首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to describe the lactation curves of milk yield (MY) and composition in buffaloes, seven non-linear mathematical equations (Wood, Dhanoa, Sikka, Nelder, Brody, Dijkstra and Rook) were used. Data were 116 117 test-day records for MY, fat (FP) and protein (PP) percentages of milk from the first three lactations of buffaloes which were collected from 893 herds in the period from 1992 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly production records of dairy buffaloes using the NLIN and MODEL procedures in SAS and the parameters were estimated. The models were tested for goodness of fit using adjusted coefficient of determination root means square error (RMSE), Durbin–Watson statistic and Akaike’s information criterion (AIC). The Dijkstra model provided the best fit of MY and PP of milk for the first three parities of buffaloes due to the lower values of RMSE and AIC than other models. For the first-parity buffaloes, Sikka and Brody models provided the best fit of FP, but for the second- and third-parity buffaloes, Sikka model and Brody equation provided the best fit of lactation curve for FP, respectively. The results of this study showed that the Wood and Dhanoa equations were able to estimate the time to the peak MY more accurately than the other equations. In addition, Nelder and Dijkstra equations were able to estimate the peak time at second and third parities more accurately than other equations, respectively. Brody function provided more accurate predictions of peak MY over the first three parities of buffaloes. There was generally a positive relationship between 305-day MY and persistency measures and also between peak yield and 305-day MY, calculated by different models, within each lactation in the current study. Overall, evaluation of the different equations used in the current study indicated the potential of the non-linear models for fitting monthly productive records of buffaloes.  相似文献   

2.
Daily milk production, and fluctuations therein, can provide information on health and resilience of dairy cows. We studied variance and autocorrelation of deviations in daily milk yield in relation to the occurrence of clinical mastitis (no, early or later in lactation). Individual lactation curves were fitted to 305-d lactations of 414 dairy cows using quantile regression. Log-transformed variance (lnVar) and autocorrelation of the quantile residuals of daily milk yield (predicted – observed) were evaluated for intervals until 30 and until 305 days in milk (DIM). Cows were classified as having no mastitis (n = 249), early mastitis that first occurred before 30 DIM (n = 29); or later mastitis (n = 136). Subsequently, linear models were used to assess effects of mastitis and parity class (primiparous or multiparous) on lnVar and autocorrelations; and logistic regression analyses were performed to predict mastitis from lnVar or autocorrelation and parity. From 10 to 30 DIM, lnVar was greater for cows with early mastitis than for cows with no or late mastitis, and autocorrelation tended to be lower for cows with early mastitis than for cows with no mastitis. The lnVar and autocorrelation from 10 to 30 DIM were not predictive of late mastitis. From 10 to 305 DIM, lnVar was greater and autocorrelation was lower for both cows with early and late mastitis than for cows with no mastitis; and both were predictive of having mastitis in the 305-d lactation. Primiparous cows had lower lnVar than multiparous cows. In cows without mastitis, autocorrelation values were positively correlated with lnVar. Results confirm that increased lnVar is associated with clinical mastitis.  相似文献   

3.
Bivariate analyses of functional longevity in dairy cattle measured as survival to next lactation (SURV) with milk yield and fertility traits were carried out. A sequential threshold-linear censored model was implemented for the analyses of SURV. Records on 96 642 lactations from 41 170 cows were used to estimate genetic parameters, using animal models, for longevity, 305 d-standardized milk production (MY305), days open (DO) and number of inseminations to conception (INS) in the Spanish Holstein population; 31% and 30% of lactations were censored for DO and INS, respectively. Heritability estimates for SURV and MY305 were 0.11 and 0.27 respectively; while heritability estimates for fertility traits were lower (0.07 for DO and 0.03 for INS). Antagonist genetic correlations were estimated between SURV and fertility (-0.78 and -0.54 for DO and INS, respectively) or production (-0.53 for MY305), suggesting reduced functional longevity with impaired fertility and increased milk production. Longer days open seems to affect survival more than increased INS. Also, high productive cows were more problematic, less functional and more liable to being culled. The results suggest that the sequential threshold model is a method that might be considered at evaluating genetic relationship between discrete-time survival and other traits, due to its flexibility.  相似文献   

4.
The covariance function approach with an iterative two-stage algorithm of LIU et al. (2000) was applied to estimate parameters for the Polish Black-and-White dairy population based on a sample of 338 808 test day records for milk, fat, and protein yields. A multiple trait sire model was used to estimate covariances of lactation stages. A third-order Legendre polynomial was subsequently fitted to the estimated (co)variances to derive (co)variances of random regression coefficients for both additive genetic and permanent environment effects. Daily and 305-day heritability estimates obtained are consistent with several studies which used both fixed and random regression test day models. Genetic correlations between any two days in milk (DIM) of the same lactation as well as genetic correlations between the same DIM of two lactations were within a biologically acceptable range. It was shown that the applied estimation procedure can utilise very large data sets and give plausible estimates of (co)variance components.  相似文献   

5.
We investigated the relationships between conception rates (CRs) at first service in Japanese Holstein heifers (i.e. animals that had not yet had their first calf) and cows and their test-day (TD) milk yields. Data included records of artificial insemination (AI) for heifers and cows that had calved for the first time between 2000 and 2008 and their TD milk yields at 6 through 305 days in milk (DIM) from first through third lactations. CR was defined as a binary trait for which first AI was a failure or success. A threshold-linear animal model was applied to estimate genetic correlations between CRs of heifers or cows and TD milk yield at various lactation stages. Two-trait genetic analyses were performed for every combination of CR and TD milk yield by using the Bayesian method with Gibbs sampling. The posterior means of the heritabilities of CR were 0.031 for heifers, 0.034 for first-lactation cows and 0.028 for second-lactation cows. Heritabilities for TD milk yield increased from 0.324 to 0.433 with increasing DIM but decreased slightly after 210 DIM during first lactation. These heritabilities from the second and third lactations were higher during late stages of lactation than during early stages. Posterior means of the genetic correlations between heifer CR and all TD yields were positive (range, 0.082 to 0.287), but those between CR of cows and milk yields during first or second lactation were negative (range, −0.121 to −0.250). Therefore, during every stage of lactation, selection in the direction of increasing milk yield may reduce CR in cows. The genetic relationships between CR and lactation curve shape were quite weak, because the genetic correlations between CR and TD milk yield were constant during the lactation period.  相似文献   

6.
Many governments have signed up to greenhouse gas emission (GHGE) reduction programmes under their national climate change obligations. Recently, it has been suggested that the use of extended lactations in dairy herds could result in reduced GHGE. Dairy GHGE were modelled on a national basis and the model was used to compare emissions from lactations of three different lengths (305, 370 and 440 days), and a current ‘base’ scenario on the basis of maintaining current milk production levels. In addition to comparing GHGE from the average ‘National Herd’ under these scenarios, results were used to investigate how accounting for lactations of different lengths might alter the estimation of emissions calculated from the National Inventory methodology currently recommended by Intergovernmental Panel on Climate Change. Data for the three lactation length scenarios were derived from nationally recorded dairy performance information and used in the GHGE model. Long lactations required fewer milking cows and replacements to maintain current milk yield levels than short ones, but GHGEs were found to rise from 1214 t of CO2 equivalent (CE)/farm per year for lactations of 305 days to 1371 t CE/farm per year for 440-day lactations. This apparent anomaly can be explained by the less efficient milk production (kg milk produced per kg cow weight) found in later lactation, a more pronounced effect in longer lactations. The sensitivity of the model to changes in replacement rate, persistency and level of milk yield was investigated. Changes in the replacement rate from 25% to 20% and in persistency by −10% to +20% resulted in very small changes in GHGE. Differences in GHGE due to the level of milk yield were much more dramatic with animals in the top 10% for yield, producing about 25% less GHGE/year than the average animal. National Inventory results were investigated using a more realistic spread of lactation lengths than recommended for such calculations using emissions calculated in the first part of the study. Current UK emission calculations based on the National Inventory were 329 Gg of methane per year from the dairy herd. Using the national distribution of lactation lengths, this was found to be an underestimate by about 10%. This work showed that the current rise in lactation length or a move towards calving every 18 months would increase GHGE by 7% to 14% compared with the current scenario, assuming the same milk yield in all models. Increased milk yield would have a much greater effect on reducing GHGE than changes to lactation length, replacement rate or persistency. National Inventory methodology appears to underestimate GHGE when the distribution of lactation lengths is considered and may need revising to provide more realistic figures.  相似文献   

7.
Covariance components for test day milk yield using 263 390 first lactation records of 32 448 Holstein cows were estimated using random regression animal models by restricted maximum likelihood. Three functions were used to adjust the lactation curve: the five-parameter logarithmic Ali and Schaeffer function (AS), the three-parameter exponential Wilmink function in its standard form (W) and in a modified form (W*), by reducing the range of covariate, and the combination of Legendre polynomial and W (LEG+W). Heterogeneous residual variance (RV) for different classes (4 and 29) of days in milk was considered in adjusting the functions. Estimates of RV were quite similar, rating from 4.15 to 5.29 kg2. Heritability estimates for AS (0.29 to 0.42), LEG+W (0.28 to 0.42) and W* (0.33 to 0.40) were similar, but heritability estimates used W (0.25 to 0.65) were highest than those estimated by the other functions, particularly at the end of lactation. Genetic correlations between milk yield on consecutive test days were close to unity, but decreased as the interval between test days increased. The AS function with homogeneous RV model had the best fit among those evaluated.  相似文献   

8.
With the objective of evaluating measures of milk yield persistency, 27,000 test-day milk yield records from 3362 first lactations of Brazilian Gyr cows that calved between 1990 and 2007 were analyzed with a random regression model. Random, additive genetic and permanent environmental effects were modeled using Legendre polynomials of order 4 and 5, respectively. Residual variance was modeled using five classes. The average lactation curve was modeled using a fourth-order Legendre polynomial. Heritability estimates for measures of persistency ranged from 0.10 to 0.25. Genetic correlations between measures of persistency and 305-day milk yield (Y305) ranged from -0.52 to 0.03. At high selection intensities for persistency measures and Y305, few animals were selected in common. As the selection intensity for the two traits decreased, a higher percentage of animals were selected in common. The average predicted breeding values for Y305 according to year of birth of the cows had a substantial annual genetic gain. In contrast, no improvement in the average persistency breeding value was observed. We conclude that selection for total milk yield during lactation does not identify bulls or cows that are genetically superior in terms of milk yield persistency. A measure of persistency represented by the sum of deviations of estimated breeding value for days 31 to 280 in relation to estimated breeding value for day 30 should be preferred in genetic evaluations of this trait in the Gyr breed, since this measure showed a medium heritability and a genetic correlation with 305-day milk yield close to zero. In addition, this measure is more adequate at the time of peak lactation, which occurs between days 25 and 30 after calving in this breed.  相似文献   

9.
Pregnancy and calving are elements indispensable for dairy production, but the daily milk yield of cows decline as pregnancy progresses, especially during the late stages. Therefore, the effect of stage of pregnancy on daily milk yield must be clarified to accurately estimate the breeding values and lifetime productivity of cows. To improve the genetic evaluation model for daily milk yield and determine the effect of the timing of pregnancy on productivity, we used a test-day model to assess the effects of stage of pregnancy on variance component estimates, daily milk yields and 305-day milk yield during the first three lactations of Holstein cows. Data were 10 646 333 test-day records for the first lactation; 8 222 661 records for the second; and 5 513 039 records for the third. The data were analyzed within each lactation by using three single-trait random regression animal models: one model that did not account for the stage of pregnancy effect and two models that did. The effect of stage of pregnancy on test-day milk yield was included in the model by applying a regression on days pregnant or fitting a separate lactation curve for each days open (days from calving to pregnancy) class (eight levels). Stage of pregnancy did not affect the heritability estimates of daily milk yield, although the additive genetic and permanent environmental variances in late lactation were decreased by accounting for the stage of pregnancy effect. The effects of days pregnant on daily milk yield during late lactation were larger in the second and third lactations than in the first lactation. The rates of reduction of the 305-day milk yield of cows that conceived fewer than 90 days after the second or third calving were significantly (P<0.05) greater than that after the first calving. Therefore, we conclude that differences between the negative effects of early pregnancy in the first, compared with later, lactations should be included when determining the optimal number of days open to maximize lifetime productivity in dairy cows.  相似文献   

10.
Test-day milk yield and somatic cell count data over extended lactation (lactation to 540-600 days) were analysed considering part lactations as different traits and fitting random regression (RR) models. Data on Australian Jersey and Holstein Friesian (HF) were used to demonstrate the shape of the lactation curve and data on HF were used for genetic study. Test-day data from about 100 000 cows that calved between 1998 and 2005 were used for this study. In all analyses, a sire model was used.When part lactations were considered as different traits, protein yield early in the lactation (e.g. first 2 months) had a genetic correlation of about 0.8 with protein yield produced after 300 days of lactation. Genetic correlations between lactation stages that are adjacent to each other were high (0.9 or more) within parity. Across parities, genetic correlations were high for both protein and milk yield if they are within the same stage of lactation. Phenotypic correlations were lower than genetic correlations. Heritability of milk-yield traits estimated from the RR model varied from 0.15 at the beginning of the lactation to as high as 0.37 by the 4th month of lactation. All genetic correlations between different days in milk were positive, with the highest correlations between adjacent days in milk and decreasing correlations with increasing time-span. The pattern of genetic correlations between milk yield in the second 300 days (301 to 600 days of lactation) do not markedly differ from the pattern in the first 300 days of lactation. The lowest estimated genetic correlation was 0.15 between milk yield on days 45 and 525 of lactation. The result from this study shows that progeny of bulls with high estimated breeding values for yield traits and those that produce at a relatively high level in the first few months are the most likely candidates for use in herds favouring extended lactations.  相似文献   

11.
The objective of this study was to evaluate the association between the level of milk production on the day of diagnosis of ovarian cysts and treatment response using the Ovsynch protocol. On the day of cyst diagnosis (Day 0), 260 lactating dairy cows with ovarian cysts were treated with gonadotropin-releasing hormone (GnRH), PGF2alpha on Day 7, GnRH on Day 9, and timed inseminated 16-20 h later (Ovsynch protocol). Pregnancy was determined (by transrectal palpation) between 42 and 49 days after insemination. On Day 0, data for milk production (kg/day), parity, days in milk (DIM), and body condition score (BCS) were recorded. Using the median value for milk production on the day of diagnosis, cows were classified as high producers (>28.5 kg) and low producers (or=0.05). Primiparous cows were more likely (adjusted odds ratio: AOR=3.63; 95% CI: 95% confidence intervals=1.28-10.30; P相似文献   

12.
Milk production, fertility, longevity and health records, were extracted from databases of two milk recording organisations in the United Kingdom for the first three lactations of the Holstein–Friesian breed. These included data related to health events (mastitis and lameness), voluntarily recorded on a proportion of farms. The data were analysed to calculate disease incidence levels and to estimate genetic parameters for health traits and their relationships with production and other functional traits. The resulting dataset consisted of 124 793 lactations from 75 137 animals of 1586 sires, recorded in 2434 herds. Incidence of health events increased with parity. The overall incidence of mastitis (MAS) and lameness (LAM), defined as binary traits, were 17% and 16%, respectively. Heritability estimates for MAS and LAM were 0.04 and 0.02, respectively, obtained from repeatability linear sire models. Heritability estimates of mastitis and lameness as count traits were slightly higher, 0.05 and 0.03, respectively. Genetic correlations were obtained by bivariate analyses of all pair-wise combinations between milk 305-day yield (MY), protein 305-day yield (PY), fat 305-day yield (FY), lactation average loge transformed lactation average somatic cell count (SCS), calving interval (CI), days to first service (DFS), non-return at 56 days (NR56), number of inseminations (NINS), mastitis (MAS), number of mastitis episodes (NMAS), lameness (LAM), number of lameness episodes (NLAM) and lifespan score (LS). As expected, MAS was correlated most strongly with SCS (0.69), which supports the use of SCS as an indicator trait for mastitis. Genetic correlations between MAS and yield and fertility traits were of similar magnitude ranging from 0.27 to 0.33. Genetic correlations between MAS with LAM and LS were 0.38 and −0.59, respectively. Not all genetic correlations between LAM and other traits were significant because of fewer numbers of lameness records. LAM had significant genetic correlations with MY (0.38), PY (0.28), CI (0.35), NINS (0.38) and LS (−0.53). The heritability estimates of mastitis and lameness were low; therefore, genetic gain through direct selection alone would be slow, yet still positive and cumulative. Direct selection against mastitis and lameness as additional traits should reduce incidence of both diseases, and simultaneously improve fertility and longevity. However, both health traits had antagonistic relationships with production traits, thus genetic gain in production would be slower.  相似文献   

13.
Gender of the calf whose birth initiates lactation could influence whole lactation milk yield of the dam due to hormonal influences on mammary gland development, or through calf gender effects on gestation length. Fetal gender could influence late lactation yields because cows become pregnant at peak lactation. The effects of calf gender sequences in parities 1–3 were assessed by separately fitting animal models to datasets from New Zealand comprising 274 000 Holstein Friesian and 85 000 Jersey cows, decreasing to 12 000 and 4 000 cows by parity 3. The lactation initiated by the birth of a female rather than a male calf was associated with a 0.33–1.1% (p≤0.05) higher milk yield. Female calf gender had carryover effects associated with higher milk yield in second lactations for Holstein Friesians (0.24%; p = 0.01) and third lactations for Jerseys (1.1%; p = 0.01). Cows giving birth to bull calves have 2 day longer gestations, which reduces lactation length in seasonal calving herds. Adding a covariate for lactation length to the animal model eroded some of these calf gender effects, such that calving a female led to higher milk yield only for second lactation Holstein Friesians (1.6%; p = 0.002). The interval centering method generates lower estimates of whole lactation yield when Wood’s lactation curves are shifted to the right by 2 days for male calves and this explained the higher yield in female calves when differences in lactation length were considered. Correlations of estimated breeding values between models including or excluding calf gender sequence were 1.00 for bulls or cows. Calf gender primarily influences milk yield through increased gestation length of male calves, and bias associated with the interval centering method used to estimate whole lactation milk yields. Including information on calf gender is unlikely to have an effect on selection response in New Zealand dairy cattle.  相似文献   

14.
Tropical and sub-tropical climates are characterized by high temperature and humidity, during at least part of the year. Consequently, heat stress is common in Holstein cattle and productive and reproductive losses are frequent. Our objectives were as follows: (1) to quantify losses in production and quality of milk due to heat stress; (2) to estimate genetic correlations within and between milk yield (MY) and milk quality traits; and (3) to evaluate the trends of genetic components of tolerance to heat stress in multiple lactations of Brazilian Holstein cows. Thus, nine analyses using two-trait random regression animal models were carried out to estimate variance components and genetic parameters over temperature–humidity index (THI) values for MY and milk quality traits (three lactations: MY×fat percentage (F%), MY×protein percentage (P%) and MY×somatic cell score (SCS)) of Brazilian Holstein cattle. It was demonstrated that the effects of heat stress can be harmful for traits related to milk production and milk quality of Holstein cattle even though most herds were maintained in a modified environment, for example, with fans and sprinklers. For MY, the effect of heat stress was more detrimental in advanced lactations (−0.22 to −0.52 kg/day per increase of 1 THI unit). In general, the mean heritability estimates were higher for lower THI values and longer days in milk for all traits. In contrast, the heritability estimates for SCS increased with increasing THI values in the second and third lactation. For each trait studied, lower genetic correlations (different from unity) were observed between opposite extremes of THI (THI 47 v. THI 80) and in advanced lactations. The genetic correlations between MY and milk quality trait varied across the THI scale and lactations. The genotype×environment interaction due to heat stress was more important for MY and SCS, particularly in advanced lactations, and can affect the genetic relationship between MY and milk quality traits. Selection for higher MY, F% or P% may result in a poor response of the animals to heat stress, as a genetic antagonism was observed between the general production level and specific ability to respond to heat stress for these traits. Genetic trends confirm the adverse responses in the genetic components of heat stress over the years for milk production and quality. Consequently, the selection of Holstein cattle raised in modified environments in both tropical and sub-tropical regions should take into consideration the genetic variation in heat stress.  相似文献   

15.
Milk yield was measured by a tritiated water dilution procedure during consecutive lactations in mice suckling four, 10 or 18 young. Analysis of variance revealed positive effects of lactation number and litter size on milk yield. There was a significant correlation between maternal body weight and parity; increased body weight accounted for some, but not all, of the parity-related increases in milk yield. Peak milk yield was reached between days 10 and 16 of lactation, but the efficiency with which the growing young utilized milk for weight gain was greatest before day 7. Milk composition varied significantly during the course of lactation.  相似文献   

16.
Although the intensive production system of Lacaune dairy sheep is the only profitable method for producers outside of the French Roquefort area, little is known about this type of systems. This study evaluated yield records of 3677 Lacaune sheep under intensive management between 2005 and 2010 in order to describe the lactation curve of this breed and to investigate the suitability of different mathematical functions for modeling this curve. A total of 7873 complete lactations during a 40-week lactation period corresponding to 201 281 pieces of weekly yield data were used. First, five mathematical functions were evaluated on the basis of the residual mean square, determination coefficient, Durbin Watson and Runs Test values. The two better models were found to be Pollott Additive and fractional polynomial (FP). In the second part of the study, the milk yield, peak of milk yield, day of peak and persistency of the lactations were calculated with Pollot Additive and FP models and compared with the real data. The results indicate that both models gave an extremely accurate fit to Lacaune lactation curves in order to predict milk yields (P = 0.871), with the FP model being the best choice to provide a good fit to an extensive amount of real data and applicable on farm without specific statistical software. On the other hand, the interpretation of the parameters of the Pollott Additive function helps to understand the biology of the udder of the Lacaune sheep. The characteristics of the Lacaune lactation curve and milk yield are affected by lactation number and length. The lactation curves obtained in the present study allow the early identification of ewes with low milk yield potential, which will help to optimize farm profitability.  相似文献   

17.
We analyzed 152,145 test-day records from 7317 first lactations of Holstein cows recorded from 1995 to 2003. Our objective was to model variations in test-day milk yield during the first lactation of Holstein cows by random regression model (RRM), using various functions in order to obtain adequate and parsimonious models for the estimation of genetic parameters. Test-day milk yields were grouped into weekly classes of days in milk, ranging from 1 to 44 weeks. The contemporary groups were defined as herd-test-day. The analyses were performed using a single-trait RRM, including the direct additive, permanent environmental and residual random effects. In addition, contemporary group and linear and quadratic effects of the age of cow at calving were included as fixed effects. The mean trend of milk yield was modeled with a fourth-order orthogonal Legendre polynomial. The additive genetic and permanent environmental covariance functions were estimated by random regression on two parametric functions, Ali and Schaeffer and Wilmink, and on B-spline functions of days in milk. The covariance components and the genetic parameters were estimated by the restricted maximum likelihood method. Results from RRM parametric and B-spline functions were compared to RRM on Legendre polynomials and with a multi-trait analysis, using the same data set. Heritability estimates presented similar trends during mid-lactation (13 to 31 weeks) and between week 37 and the end of lactation, for all RRM. Heritabilities obtained by multi-trait analysis were of a lower magnitude than those estimated by RRM. The RRMs with a higher number of parameters were more useful to describe the genetic variation of test-day milk yield throughout the lactation. RRM using B-spline and Legendre polynomials as base functions appears to be the most adequate to describe the covariance structure of the data.  相似文献   

18.
Test-day records for average flow rate (AFR) from the routine dairy recording from Bavarian Fleckvieh cows were analysed. Two data sets with observations on approximately 20 000 cows each were sampled from the total data set. For the estimation of variance parameters, a two-step approach was applied. In a first step multiple-trait restricted maximum likelihood (REML) analyses were carried out. For each of the first three lactations, six time periods with up to 33 days were defined. An algorithm for iterative summing of expanded part matrices was applied in order to combine the estimates. In a second step covariance functions (CF) for additive-genetic variances and non-genetic animal variances were derived using second-order Legendre polynomials plus an exponential term. Estimates of test-day heritability for AFR ranged from 0.21 to 0.40, and were largest in lactation 1. For lactations 1 and 3, heritabilities decreased considerably towards the end of lactation. Genetic correlation estimates within lactation decreased as the distance between days in milk (DIM) increased. Genetic correlations between corresponding DIM in the three lactations were generally large, ranging from 0.80 to 0.99. The largest estimates were found between DIM from lactations 2 and 3. Results from this study suggest that including AFR data from second and third lactations in genetic evaluation systems could the improve accuracy of genetic selection.  相似文献   

19.
The transition between two lactations remains one of the most critical periods during the productive life of dairy cows. In this study, we aimed to develop a model that predicts the milk yield of dairy cows from test day milk yield data collected in the previous lactation. In the past, data routinely collected in the context of herd improvement programmes on dairy farms have been used to provide insights in the health status of animals or for genetic evaluations. Typically, only data from the current lactation is used, comparing expected (i.e., unperturbed) with realised milk yields. This approach cannot be used to monitor the transition period due to the lack of unperturbed milk yields at the start of a lactation. For multiparous cows, an opportunity lies in the use of data from the previous lactation to predict the expected production of the next one. We developed a methodology to predict the first test day milk yield after calving using information from the previous lactation. To this end, three random forest models (nextMILKFULL, nextMILKPH, and nextMILKP) were trained with three different feature sets to forecast the milk yield on the first test day of the next lactation. To evaluate the added value of using a machine-learning approach against simple models based on contemporary animals or production in the previous lactation, we compared the nextMILK models with four benchmark models. The nextMILK models had an RMSE ranging from 6.08 to 6.24 kg of milk. In conclusion, the nextMILK models had a better prediction performance compared to the benchmark models. Application-wise, the proposed methodology could be part of a monitoring tool tailored towards the transition period. Future research should focus on validation of the developed methodology within such tool.  相似文献   

20.
The aim of the present study was to study the effects of forage/concentrate ratio, year, parity and number of kids on milk yield (MY), lactation length (LL) and milk composition (fat, protein and lactose) on 180 Maltese goats analysing 530 milk samples collected from 2000 to 2002.

The main average results were: MY = 288.2 kg, LL = 254 d with 3.5% fat, 3.4% protein and 4.6% lactose.

Forage/concentrate ratio significantly affected MY and fat being highest in goats receiving a ratio of 65/35. Milk yield in goats fed with a ratio of 35/65 was richer in fat (3.6%). The protein and lactose content was not affected by the different ratios. The effect of diet on fat content was small but significant. Parity influenced all the factors considered, in particular goats in ≥4th parity, had longer LL (257 d) and consequently a higher milk yield (302.1 kg). Goats kidding twins yielded more milk and had longer lactation (P < 0.001).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号