首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ERK1/2 signaling is frequently dysregulated in tumors through BRAF mutation. Targeting mutant BRAF with vemurafenib frequently elicits therapeutic responses; however, durable effects are often limited by ERK1/2 pathway reactivation via poorly defined mechanisms. We generated mutant BRAFV600E melanoma cells that exhibit resistance to PLX4720, the tool compound for vemurafenib, that co-expressed mutant (Q61K) NRAS. In these BRAFV600E/NRASQ61K co-expressing cells, re-activation of the ERK1/2 pathway during PLX4720 treatment was dependent on NRAS. Expression of mutant NRAS in parental BRAFV600 cells was sufficient to by-pass PLX4720 effects on ERK1/2 signaling, entry into S phase and susceptibility to apoptosis in a manner dependent on the RAF binding site in NRAS. ERK1/2 activation in BRAFV600E/NRASQ61K cells required CRAF only in the presence of PLX4720, indicating a switch in RAF isoform requirement. Both ERK1/2 activation and resistance to apoptosis of BRAFV600E/NRASQ61K cells in the presence of PLX4720 was modulated by SHOC-2/Sur-8 expression, a RAS-RAF scaffold protein. These data show that NRAS mutations confer resistance to RAF inhibitors in mutant BRAF cells and alter RAF isoform and scaffold molecule requirements to re-activate the ERK1/2 pathway.  相似文献   

2.
The limitations of revolutionary new mutation-specific inhibitors of BRAFV600E include the universal recurrence seen in melanoma patients treated with this novel class of drugs. Recently, our lab showed that simultaneous activation of the Wnt/β-catenin signaling pathway and targeted inhibition of BRAFV600E by PLX4720 synergistically induces apoptosis across a spectrum of BRAFV600E melanoma cell lines. As a follow-up to that study, treatment of BRAF-mutant and NRAS-mutant melanoma lines with WNT3A and the MEK inhibitor AZD6244 also induces apoptosis. The susceptibility of BRAF-mutant lines and NRAS-mutant lines to apoptosis correlates with negative regulation of Wnt/β-catenin signaling by ERK/MAPK signaling and dynamic decreases in abundance of the downstream scaffolding protein, AXIN1. Apoptosis-resistant NRAS-mutant lines can sensitize to AZD6244 by pretreatment with AXIN1 siRNA, similar to what we previously reported in BRAF-mutant cell lines. Taken together, these findings indicate that NRAS-mutant melanoma share with BRAF-mutant melanoma the potential to regulate apoptosis upon MEK inhibition through WNT3A and dynamic regulation of cellular AXIN1. Understanding the cellular context that makes melanoma cells susceptible to this combination treatment will contribute to the study and development of novel therapeutic combinations that may lead to more durable responses.  相似文献   

3.
Past studies have shown that the inositol polyphosphate 5-phosphatase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase (PIB5PA), is commonly downregulated or lost in melanomas, which contributes to elevated activation of phosphatidylinositol 3-kinase (PI3K)/Akt in melanoma cells. In this report, we provide evidence that PIB5PA deficiency plays a role in resistance of melanoma cells to RAF/mitogen-activated protein kinase kinase (MEK) inhibitors. Ectopic expression of PIB5PA enhanced apoptosis induced by the RAF inhibitor PLX4720 in BRAFV600E and by the MEK inhibitor U0126 in both BRAFV600E and wild-type BRAF melanoma cells. This was due to inhibition of PI3K/Akt, as co-introduction of an active form of Akt (myr-Akt) abolished the effect of overexpression of PIB5PA on apoptosis induced by PLX4720 or U0126. While overexpression of PIB5PA triggered activation of Bad and down-regulation of Mcl-1, knockdown of Bad or overexpression of Mcl-1 recapitulated, at least in part, the effect of myr-Akt, suggesting that regulation of Bad and Mcl-1 is involved in PIB5PA-mediated sensitization of melanoma cells to the inhibitors. The role of PIB5PA deficiency in BRAF inhibitor resistance was confirmed by knockdown of PIB5PA, which led to increased growth of BRAFV600E melanoma cells selected for resistance to PLX4720. Consistent with its role in vitro, overexpression of PIB5PA and the MEK inhibitor selumetinib cooperatively inhibited melanoma tumor growth in a xenograft model. Taken together, these results identify loss of PIB5PA as a novel resistance mechanism of melanoma to RAF/MEK inhibitors and suggest that restoration of PIB5PA may be a useful strategy to improve the therapeutic efficacy of the inhibitors in the treatment of melanoma.  相似文献   

4.
Aberrant signaling of the Ras-Raf-MEK-ERK (MAP kinase) pathway driven by the mutant kinase BRAFV600E, as a result of the BRAFT1799A mutation, plays a fundamental role in thyroid tumorigenesis. This study investigated the therapeutic potential of a BRAFV600E-selective inhibitor, PLX4032 (RG7204), for thyroid cancer by examining its effects on the MAP kinase signaling and proliferation of 10 thyroid cancer cell lines with wild-type BRAF or BRAFT1799A mutation. We found that PLX4032 could effectively inhibit the MAP kinase signaling, as reflected by the suppression of ERK phosphorylation, in cells harboring the BRAFT1799A mutation. PLX4032 also showed a potent and BRAF mutation-selective inhibition of cell proliferation in a concentration-dependent manner. PLX4032 displayed low IC50 values (0.115–1.156 μM) in BRAFV600E mutant cells, in contrast with wild-type BRAF cells that showed resistance to the inhibitor with high IC50 values (56.674–1349.788 μM). Interestingly, cells with Ras mutations were also sensitive to PLX4032, albeit moderately. Thus, this study has confirmed that the BRAFT1799A mutation confers cancer cells sensitivity to PLX4032 and demonstrated its specific potential as an effective and BRAFT1799A mutation-selective therapeutic agent for thyroid cancer.  相似文献   

5.
Vemurafenib and dabrafenib block MEK‐ERK1/2 signaling and cause tumor regression in the majority of advanced‐stage BRAFV600E melanoma patients; however, acquired resistance and paradoxical signaling have driven efforts for more potent and selective RAF inhibitors. Next‐generation RAF inhibitors, such as PLX7904 (PB04), effectively inhibit RAF signaling in BRAFV600E melanoma cells without paradoxical effects in wild‐type cells. Furthermore, PLX7904 blocks the growth of vemurafenib‐resistant BRAFV600E cells that express mutant NRAS. Acquired resistance to vemurafenib and dabrafenib is also frequently driven by expression of mutation BRAF splice variants; thus, we tested the effects of PLX7904 and its clinical analog, PLX8394 (PB03), in BRAFV600E splice variant‐mediated vemurafenib‐resistant cells. We show that paradox‐breaker RAF inhibitors potently block MEK‐ERK1/2 signaling, G1/S cell cycle events, survival and growth of vemurafenib/PLX4720‐resistant cells harboring distinct BRAFV600E splice variants. These data support the further investigation of paradox‐breaker RAF inhibitors as a second‐line treatment option for patients failing on vemurafenib or dabrafenib.  相似文献   

6.
The limitations of revolutionary new mutation-specific inhibitors of BRAFV600E include the universal recurrence seen in melanoma patients treated with this novel class of drugs. Recently, our lab showed that simultaneous activation of the Wnt/β-catenin signaling pathway and targeted inhibition of BRAFV600E by PLX4720 synergistically induces apoptosis across a spectrum of BRAFV600E melanoma cell lines. As a follow-up to that study, treatment of BRAF-mutant and NRAS-mutant melanoma lines with WNT3A and the MEK inhibitor AZD6244 also induces apoptosis. The susceptibility of BRAF-mutant lines and NRAS-mutant lines to apoptosis correlates with negative regulation of Wnt/β-catenin signaling by ERK/MAPK signaling and dynamic decreases in abundance of the downstream scaffolding protein, AXIN1. Apoptosis-resistant NRAS-mutant lines can sensitize to AZD6244 by pretreatment with AXIN1 siRNA, similar to what we previously reported in BRAF-mutant cell lines. Taken together, these findings indicate that NRAS-mutant melanoma share with BRAF-mutant melanoma the potential to regulate apoptosis upon MEK inhibition through WNT3A and dynamic regulation of cellular AXIN1. Understanding the cellular context that makes melanoma cells susceptible to this combination treatment will contribute to the study and development of novel therapeutic combinations that may lead to more durable responses.  相似文献   

7.
Vertical growth phase (VGP) melanoma is frequently metastatic, a process mediated by changes in gene expression, which are directed by signal transduction pathways in the tumor cells. A prominent signaling pathway is the Ras-Raf-Mek-Erk MAPK pathway, which increases expression of genes that promote melanoma progression. Many melanomas harbor a mutation in this pathway, BRAFV600E, which constitutively activates MAPK signaling and expression of downstream target genes that facilitate tumor progression. In BRAFV600E melanoma, the small molecule inhibitor, vemurafenib (PLX4032), has revolutionized therapy for melanoma by inducing rapid tumor regression. This compound down-regulates the expression of many genes. However, in this study, we document that blocking the Ras-Raf-Mek-Erk MAPK pathway, either with an ERK (PLX4032) or a MEK (U1026) signaling inhibitor, in BRAFV600E human and murine melanoma cell lines increases collagen synthesis in vitro and collagen deposition in vivo. Since TGFß signaling is a major mediator of collagen synthesis, we examined whether blocking TGFß signaling with a small molecule inhibitor would block this increase in collagen. However, there was minimal reduction in collagen synthesis in response to blocking TGFß signaling, suggesting additional mechanism(s), which may include activation of the p38 MAPK pathway. Presently, it is unclear whether this increased collagen synthesis and deposition in melanomas represent a therapeutic benefit or an unwanted “off target” effect of inhibiting the Ras-Raf-Erk-Mek pathway.  相似文献   

8.
BRAFV600E/K is a frequent mutationally active tumor-specific kinase in melanomas that is currently targeted for therapy by the specific inhibitor PLX4032. Our studies with melanoma tumor cells that are BRAFV600E/K and BRAFWT showed that, paradoxically, while PLX4032 inhibited ERK1/2 in the highly sensitive BRAFV600E/K, it activated the pathway in the resistant BRAFWT cells, via RAF1 activation, regardless of the status of mutations in NRAS or PTEN. The persistently active ERK1/2 triggered downstream effectors in BRAFWT melanoma cells and induced changes in the expression of a wide-spectrum of genes associated with cell cycle control. Furthermore, PLX4032 increased the rate of proliferation of growth factor-dependent NRAS Q61L mutant primary melanoma cells, reduced cell adherence and increased mobility of cells from advanced lesions. The results suggest that the drug can confer an advantage to BRAFWT primary and metastatic tumor cells in vivo and provide markers for monitoring clinical responses.  相似文献   

9.
Current treatment for recurrent and aggressive/anaplastic thyroid cancers is ineffective. Novel targeted therapies aimed at the inhibition of the mutated oncoprotein BRAFV600E have shown promise in vivo and in vitro but do not result in cellular apoptosis. TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in a tumor-selective manner by activating the extrinsic apoptotic pathway. Here, we show that a TRAIL-R2 agonist antibody, lexatumumab, induces apoptosis effectively in some thyroid cancer cell lines (HTh-7, TPC-1 and BCPAP), while more aggressive anaplastic cell lines (8505c and SW1736) show resistance. Treatment of the most resistant cell line, 8505c, using lexatumumab in combination with the BRAFV600E inhibitor, PLX4720, and the PI3K inhibitor, LY294002, (triple-drug combination) sensitizes the cells by triggering both the extrinsic and intrinsic apoptotic pathways in vitro as well as 8505c orthotopic thyroid tumors in vivo. A decrease in anti-apoptotic proteins, pAkt, Bcl-xL, Mcl-1 and c-FLIP, coupled with an increase in the activator proteins, Bax and Bim, results in an increase in the Bax to Bcl-xL ratio that appears to be critical for sensitization and subsequent apoptosis of these resistant cells. Our results suggest that targeting the death receptor pathway in thyroid cancer can be a promising strategy for inducing apoptosis in thyroid cancer cells, although combination with other kinase inhibitors may be needed in some of the more aggressive tumors initially resistant to apoptosis.  相似文献   

10.
BRAF inhibitors improve melanoma patient survival, but resistance invariably develops. Here we report the discovery of a novel BRAF mutation that confers resistance to PLX4032 employing whole‐exome sequencing of drug‐resistant BRAFV600K melanoma cells. We further describe a new screening approach, a genome‐wide piggyBac mutagenesis screen that revealed clinically relevant aberrations (N‐terminal BRAF truncations and CRAF overexpression). The novel BRAF mutation, a Leu505 to His substitution (BRAFL505H), is the first resistance‐conferring second‐site mutation identified in BRAF mutant cells. The mutation replaces a small nonpolar amino acid at the BRAF‐PLX4032 interface with a larger polar residue. Moreover, we show that BRAFL505H, found in human prostate cancer, is itself a MAPK‐activating, PLX4032‐resistant oncogenic mutation. Lastly, we demonstrate that the PLX4032‐resistant melanoma cells are sensitive to novel, next‐generation BRAF inhibitors, especially the ‘paradox‐blocker’ PLX8394, supporting its use in clinical trials for treatment of melanoma patients with BRAF‐mutations.  相似文献   

11.
A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1) transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR) and platelet derived growth factor receptor (PDGFR) family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs), demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK) kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.  相似文献   

12.
Bim is known to be critical in killing of melanoma cells by inhibition of the RAF/MEK/ERK pathway. However, the potential role of the most potent apoptosis-inducing isoform of Bim, BimS, remains largely unappreciated. Here, we show that inhibition of the mutant B-RAFV600E triggers preferential splicing to produce BimS, which is particularly important in induction of apoptosis in B-RAFV600E melanoma cells. Although the specific B-RAFV600E inhibitor PLX4720 upregulates all three major isoforms of Bim, BimEL, BimL, and BimS, at the protein and mRNA levels in B-RAFV600E melanoma cells, the increase in the ratios of BimS mRNA to BimEL and BimL mRNA indicates that it favours BimS splicing. Consistently, enforced expression of B-RAFV600E in wild-type B-RAF melanoma cells and melanocytes inhibits BimS expression. The splicing factor SRp55 appears necessary for the increase in BimS splicing, as SRp55 is upregulated, and its inhibition by small interfering RNA blocks induction of BimS and apoptosis induced by PLX4720. The PLX4720-induced, SRp55-mediated increase in BimS splicing is also mirrored in freshly isolated B-RAFV600E melanoma cells. These results identify a key mechanism for induction of apoptosis by PLX4720, and are instructive for sensitizing melanoma cells to B-RAFV600E inhibitors.  相似文献   

13.
Documented sensitivity of melanoma cells to PLX4720, a selective BRAFV600E inhibitor, is based on the presence of mutant BRAF(V600E) alone, while wt-BRAF or mutated KRAS result in cell proliferation. In colon cancer appearance of oncogenic alterations is complex , since BRAF, like KRAS mutations, tend to co-exist with those in PIK3CA and mutated PI3K has been shown to interfere with the successful application of MEK inhibitors. When PLX4720 was used to treat colon tumours, results were not encouraging and herein we attempt to understand the cause of this recorded resistance and discover rational therapeutic combinations to resensitize oncogene driven tumours to apoptosis. Treatment of two genetically different BRAF(V600E) mutant colon cancer cell lines with PLX4720 conferred complete resistance to cell death. Even though p-MAPK/ ERK kinase (MEK) suppression was achieved, TRAIL, an apoptosis inducing agent, was used synergistically in order to achieve cell death by apoptosis in RKO(BRAFV600E/PIK3CAH1047) cells. In contrast, for the same level of apoptosis in HT29(BRAFV600E/PIK3CAP449T) cells, TRAIL was combined with 17-AAG, an Hsp90 inhibitor. For cells where PLX4720 was completely ineffective, 17-AAG was alternatively used to target mutant BRAF(V600E). TRAIL dependence on the constitutive activation of BRAF(V600E) is emphasised through the overexpression of BRAF(V600E) in the permissive genetic background of colon adenocarcinoma Caco-2 cells. Pharmacological suppression of the PI3K pathway further enhances the synergistic effect between TRAIL and PLX4720 in RKO cells, indicating the presence of PIK3CA(MT) as the inhibitory factor. Another rational combination includes 17-AAG synergism with TRAIL in a BRAF(V600E) mutant dependent manner to commit cells to apoptosis, through DR5 and the amplification of the apoptotic pathway. We have successfully utilised combinations of two chemically unrelated BRAF(V600E) inhibitors in combination with TRAIL in a BRAF(V600E) mutated background and provided insight for new anti-cancer strategies where the activated PI3KCA mutation oncogene should be suppressed.  相似文献   

14.

Background

Treatment of metastatic malignant melanoma patients harboring BRAF(V600E) has improved drastically after the discovery of the BRAF inhibitor, vemurafenib. However, drug resistance is a recurring problem, and prognoses are still very bad for patients harboring BRAF wild-type. Better markers for targeted therapy are therefore urgently needed.

Methodology

In this study, we assessed the individual kinase activity profiles in 26 tumor samples obtained from patients with metastatic malignant melanoma using peptide arrays with 144 kinase substrates. In addition, we studied the overall ex-vivo inhibitory effects of vemurafenib and sunitinib on kinase activity status.

Results

Overall kinase activity was significantly higher in lysates from melanoma tumors compared to normal skin tissue. Furthermore, ex-vivo incubation with both vemurafenib and sunitinib caused significant decrease in phosphorylation of kinase substrates, i.e kinase activity. While basal phosphorylation profiles were similar in BRAF wild-type and BRAF(V600E) tumors, analysis with ex-vivo vemurafenib treatment identified a subset of 40 kinase substrates showing stronger inhibition in BRAF(V600E) tumor lysates, distinguishing the BRAF wild-type and BRAF(V600E) tumors. Interestingly, a few BRAF wild-type tumors showed inhibition profiles similar to BRAF(V600E) tumors. The kinase inhibitory effect of vemurafenib was subsequently analyzed in cell lines harboring different BRAF mutational status with various vemurafenib sensitivity in-vitro.

Conclusions

Our findings suggest that multiplex kinase substrate array analysis give valuable information about overall tumor kinase activity. Furthermore, intra-assay exposure to kinase inhibiting drugs may provide a useful tool to study mechanisms of resistance, as well as to identify predictive markers.  相似文献   

15.
16.
Melanoma is one of the most aggressive cancers and its incidence is increasing worldwide. So far there are no curable therapies especially after metastasis. Due to frequent mutations in members of the mitogen-activated protein kinase (MAPK) signaling pathway, this pathway is constitutively active in melanoma. It has been shown that the SONIC HEDGEHOG (SHH)-GLI and MAPK signaling pathway regulate cell growth in many tumors including melanoma and interact with each other in the regulation of cell proliferation and survival.Here we show that the SHH-GLI pathway is active in human melanoma cell lines as they express downstream target of this pathway GLI1. Expression of GLI1 was significantly higher in human primary melanoma tissues harboring BRAFV600E mutation than those with wild type BRAF. Pharmacologic inhibition of BRAFV600E in human melanoma cell lines resulted in decreased expression of GLI1 thus demonstrating interaction of SHH-GLI and MAPK pathways. Inhibition of SHH-GLI pathway by the novel small molecule inhibitor of smoothened NVP-LDE225 was followed by inhibition of cell growth and induction of apoptosis in human melanoma cell lines, interestingly with both BRAFV600E and BRAFWild Type status. NVP-LDE225 was potent in reducing cell proliferation and inducing tumor growth arrest in vitro and in vivo, respectively and these effects were superior to the natural compound cyclopamine.Finally, we conclude that inhibition of SHH-GLI signaling pathway in human melanoma by the specific smoothened inhibitor NVP-LDE225 could have potential therapeutic application in human melanoma even in the absence of BRAFV600E mutation and warrants further investigations.  相似文献   

17.
The Ras/Raf/MEK/ERK pathway has been identified as a major, druggable regulator of melanoma. Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, resulting in constitutive melanoma hyperproliferation. A selective BRAF inhibitor showed remarkable clinical activity in patients with mutated BRAF. Unfortunately, most patients acquire resistance to the BRAF inhibitor, highlighting the urgent need for new melanoma treatment strategies. Green tea polyphenol (−)-epigallocatechin-3-O-gallate (EGCG) inhibits cell proliferation independently of BRAF inhibitor sensitivity, suggesting that increased understanding of the anti-melanoma activity of EGCG may provide a novel therapeutic target. Here, by performing functional genetic screening, we identified protein phosphatase 2A (PP2A) as a critical factor in the suppression of melanoma cell proliferation. We demonstrated that tumor-overexpressed 67-kDa laminin receptor (67LR) activates PP2A through adenylate cyclase/cAMP pathway eliciting inhibitions of oncoproteins and activation of tumor suppressor Merlin. Activating 67LR/PP2A pathway leading to melanoma-specific mTOR inhibition shows strong synergy with the BRAF inhibitor PLX4720 in the drug-resistant melanoma. Moreover, SET, a potent inhibitor of PP2A, is overexpressed on malignant melanoma. Silencing of SET enhances 67LR/PP2A signaling. Collectively, activation of 67LR/PP2A signaling may thus be a novel rational strategy for melanoma-specific treatment.  相似文献   

18.
19.
An activating BRAF (V600E) kinase mutation occurs in approximately half of melanomas. Recent clinical studies have demonstrated that vemurafenib (PLX4032) and dabrafenib, potent and selective inhibitors of mutant v-raf murine sarcoma viral oncogene homolog B1 (BRAF), exhibit remarkable activities in patients with V600 BRAF mutant melanomas. However, acquired drug resistance invariably develops after the initial treatment. Identification of acquired resistance mechanisms may inform the development of new therapies that elicit long-term responses of melanomas to BRAF inhibitors. Here we report that increased expression of AEBP1 (adipocyte enhancer-binding protein 1) confers acquired resistance to BRAF inhibition in melanoma. AEBP1 is shown to be highly upregulated in PLX4032-resistant melanoma cells because of the hyperactivation of the PI3K/Akt-cAMP response element-binding protein (CREB) signaling pathway. This upregulates AEBP1 expression and thus leads to the activation of NF-κB via accelerating IκBa degradation. In addition, inhibition of the PI3K/Akt-CREB-AEBP1-NF-κB pathway greatly reverses the PLX4032-resistant phenotype of melanoma cells. Furthermore, increased expression of AEBP1 is validated in post-treatment tumors in patients with acquired resistance to BRAF inhibitor. Therefore, these results reveal a novel PI3K/Akt-CREB-AEBP1-NF-κB pathway whose activation contributes to acquired resistance to BRAF inhibition, and suggest that this pathway, particularly AEBP1, may represent a novel therapeutic target for treating BRAF inhibitor-resistant melanoma.  相似文献   

20.

Background

The sustained clinical activity of the BRAF inhibitor vemurafenib (PLX4032/RG7204) in patients with BRAFV600 mutant melanoma is limited primarily by the development of acquired resistance leading to tumor progression. Clinical trials are in progress using MEK inhibitors following disease progression in patients receiving BRAF inhibitors. However, the PI3K/AKT pathway can also induce resistance to the inhibitors of MAPK pathway.

Methodology/Principal Findings

The sensitivity to vemurafenib or the MEK inhibitor AZD6244 was tested in sensitive and resistant human melanoma cell lines exploring differences in activation-associated phosphorylation levels of major signaling molecules, leading to the testing of co-inhibition of the AKT/mTOR pathway genetically and pharmacologically. There was a high degree of cross-resistance to vemurafenib and AZD6244, except in two vemurafenib-resistant cell lines that acquired a secondary mutation in NRAS. In other cell lines, acquired resistance to both drugs was associated with persistence or increase in activity of AKT pathway. siRNA-mediated gene silencing and combination therapy with an AKT inhibitor or rapamycin partially or completely reversed the resistance.

Conclusions/Significance

Primary and acquired resistance to vemurafenib in these in vitro models results in frequent cross resistance to MEK inhibitors, except when the resistance is the result of a secondary NRAS mutation. Resistance to BRAF or MEK inhibitors is associated with the induction or persistence of activity within the AKT pathway in the presence of these drugs. This resistance can be potentially reversed by the combination of a RAF or MEK inhibitor with an AKT or mTOR inhibitor. These combinations should be available for clinical testing in patients progressing on BRAF inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号