共查询到3条相似文献,搜索用时 0 毫秒
1.
Prasad Tammineni 《Autophagy》2017,13(5):982-984
Macroautophagy/autophagy plays a key role in cellular quality control by eliminating protein aggregates and damaged organelles, which is essential for the maintenance of neuronal homeostasis. Defective autophagy has been implicated in the pathogenesis of Alzheimer disease (AD). In AD brains, autophagic vacuoles (AVs) accumulate massively within dystrophic neurites. This raises a fundamental question as to whether impaired autophagic clearance contributes to AD-associated autophagic stress. We recently revealed that AD neurons display defective retrograde transport and accumulation of amphisomes predominantly in axons and presynaptic terminals. Amyloid β (Aβ) oligomers are enriched in axons and interact with dynein motors. This interaction interferes with the coupling of the dynein motor with its adaptor SNAPIN. Such deficits disrupt dynein-driven retrograde transport of amphisomes, thus trapping them in distal axons and impairing their degradation in the soma. Therefore, our study provides new mechanistic insights into AD-linked autophagic pathology, and builds a foundation for developing potential AD therapeutic strategies by rescuing retrograde transport of amphisomes. 相似文献
2.
Fengsrud M Erichsen ES Berg TO Raiborg C Seglen PO 《European journal of cell biology》2000,79(12):871-882
The delimiting membranes of isolated autophagosomes from rat liver had extremely few transmembrane proteins, as indicated by the paucity of intramembrane particles in freeze-fracture images (about 20 particles/microm2, whereas isolated lysosomes had about 2000 particles/microm2). The autophagosomes also appeared to lack peripheral surface membrane proteins, since attempts to surface-biotinylate intact autophagosomes only yielded biotinylation of proteins from contaminating damaged mitochondria. All the membrane layers of multilamellar autophagosomes were equally particle-poor; the same was true of the autophagosome-forming, sequestering membrane complexes (phagophores). Isolated amphisomes (vacuoles formed by fusion between autophagosomes and endosomes) had more intramembrane particles than the autophagosomes (about 90 particles/microm2), and freeze-fracture images of these organelles frequently showed particle-rich endosomes fusing with particle-poor or particle-free autophagosomes. The appearence of multiple particle clusters suggested that a single autophagic vacuole could undergo multiple fusions with endosomes. Only the outermost membrane of bi- or multilamellar autophagic vacuoles appeared to engage in such fusions. 相似文献
3.
Autophagy is an important homeostatic process that functions by eliminating defective organelles and aggregated proteins over a neuron''s lifetime. One pathological hallmark in amyotrophic lateral sclerosis (ALS)-linked motor neurons (MNs) is axonal accumulation of autophagic vacuoles (AVs), thus raising a fundamental question as to whether reduced autophagic clearance due to an impaired lysosomal system contributes to autophagic stress and axonal degeneration. We recently revealed progressive lysosomal deficits in spinal MNs beginning at early asymptomatic stages in fALS-linked mice expressing the human (Hs) SOD1G93A protein. Such deficits impair the degradation of AVs engulfing damaged mitochondria from distal axons. These early pathological changes are attributable to mutant HsSOD1, which interferes with dynein-driven endolysosomal trafficking. Elucidation of this pathological mechanism is broadly relevant, because autophagy-lysosomal deficits are associated with several major neurodegenerative diseases. Therefore, enhancing autophagic clearance by rescuing endolysosomal trafficking may be a potential therapeutic strategy for ALS and perhaps other neurodegenerative diseases. 相似文献