首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here a novel observation that 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) induced predominantly cytochrome P4501A1 (CYP1A1) in rat hepatocytes and predominantly CYP1A2 in human hepatocytes. As part of our research program to evaluate species-differences in response to CYP inducers, we studied the effects of TCDD on CYP1A activity, protein, and gene expression in primary cultures of rat and human hepatocytes. TCDD was found to induce CYP1A activity, measured as ethoxyresorufin-O-deethylase (EROD) activity, in both rat and human hepatocytes. TCDD induction of EROD activity in human hepatocytes (2-5 fold of concurrent solvent control), was significantly lower than that found in rat hepatocytes ( 20-fold of concurrent solvent control). Two structural analogs of TCDD, 2,3,7,8-tetrachlorodibenzofuran (TCDF) and 6-nitro-1,3,8-trichlorodibenzofuran (6-NCDF), were also evaluated. As observed for TCDD, human hepatocytes consistently showed a lower response than rat hepatocytes. As most TCDD-related effects are believed to be mediated via binding of the TCDD-Ah receptor (AhR) complex to DNA, nuclear AhR levels were measured in rat and human hepatocytes after TCDD treatment. We found that the nuclear AhR levels in TCDD-treated rat hepatocytes were approximately 4 times higher than found in TCDD-treated human hepatocytes. However, the estimated binding affinity of [3H]TCDD to nuclear AhR from rat hepatocytes was similar. The species difference in response to TCDD was further evaluated by analysis of CYP1A1 and CYP1A2 mRNA levels using Northern analysis, and P4501A1 and 1A2 protein levels using Western immunoblotting. Results showed that, at both gene expression and protein levels, TCDD induced predominantly CYP1A1 in rat hepatocytes and CYP1A2 in human hepatocytes.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Specialized membrane microdomains known as lipid rafts are thought to contribute to G-protein coupled receptor (GPCR) signaling by organizing receptors and their cognate signaling molecules into discrete membrane domains. To determine if the GnRHR, an unusual member of the GPCR superfamily, partitions into lipid rafts, homogenates of alpha T3-1 cells expressing endogenous GnRHR or Chinese hamster ovary cells expressing an epitope-tagged GnRHR were fractionated through a sucrose gradient. We found the GnRHR and c-raf kinase constitutively localized to low density fractions independent of hormone treatment. Partitioning of c-raf kinase into lipid rafts was also observed in whole mouse pituitary glands. Consistent with GnRH induced phosphorylation and activation of c-raf kinase, GnRH treatment led to a decrease in the apparent electrophoretic mobility of c-raf kinase that partitioned into lipid rafts compared with unstimulated cells. Cholesterol depletion of alpha T3-1 cells using methyl-beta-cyclodextrin disrupted GnRHR but not c-raf kinase association with rafts and shifted the receptor into higher density fractions. Cholesterol depletion also significantly attenuated GnRH but not phorbol ester-mediated activation of extracellular signal-related kinase (ERK) and c-fos gene induction. Raft localization and GnRHR signaling to ERK and c-Fos were rescued upon repletion of membrane cholesterol. Thus, the organization of the GnRHR into low density membrane microdomains appears critical in mediating GnRH induced intracellular signaling.  相似文献   

9.
Treatment of primary cultures of adult rat hepatocytes with 5 mM butyrate inhibited the spontaneous decrease in basal activity and mRNA levels of tyrosine aminotransferase (TAT) that occurred during culture (Staecker et al., submitted). We report here that butyrate treatment of primary cultures of rat hepatocytes initially inhibited the induction of TAT. This inhibition was followed by a period of accelerated TAT induction. TAT induction in butyrate-treated primary cultures of adult rat hepatocytes occurred only after metabolism of butyrate by the cultured hepatocytes. The accelerated induction of TAT in hepatocyte cultures treated with sodium butyrate was reflected by increased TAT activity and mRNA levels. Cultured hepatocytes rapidly metabolized butyrate, but the addition of more butyrate into cultures after its initial metabolism resulted in a rapid reduction in TAT activity. These findings indicate that butyrate treatment can affect the expression of TAT in primary hepatocyte cultures in both a positive (increased basal TAT expression) and a negative (inhibition of the induced expression of TAT) manner.  相似文献   

10.
11.
12.
 肝再生过程中立即早期反应基因的表达在成熟肝细胞由G0 期向G1期的转变中起着关键作用 .为探讨肝再生早期基因表达的变化 ,利用表达性差异显示分析 (RDA)技术研究了 2 3肝部分切除后 1h再生肝选择性基因表达 ,发现一株TEC酪氨酸激酶同源序列存在于差减产物中 ,RNA狭缝杂交证实确为差异表达基因 .从大鼠肝cDNA文库中分离其全长cDNA ,序列分析结果表明 ,该基因为小鼠 人TEC酪氨酸激酶的同源体 ,进而以该cDNA为探针 ,用Northern杂交证实 2 3肝部分切除后TEC酪氨酸激酶基因在 1h内呈现瞬间表达增加 ,其表达水平较基础水平增高 2 5倍 ;在原代培养大鼠肝细胞体系中 ,EGF可迅速诱导TEC基因表达 ,且不被蛋白合成抑制剂阻断 .结果表明 ,TEC基因是一种与肝再生调控密切相关的早期反应基因 .  相似文献   

13.
Benzimidazoles compounds like omeprazole (OME) and thiabendazole (TBZ) mediate CYP1A1 induction differently from classical aryl hydrocarbon receptor (AhR) ligands, 3-methylcholanthrene (3-MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). To clarify the involvement of an intracellular signal pathway in CYP1A1 induction by OME and TBZ, the TBZ, OME and 3-MC signal-transducing pathways were compared by using specific protein tyrosine kinase inhibitors in primary culture of rat hepatocytes. The effect of OME and TBZ (75-250 microM) on cytochrome P450 1A1 (CYP1A1) expression was therefore studied in primary cultures of rat hepatocytes after 24 h, 48 h and 72 h of exposure. Both compounds provoked a dose- and time-dependent increase in CYP1A1 (EROD activity, protein and mRNA levels), but OME was less effective at all the concentrations and times tested. The mechanism of benzimidazole-mediated induction of CYP1A1 was investigated by comparison with 3-MC, a prototypical AhR ligand. As expected, OME and TBZ were unable to displace [(3)H]-TCDD from its binding sites to the AhR in competitive binding studies. Moreover, classic tyrosine kinase inhibitor herbimycin A (HA) inhibited the two benzimidazoles-mediated CYP1A1 inductions, but only partially inhibited the 3-MC-mediated one. Another two tyrosine kinase inhibitors, Lavendustin A (LA) and genistein (GEN), had no effect on CYP1A1 induction by benzimidazoles and 3-MC. These results are consistent with the implication of a tyrosine kinase, most probably the Src tyrosine kinase, in the mechanism of CYP1A1 induction in rat hepatocytes.  相似文献   

14.
A 57-kDa protein in royal jelly (RJ) was previously shown to stimulate hepatocyte DNA synthesis and prolongs the proliferation of hepatocytes as well as increasing albumin production [Kamakura, M., Suenobu, N., and Fukushima, M. (2001) Biochem. Biophys. Res. Commun. 282, 865-874]. In this study, I investigated the signal transduction mechanisms involved in the induction of hepatocyte DNA synthesis and the promotion of cell survival by this 57-kDa protein in primary cultures of adult rat hepatocytes. Hepatocyte DNA synthesis induced by the 57-kDa protein was not influenced by several alpha- and beta-adrenoceptor antagonists, but was dose-dependently abolished by an inhibitor of a tyrosine-specific protein kinase, genistein. A phospholipase C inhibitor (U-73122) and a protein kinase C (PKC) inhibitor (sphingosine) inhibited 57-kDa protein-stimulated he-patocyte DNA synthesis, whereas a protein kinase A inhibitor (H-89) did not. The 57-kDa protein also activated PKC in rat hepatocytes. Various inhibitors of intracellular signal transduction elements (PD98059, p21 ras farnesyltransferase inhibitor, wortmannin and rapamycin) also blocked hepatocyte DNA synthesis induced by the 57-kDa protein. Furthermore, the 57-kDa protein activated mitogen-activated protein (MAP) kinase in rat hepatocytes. The activation of MAP kinase by the 57-kDa protein was inhibited by PD98059 and sphingosine. The 57-kDa protein also activated protein kinase B, which is a key regulator of cell survival. These results suggest that, like growth factors, the 57-kDa protein activates several important intracellular signaling factors involved in the stimulation of hepatocyte DNA synthesis and the protection of cells from apoptosis.  相似文献   

15.
16.
There is now mounting evidence that the aryl hydrocarbon receptor (AhR) plays an important role in physiologic responses such as development, cell cycle regulation, immune function and also malignant transformation in various tissues. The strong nuclear AhR expression is observed in the invasive phenotype, and an elevated nuclear AhR expression is associated with a poor prognosis of human prostate cancer. On the other hand, there are conflicting results that the AhR deficiency results in increased susceptibility to prostate tumors in mouse model. In the present study, we investigated AhR expression and its role in the growth and invasiveness of human prostate cancer cells. The AhR protein expression was detected in prostate cancer cell lines and human prostate cancer tissues. A small interfering RNA targeting AhR, constitutive active AhR expression vector, and AhR agonist and antagonist were used to moderate its expression and signaling. The induction of AhR signaling attenuated invasiveness of prostate cancer cells without affecting the cellular growth rate. These results suggest that AhR signaling in prostate cancer cells facilitates invasion of these cells, and modulation with this signaling can be a potential therapeutic target of invasive tumors.  相似文献   

17.
Cross-talk between nuclear receptors involved in the control of drug metabolism is being increasingly recognised as a source of drug side effects. Omeprazole is a well known activator of the aryl hydrocarbon receptor (AhR). We investigated the regulation of AhR by omeprazole-sulphide, a degradation metabolite of omeprazole, using CYP1A mRNA induction, reporter gene assay, receptor DNA binding, ligand binding, nuclear translocation, trypsin digests, and drug metabolism analysis in mouse Hepa-1c1c7, human HepG2 cells and primary human hepatocytes. Omeprazole-sulphide is a pure antagonist of AhR in Hepa-1c1c7 and HepG2 hepatoma cell lines. In Hepa-1c1c7 cells, omeprazole-sulphide is a ligand of AhR, inhibits AhR activation to a DNA-binding form, induces a specific pattern of AhR trypsin digestion and inhibits AhR nuclear translocation and subsequent degradation in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. However, in highly differentiated primary human hepatocytes treated with rifampicin an agonist of the pregnane X receptor (PXR), omeprazole-sulphide behaves as an agonist of AhR. Inhibition of drug metabolizing enzymes by ketoconazole restores the antagonist effect of omeprazole-sulphide. Metabolic LC/MS analysis reveals that omeprazole-sulphide (AhR antagonist) is efficiently converted to omeprazole (AhR activator) by cytochrome P450 CYP3A4, a target gene of PXR, in primary human hepatocytes but not in hepatoma cells in which PXR is not expressed. This report provides the first evidence for a cross-talk between PXR/CYP3A4 and AhR. In addition, it clearly shows that conclusions drawn from experiments carried out in cell lines may lead to erroneous in vivo predictions in man.  相似文献   

18.
19.
The expression of the S gene of hepatitis B virus has been studied in the somatic hybrid cells resulting from the fusion between rat hepatocytes in primary culture and cells of the mouse hepatoma line BWTG3, and in the parental line BWTG3. The DNA of the S gene inserted into the plasmids pAC Tk+ and pNY4 has been co-transfected into these cells with a plasmid DNA bearing a resistance gene to aminoglycoside. The level of expression of the S gene among the co-transfected resistant clones was estimated by radioimmunoassay. The results show that a high number of the co-transfected cellular hybrid clones express the S gene, whereas it is found, by contrast, that the S gene is poorly expressed in the mouse hepatoma cells. The level of expression of the S gene (as the amount of HBs Ag synthesized) is high in the hybrid clones and the synthesis of the HBs antigen is stable in time. These observations suggest for the first time in cell cultures in vitro, the role which is probably played by the normal hepatocyte genome in the expression of the S gene of HBV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号