首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Existing methods for identifying structural variants (SVs) from short read datasets are inaccurate. This complicates disease-gene identification and efforts to understand the consequences of genetic variation. In response, we have created Wham (Whole-genome Alignment Metrics) to provide a single, integrated framework for both structural variant calling and association testing, thereby bypassing many of the difficulties that currently frustrate attempts to employ SVs in association testing. Here we describe Wham, benchmark it against three other widely used SV identification tools–Lumpy, Delly and SoftSearch–and demonstrate Wham’s ability to identify and associate SVs with phenotypes using data from humans, domestic pigeons, and vaccinia virus. Wham and all associated software are covered under the MIT License and can be freely downloaded from github (https://github.com/zeeev/wham), with documentation on a wiki (http://zeeev.github.io/wham/). For community support please post questions to https://www.biostars.org/.
This is PLOS Computational Biology software paper.
  相似文献   

3.
4.
5.
Results from Genome-Wide Association Studies (GWAS) have shown that complex diseases are often affected by many genetic variants with small or moderate effects. Identifications of these risk variants remain a very challenging problem. There is a need to develop more powerful statistical methods to leverage available information to improve upon traditional approaches that focus on a single GWAS dataset without incorporating additional data. In this paper, we propose a novel statistical approach, GPA (Genetic analysis incorporating Pleiotropy and Annotation), to increase statistical power to identify risk variants through joint analysis of multiple GWAS data sets and annotation information because: (1) accumulating evidence suggests that different complex diseases share common risk bases, i.e., pleiotropy; and (2) functionally annotated variants have been consistently demonstrated to be enriched among GWAS hits. GPA can integrate multiple GWAS datasets and functional annotations to seek association signals, and it can also perform hypothesis testing to test the presence of pleiotropy and enrichment of functional annotation. Statistical inference of the model parameters and SNP ranking is achieved through an EM algorithm that can handle genome-wide markers efficiently. When we applied GPA to jointly analyze five psychiatric disorders with annotation information, not only did GPA identify many weak signals missed by the traditional single phenotype analysis, but it also revealed relationships in the genetic architecture of these disorders. Using our hypothesis testing framework, statistically significant pleiotropic effects were detected among these psychiatric disorders, and the markers annotated in the central nervous system genes and eQTLs from the Genotype-Tissue Expression (GTEx) database were significantly enriched. We also applied GPA to a bladder cancer GWAS data set with the ENCODE DNase-seq data from 125 cell lines. GPA was able to detect cell lines that are biologically more relevant to bladder cancer. The R implementation of GPA is currently available at http://dongjunchung.github.io/GPA/.  相似文献   

6.
We introduce a novel computational approach, CoReCo, for comparative metabolic reconstruction and provide genome-scale metabolic network models for 49 important fungal species. Leveraging on the exponential growth in sequenced genome availability, our method reconstructs genome-scale gapless metabolic networks simultaneously for a large number of species by integrating sequence data in a probabilistic framework. High reconstruction accuracy is demonstrated by comparisons to the well-curated Saccharomyces cerevisiae consensus model and large-scale knock-out experiments. Our comparative approach is particularly useful in scenarios where the quality of available sequence data is lacking, and when reconstructing evolutionary distant species. Moreover, the reconstructed networks are fully carbon mapped, allowing their use in 13C flux analysis. We demonstrate the functionality and usability of the reconstructed fungal models with computational steady-state biomass production experiment, as these fungi include some of the most important production organisms in industrial biotechnology. In contrast to many existing reconstruction techniques, only minimal manual effort is required before the reconstructed models are usable in flux balance experiments. CoReCo is available at http://esaskar.github.io/CoReCo/.  相似文献   

7.
Comprehensive discovery of structural variation (SV) from whole genome sequencing data requires multiple detection signals including read-pair, split-read, read-depth and prior knowledge. Owing to technical challenges, extant SV discovery algorithms either use one signal in isolation, or at best use two sequentially. We present LUMPY, a novel SV discovery framework that naturally integrates multiple SV signals jointly across multiple samples. We show that LUMPY yields improved sensitivity, especially when SV signal is reduced owing to either low coverage data or low intra-sample variant allele frequency. We also report a set of 4,564 validated breakpoints from the NA12878 human genome. https://github.com/arq5x/lumpy-sv.  相似文献   

8.
9.
10.
11.

Background & Objective

Managing data from large-scale projects (such as The Cancer Genome Atlas (TCGA)) for further analysis is an important and time consuming step for research projects. Several efforts, such as the Firehose project, make TCGA pre-processed data publicly available via web services and data portals, but this information must be managed, downloaded and prepared for subsequent steps. We have developed an open source and extensible R based data client for pre-processed data from the Firehouse, and demonstrate its use with sample case studies. Results show that our RTCGAToolbox can facilitate data management for researchers interested in working with TCGA data. The RTCGAToolbox can also be integrated with other analysis pipelines for further data processing.

Availability and implementation

The RTCGAToolbox is open-source and licensed under the GNU General Public License Version 2.0. All documentation and source code for RTCGAToolbox is freely available at http://mksamur.github.io/RTCGAToolbox/ for Linux and Mac OS X operating systems.  相似文献   

12.
Scaffolding, i.e. ordering and orienting contigs is an important step in genome assembly. We present a method for scaffolding using second generation sequencing reads based on likelihoods of genome assemblies. A generative model for sequencing is used to obtain maximum likelihood estimates of gaps between contigs and to estimate whether linking contigs into scaffolds would lead to an increase in the likelihood of the assembly. We then link contigs if they can be unambiguously joined or if the corresponding increase in likelihood is substantially greater than that of other possible joins of those contigs. The method is implemented in a tool called Swalo with approximations to make it efficient and applicable to large datasets. Analysis on real and simulated datasets reveals that it consistently makes more or similar number of correct joins as other scaffolders while linking very few contigs incorrectly, thus outperforming other scaffolders and demonstrating that substantial improvement in genome assembly may be achieved through the use of statistical models. Swalo is freely available for download at https://atifrahman.github.io/SWALO/.  相似文献   

13.
14.
DNA methylation differences capture substantial information about the molecular and gene-regulatory states among biological subtypes. Enrichment-based next generation sequencing methods such as MBD-isolated genome sequencing (MiGS) and MeDIP-seq are appealing for studying DNA methylation genome-wide in order to distinguish between biological subtypes. However, current analytic tools do not provide optimal features for analyzing three-group or larger study designs. MethylAction addresses this need by detecting all possible patterns of statistically significant hyper- and hypo- methylation in comparisons involving any number of groups. Crucially, significance is established at the level of differentially methylated regions (DMRs), and bootstrapping determines false discovery rates (FDRs) associated with each pattern. We demonstrate this functionality in a four-group comparison among benign prostate and three clinical subtypes of prostate cancer and show that the bootstrap FDRs are highly useful in selecting the most robust patterns of DMRs. Compared to existing tools that are limited to two-group comparisons, MethylAction detects more DMRs with strong differential methylation measurements confirmed by whole genome bisulfite sequencing and offers a better balance between precision and recall in cross-cohort comparisons. MethylAction is available as an R package at http://jeffbhasin.github.io/methylaction.  相似文献   

15.
We present a statistical methodology, DGEclust, for differential expression analysis of digital expression data. Our method treats differential expression as a form of clustering, thus unifying these two concepts. Furthermore, it simultaneously addresses the problem of how many clusters are supported by the data and uncertainty in parameter estimation. DGEclust successfully identifies differentially expressed genes under a number of different scenarios, maintaining a low error rate and an excellent control of its false discovery rate with reasonable computational requirements. It is formulated to perform particularly well on low-replicated data and be applicable to multi-group data. DGEclust is available at http://dvav.github.io/dgeclust/.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0604-6) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

The Immunoglobulins (IG) and the T cell receptors (TR) play the key role in antigen recognition during the adaptive immune response. Recent progress in next-generation sequencing technologies has provided an opportunity for the deep T cell receptor repertoire profiling. However, a specialised software is required for the rational analysis of massive data generated by next-generation sequencing.

Results

Here we introduce tcR, a new R package, representing a platform for the advanced analysis of T cell receptor repertoires, which includes diversity measures, shared T cell receptor sequences identification, gene usage statistics computation and other widely used methods. The tool has proven its utility in recent research studies.

Conclusions

tcR is an R package for the advanced analysis of T cell receptor repertoires after primary TR sequences extraction from raw sequencing reads. The stable version can be directly installed from The Comprehensive R Archive Network (http://cran.r-project.org/mirrors.html). The source code and development version are available at tcR GitHub (http://imminfo.github.io/tcr/) along with the full documentation and typical usage examples.  相似文献   

17.
Modeling the impact of amino acid mutations on protein-protein interaction plays a crucial role in protein engineering and drug design. In this study, we develop GeoPPI, a novel structure-based deep-learning framework to predict the change of binding affinity upon mutations. Based on the three-dimensional structure of a protein, GeoPPI first learns a geometric representation that encodes topology features of the protein structure via a self-supervised learning scheme. These representations are then used as features for training gradient-boosting trees to predict the changes of protein-protein binding affinity upon mutations. We find that GeoPPI is able to learn meaningful features that characterize interactions between atoms in protein structures. In addition, through extensive experiments, we show that GeoPPI achieves new state-of-the-art performance in predicting the binding affinity changes upon both single- and multi-point mutations on six benchmark datasets. Moreover, we show that GeoPPI can accurately estimate the difference of binding affinities between a few recently identified SARS-CoV-2 antibodies and the receptor-binding domain (RBD) of the S protein. These results demonstrate the potential of GeoPPI as a powerful and useful computational tool in protein design and engineering. Our code and datasets are available at: https://github.com/Liuxg16/GeoPPI.  相似文献   

18.
Protein stability is a fundamental molecular property enabling organisms to adapt to their biological niches. How this is facilitated and whether there are kingdom specific or more general universal strategies are unknown. A principal obstacle to addressing this issue is that the vast majority of proteins lack annotation, specifically thermodynamic annotation, beyond the amino acid and chromosome information derived from genome sequencing. To address this gap and facilitate future investigation into large-scale patterns of protein stability and dynamics within and between organisms, we applied a unique ensemble-based thermodynamic characterization of protein folds to a substantial portion of extant sequenced genomes. Using this approach, we compiled a database resource focused on the position-specific variation in protein stability. Interrogation of the database reveals: 1) domains of life exhibit distinguishing thermodynamic features, with eukaryotes particularly different from both archaea and bacteria; 2) the optimal growth temperature of an organism is proportional to the average apolar enthalpy of its proteome; 3) intrinsic disorder content is also proportional to the apolar enthalpy (but unexpectedly not the predicted stability at 25 °C); and 4) secondary structure and global stability information of individual proteins is extractable. We hypothesize that wider access to residue-specific thermodynamic information of proteomes will result in deeper understanding of mechanisms driving functional adaptation and protein evolution. Our database is free for download at https://afc-science.github.io/thermo-env-atlas/ (last accessed January 18, 2022).  相似文献   

19.
Gene expression analysis is becoming increasingly utilized in neuro-immunology research, and there is a growing need for non-programming scientists to be able to analyze their own genomic data. MGEnrichment is a web application developed both to disseminate to the community our curated database of microglia-relevant gene lists, and to allow non-programming scientists to easily conduct statistical enrichment analysis on their gene expression data. Users can upload their own gene IDs to assess the relevance of their expression data against gene lists from other studies. We include example datasets of differentially expressed genes (DEGs) from human postmortem brain samples from Autism Spectrum Disorder (ASD) and matched controls. We demonstrate how MGEnrichment can be used to expand the interpretations of these DEG lists in terms of regulation of microglial gene expression and provide novel insights into how ASD DEGs may be implicated specifically in microglial development, microbiome responses and relationships to other neuropsychiatric disorders. This tool will be particularly useful for those working in microglia, autism spectrum disorders, and neuro-immune activation research. MGEnrichment is available at https://ciernialab.shinyapps.io/MGEnrichmentApp/ and further online documentation and datasets can be found at https://github.com/ciernialab/MGEnrichmentApp. The app is released under the GNU GPLv3 open source license.  相似文献   

20.
The structured coalescent allows inferring migration patterns between viral subpopulations from genetic sequence data. However, these analyses typically assume that no genetic recombination process impacted the sequence evolution of pathogens. For segmented viruses, such as influenza, that can undergo reassortment this assumption is broken. Reassortment reshuffles the segments of different parent lineages upon a coinfection event, which means that the shared history of viruses has to be represented by a network instead of a tree. Therefore, full genome analyses of such viruses are complex or even impossible. Although this problem has been addressed for unstructured populations, it is still impossible to account for population structure, such as induced by different host populations, whereas also accounting for reassortment. We address this by extending the structured coalescent to account for reassortment and present a framework for investigating possible ties between reassortment and migration (host jump) events. This method can accurately estimate subpopulation dependent effective populations sizes, reassortment, and migration rates from simulated data. Additionally, we apply the new model to avian influenza A/H5N1 sequences, sampled from two avian host types, Anseriformes and Galliformes. We contrast our results with a structured coalescent without reassortment inference, which assumes independently evolving segments. This reveals that taking into account segment reassortment and using sequencing data from several viral segments for joint phylodynamic inference leads to different estimates for effective population sizes, migration, and clock rates. This new model is implemented as the Structured Coalescent with Reassortment package for BEAST 2.5 and is available at https://github.com/jugne/SCORE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号