their breast percentage was similar to controls. Heat stress increased meat pH and negatively affected meat color and cooking loss. In pair-fed chickens, meat color was similar to the heat stressed group. Shear force was not influenced by heat stress, but pair-fed chickens showed the tenderest meat. In conclusion, reduction in growth performance and negative changes in meat color in heat stressed chickens were attributed to depression in feed intake, whereas negative changes in body composition, higher meat pH and cooking loss were credited to high ambient temperature per se. Diet supplementation with vitamins C and E as antioxidants did not mitigate any of these negative effects.  相似文献   

7.
Understanding the variations of muscle and plasma metabolites in response to high environmental temperature can provide important information on the molecular mechanisms related to body energy homeostasis in heat-stressed broiler chickens. In this study, we investigated the effect of chronic heat stress conditions on the breast muscle (Pectoralis major) and plasma metabolomics profile of broiler chickens by means of an innovative, high-throughput analytical approach such as the proton nuclear magnetic resonance (1H NMR) spectrometry. A total of 300 Ross 308 male chicks were split into two experimental groups and raised in either thermoneutral conditions for the entire rearing cycle (0–41 days) (TNT group; six replicates of 25 birds/each) or exposed to chronic heat stress conditions (30 °C for 24 h/day) from 35 to 41 days (CHS group; six replicates of 25 birds/each). At processing (41 days), plasma and breast muscle samples were obtained from 12 birds/experimental group and then subjected to 1H NMR analysis. The reduction of BW and feed intake as well as the increase in rectal temperature and heterophil: lymphocyte ratio confirmed that our experimental model was able to stimulate a thermal stress response without significantly affecting mortality. The 1H NMR analysis revealed that a total of 26 and 19 molecules, mostly related to energy and protein metabolism as well as antioxidant response, showed significantly different concentrations respectively in the breast muscle and plasma in response to the thermal challenge. In conclusion, the results obtained in this study indicated that chronic heat stress significantly modulates the breast muscle and plasma metabolome in fast-growing broiler chickens, allowing to delineate potential metabolic changes that can have important implications in terms of body energy homeostasis, growth performance and product quality.  相似文献   

8.
The aim of this study was to examine production and health of fast-growing broilers fed diets with and without hemp seed cake (HSC) in organic broiler production. Two diets, a control diet (C) and a diet including HSC (H), were fed to 1200 Ross 308 chickens which were divided over 8 pens. Birds were housed indoors until 21 d, and thereafter kept in the same groups in two chicken houses with access to outdoor pasture up to slaughter at 70 d. Production performance was registered weekly. The number of Clostridium perfringens (C. perfringens) in caeca, as well as leg and foot health and carcass quality was registered during the study period or at slaughter. Total mortality was high regardless of diet due to a short heat wave extreme for Swedish conditions which predominantly affected the heavy male broilers. The inclusion of HSC did not affect total production performance or mortality. Furthermore, no effect of HSC inclusion in the feed was seen on the number of C. perfringens in the caeca. There were differences in litter condition and foot health of birds, which may have been related to the high crude fibre (CF) content of the H diet.  相似文献   

9.
Broiler chickens (Gallus gallus) genetically selected for rapid growth are inherently predisposed to heart failure. In order to understand the biochemical mechanisms associated with the deterioration of heart function and development of congestive heart failure (CHF) in fast-growing chickens, this study examined several factors critical for myocardial energy metabolism. Measured variables included cardiac energy substrates [creatine phosphate (CrP), adenosine triphosphate (ATP), l-carnitine], activity of selected cytosolic enzymes [creatine kinase (CK; EC 2.7.3.2), lactate dehydrogenase (LDH; EC 1.1.1.27)] and mitochondrial enzymes [pyruvate dehydrogenase (PDH; EC 1.2.4.1), alpha-ketoglutarate dehydrogenase (alpha-KGDH; EC 1.2.4.2)]. The CK activities were higher in fast-growing and CHF broilers as compared to slow-growing broilers (p<0.05). Cardiac LDH and alpha-KGDH activities were not changed (p>0.05), whereas PDH activity was highest (p<0.05) in broilers with CHF. Deterioration of heart function is correlated with lowered cardiac ATP, CrP, and l-carnitine levels (all p<0.05). Depletion of high energy phosphate substrates, ATP and CrP, is evident in fast-growing chickens and those that developed CHF. Increased activity of CK suggests that cardiac energy management in fast-growing broilers and those with CHF largely depends on contribution of this pathway to regeneration of ATP from CrP. In this scenario, inadequate level of CrP is a direct cause of ATP insufficiency, whereas low cardiac l-carnitine, because of its role in fatty acid transport, is most likely an important factor contributing to shortage of key substrate required for synthesis of cardiac ATP. The insufficiencies in cardiac energy substrate synthesis provide metabolic basis of myocardial dysfunction in chickens predisposed to heart failure.  相似文献   

10.
Broiler chickens (Gallus gallus) genetically selected for rapid growth are inherently predisposed to heart failure. In order to understand the biochemical mechanisms associated with the deterioration of heart function and development of congestive heart failure (CHF) in fast-growing chickens, this study examined several factors critical for myocardial energy metabolism. Measured variables included cardiac energy substrates [creatine phosphate (CrP), adenosine triphosphate (ATP), l-carnitine], activity of selected cytosolic enzymes [creatine kinase (CK; EC 2.7.3.2), lactate dehydrogenase (LDH; EC 1.1.1.27)] and mitochondrial enzymes [pyruvate dehydrogenase (PDH; EC 1.2.4.1), alpha-ketoglutarate dehydrogenase (alpha-KGDH; EC 1.2.4.2)]. The CK activities were higher in fast-growing and CHF broilers as compared to slow-growing broilers (p<0.05). Cardiac LDH and alpha-KGDH activities were not changed (p>0.05), whereas PDH activity was highest (p<0.05) in broilers with CHF. Deterioration of heart function is correlated with lowered cardiac ATP, CrP, and l-carnitine levels (all p<0.05). Depletion of high energy phosphate substrates, ATP and CrP, is evident in fast-growing chickens and those that developed CHF. Increased activity of CK suggests that cardiac energy management in fast-growing broilers and those with CHF largely depends on contribution of this pathway to regeneration of ATP from CrP. In this scenario, inadequate level of CrP is a direct cause of ATP insufficiency, whereas low cardiac l-carnitine, because of its role in fatty acid transport, is most likely an important factor contributing to shortage of key substrate required for synthesis of cardiac ATP. The insufficiencies in cardiac energy substrate synthesis provide metabolic basis of myocardial dysfunction in chickens predisposed to heart failure.  相似文献   

11.
 An investigation was carried out to verify whether the heat stress hyperthermia response of broilers is prostaglandin-dependent. Male broiler chickens of the Hubbard-Petterson strain, aged 35–49 days, were used. Chickens were injected with indomethacin (1 mg/kg intraperitoneally ) 15 min before or 2 h after heat exposure (at 35°C for 4 h), and rectal temperature was measured before injection and up to 4 h thereafter. Birds were separated into two groups with and without access to water during heat stress. The increase in rectal temperature was lower (P<0.05) in birds with access to drinking water during heat exposure. All birds injected with indomethacin exhibited an increase in rectal temperature, irrespective of whether indomethacin was administered before or in the course of the rise in temperature. The results revealed that the increase in rectal temperature during heat exposure is not prostaglandin-dependent, and that the use of cyclooxigenase inhibitors is not recommended to attenuate heat stress hyperthermia in broiler chickens. Received: 15 December 1997 / Revised: 29 June 1998 / Accepted: 31 July 1998  相似文献   

12.
In comparison to other classes of chickens, broilers selected for rapid growth tend to be hypoxaemic, and many develop congestive heart failure (CHF). In order to explain the physiological mechanisms associated with hypoxaemia in fast-growing broiler chickens (Gallus gallus), this study examined several basic physiological parameters including the blood gas profile in arterial [left atrial (LA)] and mixed venous [right atrial (RA)] blood, systemic oxygen extraction ratio, and intrapulmonary shunt fraction. These parameters were further studied in the context of blood flow in the pulmonary circulation, structural characteristics of the lungs, and cardiac function [measured as cardiac index (CI)]. Overall, broilers had lower arterial and mixed venous blood pO(2) levels and higher pCO(2) levels compared to leghorns. The cardiac index was lower in fast-growing and CHF broilers compared to leghorn chickens or feed-restricted broilers. Systemic oxygen extraction ratio (ER) and intrapulmonary shunt fraction were significantly higher in fast-growing broilers and birds with CHF (all P<0.01). Lungs of all broilers, but not leghorns, contained ectopic, irregular nodular formations located within air spaces. Broilers with clinical signs of hypoxaemia revealed the highest number of these formations in their lung. Taken together, the present findings indicate that key factors associated with the development of hypoxaemia in fast-growing broilers include: (1) high demand for oxygen as evidenced by high oxygen ER; (2) inadequate cardiac output (CO) to fulfill the higher oxygen demands, leading to severe depletion of O(2) in mixed venous blood; and (3) elevated intrapulmonary shunt fraction and possibly dead space associated with specific pathological and anatomical characteristics within the lung.  相似文献   

13.
This experiment was conducted to evaluate the effects of zinc (ZnSO4H2O) and vitamin A (retinol) supplementation on performance, carcass characteristics, and serum concentrations of glucose, cholesterol, total protein, and malondialdehyde (MDA) as an indicator of lipid peroxidation in broiler chickens (Ross) reared at a high temperature (34°C). One hundred twenty 10-d-old male broilers were randomly assigned to 4 treatment groups, 3 replicates of 10 birds each. The birds were fed either a basal diet or the basal diet supplemented with either 30 mg Zn/kg diet, 4.5 mg (15,000 IU) retinol/kg diet, or 30 mg Zn+4.5 mg retinol/kg diet. Supplemental zinc and vitamin A significantly increased live weight gain and improved feed efficiency (p<0.05). However, a combination of zinc and vitamin A, rather than each separately, provided a greater performance. Hot and chilled carcass weights and yields and the weights of internal organs with the exception of abdominal fat were greater for each supplement (p<0.05) compared to the control group. Abdominal fat decreased (p<0.05) upon dietary zinc and vitamin A supplementation. Supplemental treatments resulted in an increased total serum protein but decreased glucose, cholesterol, and MDA concentrations. The results of the study show that, separtely or as a combination, zinc and vitamin A supplementation resulted in an improved live weight gain, feed efficiency, and carcass traits, as well as a decrease in serum MDA concentrations. The results of the present study also suggest that zinc and vitamin A have similar effects and that a combination of zinc and vitamin A may offer a potential protective management practice in preventing heat-stress-related depression in performance of broiler chickens.  相似文献   

14.
The homeostasis dysfunctions caused by cold stress remain a threat to intestinal health, particularly for young broiler chickens. We hypothesized that adenosine monophosphate-activated protein kinase (AMPK) was involved in the regulation of cold stress on intestinal health. This study aimed to examine the effect of cold stress for 72 h on growth performance, serum biochemistry, intestinal barrier molecules, and AMPK in broilers. A total of 144 10-day-old male Arbor Acres broilers were subjected to temperature treatments (control 28 ± 1 °C vs cold stress 16 ± 1 °C) for 72 h. Growth performance was monitored, serum was collected for the analysis of physiological parameters, and jejunal mucosa was sampled for the determination of tight junction (TJ) proteins, heat shock proteins, and AMPK signaling molecules. Results showed that 72 h cold treatment reduced average BW gain and increased the feed conversion ratio of the broilers (P < 0.05). Cold stress for 72 h increased blood endotoxin, aspartate aminotransferase, glucose, and low-density lipoprotein cholesterol levels (P < 0.05). Moreover, 72 h cold treatment up-regulated jejunal Occludin, zonula occludin 1, inducible nitric oxide synthase, heat shock factor 1, and AMPKα1 gene expression (P < 0.05) but had no obvious effect on total AMPK protein expression (P > 0.05). In conclusion, cold stress significantly reduced the growth performance of broiler chickens. The intestinal barrier function might be impaired, and enhanced bacterial translocation might occur. The unregulated gene expression of TJ proteins implied the remodeling of intestinal barrier. The change of AMPK suggested the possible relationship between intestinal energy metabolism and barrier function under cold stress.  相似文献   

15.
Initial brooding temperature is critical for post-hatch growth of broiler chickens. A study was conducted to investigate the early age thermal manipulation (EATM) on the performance and physiological responses broiler chickens under hot humid tropical climate. A total of 260 unsexed day-old Arbor-acre broiler chicks were assigned to five thermal treatments of brooding temperature regimens having 4 replicates of thirteen birds each. The heat treatments were: initial brooding temperature of 35 °C for the first 2 days, and then decreased subsequently, gradually to 22 °C at 21 d of age (CT), initial temperature of 35 °C, sustained for the first 4 days and then decreased gradually (conventionally) (FD), initial temperature of 35 °C for the first 7 days (SD), the birds in CT, but the brooding temperature was raised to 35 °C again for another 3 days from day 7 (SD3), initial brooding temperature of 35 °C for the first 10 days (TD). Data were collected on daily feed intake and weekly body weights. Blood samples were collected from 8 birds per treatment weekly for the determination of plasma uric acid, triglycerides, triiodothyronine (T3) and creatinine kinase. Data obtained were laid out in a Completely Randomized Design (CRD). Results showed that the final weights of the birds in FD were higher (P < 0.05) than those of the other treatments at the finisher phase. Feed intake of the birds in FD was higher than those of SD3 and TD. FCR of broiler chickens in CT, SD, SD3 and TD was higher than that of FD. The rectal temperature, plasma MDA and blood glucose of the thermally challenged birds in FD was generally better (P < 0.05) than those of the other treatments. It was concluded that EATM can be used to improve performance and also protect broiler chickens from acute heat stress at market age.  相似文献   

16.
Activity of supplemental enzymes in a barley‐soybean‐maize based diet at 60, 75 and 90°C pelleting temperatures was studied using feed viscosity, in‐vitro enzyme activity and broiler performance data.

High pelleting temperatures increased feed viscosity but supplemented enzymes reduced the viscosity at all three temperatures levels by 11, 14 and 17%, respectively. Water intake and losses in excreta of birds were found to be affected by feed viscosity. Activity of cellulase enzyme, measured using the radial diffusion method, was unaffected at 60 and 75°C, but reduced by 73% in feed processed at 90°C. Enzymes increased the weight gain of broilers by 11.1% at 90°C, but no effect could be seen at low pelleting temperatures possibly due to high dietary protein and energy contents. Feed intake was unaffected by enzymes. Birds consumed 6% more feed and grew 9% faster when the pelleting temperature was increased from 60 to 75°C. Reduced feed intake and daily weight gain observed at 90° C could be fully compensated by the enzyme supplementation. High pelleting temperature reduced energy metabolizability (3.2%) and nitrogen utilization (4%) but enzyme almost compensated them (by 3.3% and 2.6%, respectively). No interaction could be detected between the pelleting temperatures and enzymes.

It is concluded that pelleting temperatures as high as 90°C drastically reduce cellulase activity, energy and nitrogen utilization thus lowering broiler performance. Either the remaining activity of cellulase or other thermostable enzymes can prevent the losses.  相似文献   

17.
The addition of essential oil (EO) as chitosan encapsulated can increase the efficiency of these oils in broiler feeding. Therefore, the objective of the current research was to explore the antibacterial and antioxidant potential of garlic essential oil (GEO) (free vs. nanoencapsulated) and their effects on performance, gene expression of mucin2, microbial, and morphology of intestine in broilers. A total of 900 1-day-old male broilers (Ross 308) were assigned to six dietary treatments (0, 100, and 200 mg/kg free GEO and 0 (contain of chitosan), 100 and 200 mg/kg nanoencapsulated GEO) with a 2 × 3 factorial arrangement based on completely randomized design. Garlic essential oil encapsulation with chitosan significantly enhanced antibacterial and antioxidant parameters. At 100 mg/kg nanoencapsulated GEO had significant (P < 0.01) advantages in improving BW gain (BWG) (22–42 and 0–42) and feed conversion ratio (FCR) (0–42). Maximum feed intake (FI) was also associated with the control group (P < 0.05). Broilers fed on 100 mg/kg of nanoencapsulated GEO showed higher villi length and width relative to other treatments and villi length to crypt depth ratio as well (P < 0.01). The nanoencapsulation process of GEO (P < 0.01) affected the Lactobacilli population in the digesta of ileo-caecum and mucin2 gene expression. In broiler chickens, the tested EO, especially nanoencapsulated type, enhanced more evaluated parameters. Because of its ideal properties, nanoencasulating with chitosan may also be an effective and inexpensive way to protect bioactive compounds and improve GEO effects in broiler chickens.  相似文献   

18.
One fast-growing and three slow-growing strains of Rhizobium (isolated from cowpeas) were evaluated for symbiotic performance on Vigna unguiculata (L.) Walp. cultivar California no. 5 blackeyes. Plants inoculated with slow-growing strains 176A22, 176A30, and 176A32 developed a maximum acetylene reduction activity of 24.6, 27.0, and 32 μmol of ethylene formed per plant per h, respectively, versus 6.4 μmol per plant per h in plants inoculated with the fast-growing strain 176A28. When inoculated with approximately equal proportions of rhizobia, the fast-growing strain 176A28 produced 95% of the nodules when challenged with the slow-growing strain 176A22, but formed only 6% of the nodules when challenged with the slow-growing strain 176A30. Consequently, there was no relation between the growth rate in vitro and the capability of rhizobia to compete for nodule-forming sites. Plants inoculated with strain 176A28 and subjected to drought during the vegetative growth period recovered to the same level of nitrogen fixation and nodulation as those that received adequate irrigation. On the other hand, plants inoculated with strains 176A22, 176A30, and 176A32 failed to achieve the same levels of nodulation and nitrogen fixation under drought as compared with irrigated conditions.  相似文献   

19.
In the modern chicken industry, fast-growing broilers have undergone strong artificial selection for muscle growth, which has led to remarkable phenotypic variations compared with slow-growing chickens. However, the molecular mechanism underlying these phenotypes differences remains unknown. In this study, a systematic identification of candidate genes and new pathways related to myofiber development and composition in chicken Soleus muscle (SOL) has been made using gene expression profiles of two distinct breeds: Qingyuan partridge (QY), a slow-growing Chinese breed possessing high meat quality and Cobb 500 (CB), a commercial fast-growing broiler line. Agilent cDNA microarray analyses were conducted to determine gene expression profiles of soleus muscle sampled at sexual maturity age of QY (112 d) and CB (42 d). The 1318 genes with at least 2-fold differences were identified (P?相似文献   

20.
ABSTRACT

The present study was conducted to investigate the effects of two plant extracts as alternatives to dietary antibiotics in broiler chickens exposed to low ambient temperature. A total of 300 one-day-old male broiler chickens were randomly assigned to four dietary treatments (5 replicate pens; 15 broiler chickens each) which consisted of starter (d 0 to 10), and grower (d 10 to 28) diets. Dietary treatments included a basal diet (negative control, NC) and three similar diets that were either supplemented with 200 mg/kg of Prosopis farcta extract (PFE), Rhus coriaria L. extract (RCE) or an antibiotic premix containing oxytetracycline (positive control, PC). In order to simulate low ambient temperature, room temperature was maintained at 32°C during the first 3 d of the trial and afterwards, the temperature was gradually reduced by approximately 1.5°C each day to 14°C on d 21. PFE and PC treatments exerted a significant effect on body weight gain at d 28. Diet PFE was effective in reducing mortality when compared with diet NC (p < 0.05). Furthermore, diet PFE caused increases in ileal digestibility of gross energy, dry matter and organic matter when compared with diet NC (p < 0.05). Diets PFE and PC decreased coliforms, total aerobic bacteria and total anaerobic bacteria loads in the caeca when compared with diet NC (p < 0.05). Moreover, the addition of PFE to the diet improved villous height in all small intestinal segments as well as villous height:crypt depth ratio in the duodenum when compared with diet NC (p < 0.05). The results indicated that PFE is not only a valid alternative to oxytetracycline under cold stress conditions, with no antibiotic resistance, but also has the potential to increase the resistance of broiler chickens against ascites syndrome. Moreover, the addition of RCE at the concentration of 200 mg/kg to the diet was not sufficient to improve the performance of broiler chickens (similar to diet PC) but maybe more effective at higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号